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Abstract. In this paper, we use the smoothing Jacobian strategy to propose
a new algorithm for solving complementarity problems based on its reformu-
lation as a nonsmooth system of equations. This algorithm can be seen as a
generalization of the one proposed in [18]. We develop its global convergence
theory and under certain assumptions, we demonstrate that the proposed
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Resumen. En este artículo, usamos la estrategia del jacobiano suavizado para
proponer un nuevo algoritmo para resolver problemas de complementariedad
no lineal basado en su reformulación como un sistema de ecuaciones no li-
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1. Introduction

The Nonlinear Complementarity Problem, (NCP), which in some contexts is synonymous
with system in equilibrium, arises among others, in applications to Physics, Engineering,
and Economics [3], [8], [14], [19]. The problem is to find a vector x ∈ Rn such that
x ≥ 0, F (x) ≥ 0 and xTF (x) = 0, with F : Rn → Rn continuously differentiable. Here,
a vector is nonnegative if all its components are nonnegative. A widely used technique
for solving the NCP is to reformulate it as a system of nonlinear equations using a
complementarity function φ : R2 → R such that

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (1)

Then, we consider Φ: Rn → Rn and define the nonlinear system of equations

Φ(x) =

 φ(x1, F1(x))
...

φ(xn, Fn(x))

 = 0, (2)

which is a nondifferentiable system due to the lack of smoothness of φ. From (1), a vector
x∗ is a solution of (2), if, and only if, x∗ it is a solution of the NCP. To solve (2) and
thus, to solve the NCP, a nonsmooth algorithms type Newton [27], [29] and quasi-Newton
[20], [21], among others [1], [6], [22], [26], [31] have been proposed. The natural merit
function [24] Ψ: Rn → R, defined by Ψ(x) = 1

2 ∥Φ(x)∥
2
2 , is used in the globalization

of these methods. Thus, Ψ(x) is minimized in Rn. These methods use the concept of
generalized Jacobian [10] defined by the set

∂G(x) = conv

{
lim
k→∞

G′(xk) ∈ Rn×n : lim
k→∞

xk → x, xk ∈ DG

}
, (3)

for a Lipschitz continuous function G : Rn → Rn, in x, where DG denotes the set of
all points where is G is differentiable and hull {A} is the convex envelope of A. This
set is nonempty, convex, and compact [11]. Usually, the set (3) is difficult to compute,
for this reason, we use the overestimation ∂G(x)T ⊆ ∂G1(x) × · · · × ∂Gn(x) given in
[11], where the right side, for short ∂CG(x)T [18], called C-sub differential of G at x,
is the set of matrices Rn×n, whose i-th column is the generalized gradient of the i-th
component of the function G.

Another strategy to solve (2) is to smooth the Jacobian proposed in [9] and called Jaco-
bian smoothing in [18]. The general idea of methods using this strategy is to approximate
Φ by a smooth function Φµ : Rn → Rn, where µ > 0 is the smoothing parameter, and
then solving a sequence of smooth nonlinear equation systems,

Φµ(x) =

 φµ(x1, F1(x))
...

φµ(xn, Fn(x))

 = 0, (4)

with µ going to zero and φµ a smoothing function of φ used in (2). The system (4) is
solved at each iteration by solving the mixed Newton equation) Φ

′

µ(xk)sk = −Φ(xk).
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A global Jacobian smoothing algorithm for nonlinear complementarity problems 193

In [18], the authors present a new algorithm with good numerical performance based
on the Jacobian smoothing strategy to solve the NCP, by reformulating it as a system
of nonlinear equations using the Fischer-Burmeister complementary function defined by
φ(a, b) =

√
a2 + b2 − a − b. Motivated by the results obtained with this function, and

since it is a particular case of the following family of complementary functions [17]

φλ(a, b) =

√
(a− b)

2
+ λab− a− b, λ ∈ (0, 4) , (5)

corresponding to λ = 2, in this paper we use this strategy with the family (5) to propose a
new algorithm that solves complementarity problems by reformulating it as a nonlinear,
nondifferentiable system of equations. This algorithm can be seen as a generalization
of the one proposed in [18] to any member of family φλ, with λ in (0, 4). Under
certain hypotheses, we demonstrate that the proposed algorithm converges local and, q-
superlinear or q-quadratically to a solution of the complementarity problem. In addition,
we analyze the numerical performance of the proposed algorithm.
The organization of this paper is as follows. In Section 2, we present the Jacobian
smoothing strategy applied to a function Φλ, we described the Jacobian matrix of its
smoothing and find an upper bound of the parameter µ which will be very important in
the algorithmic proposal. In Section 3, we present some preliminary results that we use
to develop the convergence theory of the algorithm proposed. In Section 4, we present
a new Jacobian smoothing algorithm to solve nonlinear complementarity problems that
generalize the one presented in [18] to all members of family (5). Moreover, we prove
that our algorithm is well defined. In Section 5, we develop its global convergence theory.
In Section 6, under some hypotheses, we prove that the algorithm converges local and
q-superlinear or q-quadratically to the solution of the complementarity problem. In
Section 8, we analyze the numerical performance of the proposed algorithm. Finally, In
Section 9, we present our concluding remarks.

2. Smoothing Jacobian strategy for Φλ(x) = 0

We consider the reformulation (2) of the NCP as a nonsmooth nonlinear system of
equations. If φ = φλ, the family (5), we obtain the system Φλ (x) = 0. The basic
iteration of a generalized Newton method to solve this system has the form,

Hksk = −Φλ(xk), (6)

where Hk ∈ ∂Φλ(xk) or Hk ∈ ∂CΦλ(xk). Here, we use Hk ∈ ∂CΦλ(xk). In order to
define a smoothing Jacobian method for Φλ (x) = 0, we follow the basic idea given in
[18] and we consider smoothing φλ as proposed in [4]: for all λ ∈ (0, 4) and µ > 0,

φλµ(a, b) =
√
(a− b)2 + λab+ (4− λ)µ− a− b = Gλµ(a, b) − a − b. (7)

As expected, the distance between φλ and its smoothing function, φλµ, is upper
bounded by a constant that depends on the parameters λ and µ. This is a particu-
lar case of the following proposition that will be useful in the convergence theory.

Proposition 2.1. Function φλµ satisfies the inequality

|φλµ1
(a, b)− φλµ2

(a, b)| ≤
√
4− λ|√µ1 −

√
µ2|,
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for all (a, b) ∈ R2 and µ1, µ2 ≥ 0. In particular, |φλµ − φλ| ≤
√
4− λ

√
µ, for all

(a, b) ∈ R2, λ ∈ (0, 4) and µ ≥ 0.

Proof. Let (a, b) ∈ R2, µ1 and µ2 nonnegatives, such that µ1 ̸= µ2.

|φλµ1(a, b)− φλµ2(a, b)| = |Gλµ1(a, b)−Gλµ2(a, b)| =
∣∣∣∣ (µ1 − µ2)(4− λ)

Gλµ1(a, b) +Gλµ2(a, b)

∣∣∣∣ ·
Observe that Gλµ(a, b) ≥

√
µ(4− λ) . Then

|φλµ1
(a, b)− φλµ2

(a, b)| ≤ |(µ1 − µ2)(4− λ)|
(
√
µ1 +

√
µ2)

√
4− λ

≤ |√µ1 −
√
µ2|

√
4− λ .

In particular, if µ1 = µ and µ2 = 0 then |φλµ − φλ| ≤
√
4− λ

√
µ . □✓✓✓

From (7), we define the function Φλµ : Rn → Rn by,

Φλµ(x) =

 φλµ(x1, F1(x))
...

φλµ(xn, Fn(x))

 · (8)

The next proposition gives an upper bound for the distance between Φλ and its approx-
imation Φλµ.

Proposition 2.2. The function Φλµ satisfies the following inequalities

i) ∥Φλµ1(x)− Φλµ2(x)∥ ≤ κ|√µ1 −
√
µ2|.

ii) ∥Φλµ(x)− Φλ(x)∥ ≤ κ
√
µ.

for all x ∈ Rn, and µ, µ1, µ2 ≥ 0, where κ =
√
n(4− λ).

Proof. Using the Euclidean norm and Proposition 2.1,

∥Φλµ1
(x)− Φλµ2

(x)∥ =

√√√√ n∑
i=1

[φλµ1
(xi, Fi(x))− φλµ2

(xi, Fi(x))]2

≤
√

n
[
(
√
µ1 −

√
µ2)

√
4− λ

]2
=

√
n(4− λ)|√µ1 −

√
µ2|.

The second part of the proposition is obtained by choosing µ1 = µ and µ2 = 0. □✓✓✓

Now, the basic iteration of a smoothing Jacobian method for solving Φλ (x) = 0 is as
follows

Φ′
λµ(xk)sk = −Φλ(xk), (9)

xk+1 = sk + xk,
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where Φ′
λµ(xk) is the Jacobian matrix of Φλµ at xk. From (6) and (9), we have that

this method solves the reformulation Φλ(x) = 0, replacing Hk ∈ ∂CΦλ(x), with an ap-
proximation Φ′

λµk
(xk). Thus, these methods can be seen as quasi-Newton. The Jacobian

matrix Φ′
λµ(x) is given by

Φ′
λµ(x) =

 ∇φλµ(x1, F1(x))T
...

∇φλµ(xn, Fn(x))T

 ,

where ∇φλµ(xi, Fi(x))T = (αλµ(xi, Fi(x))− 1)eTi + (βλµ(xi, Fi(x))− 1)∇Fi(x)T , with

αλµ(xi, Fi(x)) =
2(xi − Fi(x)) + λFi(x)

Gλµ(xi, Fi(x))
and βλµ(xi, Fi(x)) =

−2(xi − Fi(x)) + λxi

Gλµ(xi, Fi(x))
,

where Gλµ(xi, Fi(x)) = 2
√

(xi − F(x))2 + λxiFi(x) + (4− λ)µ.

The next proposition guarantees that, if µ tends to zero, the distance between Φ′
λµ(x)

and ∂CΦλ(x) also tends to zero. Thus, it makes sense to replace the Newton iteration
(6) with (9).

Proposition 2.3 ([4]). Let x ∈ Rn be arbitrary but fixed. Then we have
limµ→0 dist(Φ

′
λµ(x), ∂CΦλ(x)) = 0.

From this proposition, for every δ > 0 there exists µ̄ = µ̄(x, δ) > 0 such that
dist(Φ′

λµ(x), ∂CΦλ(x)) ≤ δ, for all 0 < µ ≤ µ̄. In our algorithmic proposal is very
important to obtain an expression of µ̄ since it gives an upper bound of µ. For this, we
proceed as in [18] and we obtain the following proposition.

Proposition 2.4 ([30]). Let x ∈ Rn be arbitrary but fixed. Assume that x is not a
solution of the NCP and define

γ(x) =
1

2
max
i/∈β(x)

{∥ [2(xi − Fi(x)) + λFi(x)] ei + [−2(xi − Fi(x)) + λxi]∇Fi(x)∥}

α(x) = min
i/∈β(x)

{
(xi − Fi(x))2 + λxiFi(x)

}
> 0,

with β(x) = {i : xi = 0 = Fi(x)} . Let δ > 0 and define

µ (x, δ, λ) =


1 if nγ(x)2

δ2
− α(x) ≤ 0.

α(x)2

4− λ

(
δ2

nγ(x)2 − δ2α(x)

)
other case.

Then distF (Φ
′
λµ(x), ∂CΦλ(x)) ≤ δ, for all µ such that 0 < µ < µ (x, δ, λ).

Since our algorithmic proposal is a global algorithm for solving the NCP, indirectly
through its reformulation Φλ(x) = 0, we consider the natural merit function Ψλ : Rn →
R defined by Ψλ(x) = 1

2Φλ(x)TΦλ(x). The idea is to solve the NCP by minimizing
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Ψλ. But, there is a problem: the direction computed from (9), is no necessarily a descent
direction for Ψλ at xk. Following [18], an alternative is to use this direction to reduce
the related merit function

Ψλµ(x) =
1

2
Φλµ(x)TΦλµ(x). (10)

3. Preliminaries

In this section, we present some definitions, propositions, and lemmas related to the
nonlinear complementarity which will be useful in the development of the convergence
theory of our algorithmic proposal.

Definition 3.1. Let A ∈ Rn×n. The Frobenius norm of A is defined by

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√

trace (ATA).

Definition 3.2. Let A ∈ Rn×n and M ⊆ Rn×n be a nonempty set of matrices. The
distance between A and M is defined by, dist(A,M) = infB∈M {∥A−B∥} , where
∥ · ∥ is a matrix norm.

Definition 3.3. Let {tk} ⊆ R, if there exists a number U such that

1. For every ϵ > 0 there exists an integer N such that k > N implies tk < U + ϵ.

2. Given ϵ > 0 and m > 0, there exists an integer k > m such that tk > U − ϵ.

Then U is called the superior limit of {tk} and we write U = lim supk→∞ tk.

Related with a solution x∗ of the NCP, we have the following index sets,

α̂ = {i : x∗
i > 0 = Fi(x∗)}, β̂ = {i : x∗

i = 0 = Fi(x∗)}, γ̂ = {i : x∗
i < 0 = Fi(x∗)}.

When β ̸= ∅, x∗ is called a degenerate solution.

Definition 3.4. Let x∗ be a solution of the NCP.

1. If all matrices in ∂BΦλ(x∗) are nonsingular, x∗ is called a BD-regular solution.

2. If the submatrix 1 F ′(x∗)α̂α̂ is nonsingular and the Schur complement

F ′(x∗)β̂β̂ − F ′(x∗)β̂α̂F
′(x∗)−1

α̂α̂F
′(x∗)α̂β̂

is a P-matrix2, x∗ is called an R-regular solution.
1Given A = (aij) ∈ Rm×n and the index sets η and τ, Aητ is the matrix with components aij ,

i ∈ η and j ∈ τ.
2The matrix M ∈ Rn×m is called a P-matrix, if for every nonzero vector and ∈ Rn exists an index

i0 = i0(y) ∈ {1, . . . , n} such that yi0 [My]i0 ≥ 0.
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Definition 3.5. Given the sequences {αk} and {βk} such that βk ≥ 0, for all k, and
αk = O(βk), if there exists a positive constant M such that |αk| ≤ Mβk, for all k. We
write αk = o(βk), if limk→∞ αk/βk = 0.

Proposition 3.6 ([17], [28]). Assume that {xk} ⊆ Rn is a sequence converging to x∗.
Then,

1. The function Φλ is semismooth, so ∥Φλ(xk)−Φλ(x∗)−Hk(xk−x∗)∥ = o(∥xk−x∗∥),
for any Hk ∈ ∂CΦλ(xk).

2. If F is continuously differentiable with locally Lipchitz Jacobian then Φλ is strongly
semismooth; that is, ∥Φλ(xk)− Φλ(x∗)−Hk(xk − x∗)∥ = O(∥xk − x∗∥2), for any
Hk ∈ ∂CΦλ(xk).

Proposition 3.7 ([18]). Given x ∈ Rn and µ > 0 arbitrary but fixed, then

[
distF (∇Φλµ(x), ∂CΦ(x)T )

]2
=

n∑
i=1

[dist2([∇Φλµ(x)]i, ∂Φλ,i(x))]2 .

Proposition 3.8 ([23]). If x∗ ∈ Rn is an isolated accumulation point 3 of a sequence{
xk

}
⊆ Rn such that

{
∥xk+1 − xk∥

}
L

converges to zero, for any subsequence
{

xk
}
L

converging to x∗. Then
{

xk
}

converges to x∗.

Proposition 3.9 ([13]). Let G : Rn −→ Rn be locally Lipschitz and x∗ ∈ Rn such that
G(x∗) = 0, satisfary all matrices in ∂G(x∗) are nonsingular and assume that there exist
two sequences {xk} ⊆ Rn and {dk} ⊆ Rn with

lim
k→∞

xk = x∗ and ∥xk + dk − x∗∥ = o
(
∥xk − x∗∥

)
.

Then ∥G(xk + dk)∥ = o
(
∥G(xk)∥

)
.

Proposition 3.10 ([30]). Let x, z ∈ Rn such that ∥x − z∥ ≤ α ∥x∥, α ∈ (0, 1). Then
xT (x − z) ≤ α ∥x∥2.

Proposition 3.11. [17] Let x ∈ Rn arbitrary. Then

∂CΦλ(x) = Da(x) +Db(x)F ′(x),

where Da = diag(a1(x), . . . , an(x)), Db = diag(b1(x), . . . , bn(x)) are diagonal matrices in
Rn×n.

If (xi, F (xi)) ̸= (0, 0), then

ai(x) =
2(xi − Fi(x)) + λFi(x)

2
√
(xi − Fi(x))2 + λxiFi(x)

− 1 = αλ(xi, Fi(x))− 1,

bi(x) =
−2(xi − Fi(x)) + λxi

2
√
(xi − Fi(x))2 + λxiFi(x)

− 1 = βλ(xi, Fi(x))− 1.

3If Ω is the set of accumulation points of {xk}, we say that x∗ ∈ Ω is an isolated accumulation point,
if exist δ > 0 such that B(x; δ) = {x∗}.
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If (xi, F (xi)) = (0, 0) then ai(x) = σi−1 and bi(x) = ρi−1, for any (σi, ρi) ∈ R2

such that ∥(σi, ρi)∥ ⩽ √
cλ, cλ ∈ (0, 2).

Proposition 3.12 ([17]). The merit function Ψλ is continuously differentiable and
∇Ψλ(x) = V TΦλ(x), for any V ∈ ∂CΦλ(x).

Lemma 3.13 ([30]). Let µ > 0 and λ ∈ (0, 4) . The function h : (0,∞) → R, defined by

h(t) =
1√
t
− 1√

t+ (4− λ)µ
,

is strictly decreasing.

Lemma 3.14 ([30]). Let {xk} ⊆ Rn and {µk} ⊆ R two sequences such that {xk} →
x∗ for some x∗ ∈ Rn and {µk} → 0. Then limk→∞ ∇Ψλµk

(xk) = ∇Ψλ(x∗) and
limµ→0 Φ′

λµk
(xk)Φλ(xk) = ∇Ψλ(x∗).

Lemma 3.15 ([18]). Let {xk}, {dk} ⊆ Rn and {tk} ⊆ R with xk+1 = xk + tkdk such
that xk → x∗, dk → d∗ and {tk} → 0 for some vectors x∗, d∗ ∈ Rn. Moreover,
consider {µk} ⊆ R a sequence such that {µk} → 0. Then

lim
k→∞

Ψλµk
(xk + tkdk)−Ψλµk

(xk)

tk
= ∇Ψλ(x∗)T d∗.

4. New algorithm

In this section, we propose a new algorithm for solving the NCP. Basically, the proposal
is a generalization of the smoothing Jacobian method proposed in [18], and its basic
iteration is given in (9). To guarantee the algorithm to be well-defined for an arbitrary
NCP, we use a gradient step for Ψλ when linear system (11) solution does not exist or
gives a poor descent direction for Ψλµ.

Algorithm 1. (Smoothing Jacobian method),

S0. x0 ∈ Rn; θ, α, η and ρ ∈ (0, 1) , γ > 0, σ ∈
(
0, 1−α

2

)
; p > 2 and ϵ ≥ 0. Let

β0 = ∥Φλ(x0)∥, κ =
√
(4− λ)η, µ0 =

(
α
2κβ0

)2 and k = 0.

S1. If ∥∇Ψλ(xk)∥ ≤ ϵ, stop.

S2. Find dk ∈ Rn solving the linear system of equations,

Φ′
λµk

(xk)dk = −Φλ(xk). (11)

If the system (11) is not solvable or if the condition

Φλ(xk)TΦ′
λµk

(xk)dk ≤ −ρ∥dk∥p (12)

is not satisfied, set
dk = −∇Ψλ(xk). (13)
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S3. Find the smallest mk ∈ {0, 1, 2, . . .} such that

Ψλµk
(xk + θmkdk) ≤ Ψλµk

(xk)− 2σθmkΨλ(xk), (14)

if dk is given by (11), and such that

Ψλ(xk + θmkdk) ≤ Ψλ(xk)− σθmk∥dk∥2 (15)

if dk is given by (13). Set tk = θmk and xk+1 = xk + tkdk.

S4. If
∥Φλ(xk+1)∥ ≤ max

{
ηβk,

1

α
∥Φλ(xk+1)− Φλµk

(xk+1)∥
}
, (16)

set βk+1 = ∥Φλ(xk+1)∥ and choose µk+1 such that,

0 < µk+1 ≤ min

{( α

2κ
βk+1

)2

,
µk

4
, µ̄

(
xk+1, γβk+1

)}
. (17)

If (16) is not satisfied and dk = −∇Ψλ(xk) then set βk+1 = βk, and choose µk+1

such that

0 < µk+1 ≤ min

{( α

2κ
∥Φλ(xk+1)∥

)2

,

(
∥Φλ(xk)∥ − ∥Φλ(xk+1)∥

2κ

)2

,
µk

4

}
. (18)

If none of the above conditions is met, set βk+1 = βk and µk+1 = µk.

S5. Set k = k + 1 and return to S1.

In S0, we introduce the parameters and initialize the variables. In S1, it is natural to
think that the algorithm stops when the gradient of the merit function becomes too small.
However, in the implementation, we add other classic criteria like maximum number of
allowed iterations and one that prevents the algorithm from no finding an adequate step
size. In S2, the calculus of a search direction is perhaps the main step of the algorithm:
we find dk by mixed Newton equation (11). In case of (11) is not solvable or the direction
does not satisfy descent criteria (12), we use the steepest descent direction of the merit
function (13), which guarantees a descent direction of Ψλ.

After finding the descent direction, the algorithm is globalized in step S3 using a line
search which depends on this direction: if it is obtained by the Newton equation (11),
the line search is made using (14), which is also used in [9] as a global strategy. On
the other hand, if it is the steepest descent direction (13), the line search (15) is type
Armijo [12]. The update of µk, in S4, starts with the condition (16) used in en [9].
If it is satisfied, µk is updated by (17). This guarantees that the distance between the
subdifferential and smoothing Jacobian is small, and that µk tends to zero. If (16) is not
satisfied, µk is updated by (18). The conditions (18) and (16) are essential to guarantee
the algorithm to be well defined and to converge globally. For the convergence analysis
of the algorithm, we define the following set

K = {0} ∪

{
k ∈ N : ∥Φλ(xk)∥ ≤ max

{
η βk−1,

1

α
∥Φλ(xk)− Φλµk−1

(xk)∥
}}

, (19)
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which is motivated by condition (16). Moreover, K = {0} ∪K1 ∪K2 (disjoint union),
where

K1 =
{
k ∈ K : ηβk−1 ≥ 1

α∥Φλ(xk)− Φλµk−1
(xk)∥

}
,

K2 =
{
k ∈ K : ηβk−1 < 1

α∥Φλ(xk)− Φλµk−1
(xk)∥

}
.

The next proposition is useful to demonstrate that the algorithm is well-defined. Its
demonstration is analogous to that given in [18].

Proposition 4.1. The following inequalities hold:

a) ∥Φλ(xk)− Φλµk
(xk)∥ ≤ α∥Φλ(xk)∥, for all k ≥ 0.

b) distF (Φ
′
λµk

(xk), ∂CΦλ(xk)) ≤ γ∥Φλ(xk)∥, for all k ∈ K with k ≥ 1.

The following result guarantees that Algorithm 1 is well-defined: it ends in a finite
number of steps.

Proposition 4.2. Algorithm 1 is well-defined.

Proof. It is essentially the same given in [9]. It is sufficient to prove that mk in S3 is
finite, for all k ∈ N. In effect, if a descent direction is given by (13) then the condition
Armijo-type guarantees that mk is finite [18]. On the other hand, let assume that the
direction is given by (11). Since Ψλµk

is continuously differentiable and its gradient is
given by ∇Ψλµk

(xk) = Φ′
λµk

(xk)TΦλµk
(xk), by Taylor’s Theorem, we have

Ψλµk
(xk+1)−Ψλµk

(xk) = t∇Ψλµk
(xk)T dk + o(t) = tΦλµk

(xk)TΦ′
λµk

(xk)dk + o(t). (20)

Using the Newton’s direction (11) in (20),

tΦλµk
(xk)TΦ′

λµk
(xk)dk + o(t) = −tΦλ(xk)TΦλµk

(xk) + o(t)

= −tΦλ(xk)T
(
Φλµk

(xk)− Φλ(xk) + Φλ(xk)
)
+ o(t)

= −tΦλ(xk)TΦλ(xk) +

tΦλ(xk)T
(
Φλµk

(xk)− Φλ(xk)
)
+ o(t)

≤ −2t(1− α)Ψλ(xk) + o(t), (21)

where the last inequality follows from Propositions 3.10 and 4.1. On the other hand,

σ <
1

2
(1− α) < 1− α. (22)

Therefore, from (20), (21) and (22), Ψλµk
(xk+1)−Ψλµk

(xk) ≤ −2tσΨλ(xk)+ o(t). This
allows to conclude that exists a nonnegative integer mk such that (14) is satisfied. □✓✓✓
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5. Global convergence

In this section, we present the convergence results of the algorithm proposed. Basically,
we prove that any accumulation point of the sequence generated by Algorithm 1 is a
stationary point of Ψλ. These results generalize those presented in [18] for an algorithm
using the Fischer-Burmeister function, which in turn is based on the theory developed
in [9] for smoothing Newton-type methods. The proofs of the theorems and lemmas in
this section and in the next section use the same steps as the proofs of the corresponding
theorems in [18].

We start with two lemmas whose proofs use the updating rules of Algorithm 1.

Lemma 5.1. Assume that a sequence generated by Algorithm 1 has an accumulation point
x∗, which is a solution of the NCP. Then the index set K defined by (19) is infinite and
the sequence {µk} → 0.

Proof. Assume that K is finite. For the updating rule (16) there exists an integer k0,
such that βk = βk0

. Moreover, ∥Φλ(xk+1)∥ > ηβk0
, for all k ≥ k0, which contradicts

that x∗ is a solution of the NCP. □✓✓✓

Lemma 5.2. The following statements hold:

a) if dk is given by (11) then ∥Φλµk
(xk+1)∥ < ∥Φλµk

(xk)∥.

b) if dk = −∇Ψλ(xk) and µk is updated by (18) then ∥Φλµk+1
(xk+1)∥ ≤

∥Φλµk+1
(xk)∥.

Proof. Part a) is verified using the updating rule (14), and part b) is true if (16) is
satisfied. In addition, we use Proposition 2.2 and some algebraic manipulations. □✓✓✓

The next corollary is an important consequence of the previous result.

Corollary 5.3. If k /∈ K then ∥Φλµk
(xk)∥ ≤ ∥Φλµk

(xk−1)∥.

Proof. The proof is the same as Corollary 5.3 in [18]. □✓✓✓

The two following results are technical lemmas; they give some bounds that we use in
the proof of Proposition 5.6. Details of the proofs are given in [30].

Lemma 5.4 ([30]). Assume that K is ordered like this k0 = 0 < k1 < k2 < . . . . Let
k ∈ N be arbitrary but fixed and kj the largest integer in K such that kj ≤ k then
∥Φλ(xk)∥ ≤ βkj + 2κ

√
µkj .

Lemma 5.5 ([30]). Assume that K is ordered like this k0 = 0 < k1 < k2 < . . . . Let
k ∈ N be arbitrary but fixed and kj the largest integer in K such that kj ≤ k. Then√
µkj ≤ 2−(j+1) α

κ∥Φλ(x0)∥ and βkj ≤ rj∥Φλ(x0)∥, where

r = max

{
1

2
, η

}
. (23)
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Using the two previous lemmas, we prove that the iterations xk stay at the same level
set. This is important because we minimize different merit functions and a decrease in
one does not imply a decrease in the other. This set can be arbitrary close to the level
set Ψλ(x0).

Proposition 5.6. The sequence generated by Algorithm 1 stays in the level set

L0 =
{

x ∈ Rn : Ψλ(x) ≤ (1 + α)2Ψλ(x0)
}
.

Proof. We assume, without loss of generality, that the set K given by (19) is ordered
like this k0 = 0 < k1 < k2 < . . . , which does not indicate that K is infinite. We consider
k ∈ N, arbitrary but fixed and kj the largest integer in K such that kj ≤ k. From
Lemmas 5.4 and 5.5, we have ∥Φλ(xk)∥ ≤ βkj

+2κ
√
µkj

≤ rj ∥Φλ(x0)∥+ α
2j ∥Φλ(x0)∥,

where r is defined by (23), that is.

∥Φλ(xk)∥ ≤ rj(1 + α)∥Φλ(x0)∥, (24)

then ∥Φλ(xk)∥ ≤ (1 + α)∥Φλ(x0)∥. Therefore, xk ∈ L0. □✓✓✓

The following proposition is a consequence of inequality (24).

Proposition 5.7. Let {xk} be a sequence generated by Algorithm 1 and assume that the
set K is infinite. Then each accumulation point of {xk} is a solution of the NCP.

Proposition 5.8. Let {xk} be a sequence generated by Algorithm 1 and let {xk}L be a
subsequence converging to x∗ ∈ Rn. If dk = −∇Ψλ(xk) for all k ∈ L , then x∗ is a
stationary point of Ψλ.

Proof. If K is infinite, the accumulation point, x∗ is a solution of the NCP by Propo-
sition 5.7. Thus, this is a global minimum and therefore, a stationary point of Ψλ.

If K is finite, we can assume that K∩L = ∅ since the sequence has an infinite number of
elements. Therefore, the updating rule (18) is satisfied for all k ∈ L, and consequently,
the sequence {µk} converges to zero. Since K is finite there exists the largest element
that we call k̂. Using the updating rules defined in step S4 of Algorithm 1, we have the
following inequalities

µk ≤ µk̂, βk = βk̂ = ∥Φλ(xk̂)∥ (25)

∥Φλ(xk)∥ > η βk−1 = η ∥Φλ(xk̂)∥ > 0. (26)

α∥Φλ(xk)∥ > ∥Φλ(xk)− Φλµk−1
(xk)∥. (27)

Let assume by contradiction that x∗ is not a stationary point of Ψλ. That is, ∇Ψλ(x∗) ̸=
0. First, we prove that lim infk∈L tk = 0. For this, let assume lim inf

k∈L
tk = t∗ > 0. Since

dk = −∇Ψλ(xk) for all k ∈ L, using Armijo-rule (15), we have that

Ψλ(xk+1)−Ψλ(xk) ≤ −σtk∥∇Ψλ(xk)∥2 ≤ − c

2
, (28)
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for all k ∈ L sufficiently large, where c = σ t∗ ∥∇Ψλ(x∗)∥2 > 0. Since {µk} converges
to zero, Proposition 2.2 guarantees that, for all k ∈ N, sufficiently large,

|Ψλµk
(xk+1)−Ψλ(xk+1)| ≤ c

4
and |Ψλµk

(xk)−Ψλ(xk)| ≤ c

4
.

Using again that {µk} converges to zero, the sequence {∥Φλ(xk)∥} is bounded; since
K is finite, we have, by Proposition 5.6, that 2κ

√
µk ∥Φλ(xk)∥ + 2κ2µk ≤ c

4 , for all
k ∈ N, sufficiently large. If L = {l0, l1, . . . } then, for all lj , sufficiently large, we have,
in analogous way than in Proposition 5.6, that,

Ψλ(xlj+1) = 1
2∥Φλ(xlj+1)∥ ≤ 1

2 (∥Φλ(xlj+1)∥+ 2κ
√
µlj+1)

2

= Ψλ(xlj+1) + 2κ
√
µlj+1 ∥Φλ(xlj+1)∥+ 2κ2µlj+1 ≤ Ψλ(xlj+1) +

c

4
·
(29)

From (28) and (29), Ψλ(xlj+1) − Ψλ(xlj ) = [Ψλ(xlj+1) − Ψλ(xlj+1)] + [Ψλ(xlj+1) −
Ψλ(xlj )] ≤ −c/4, for all lj , sufficiently large. Then the sequence {Ψλ(xlj )} → −∞ as
j → ∞, which contradicts that Ψλ(x) ≥ 0 for all x ∈ Rn. Therefore, lim infk∈L tk = 0.

If necessary, we can assume, from a subsequence, that limk∈L tk = 0. Hence, a full
stepsize never is accepted for all k k ∈ L, sufficiently large. From Armijo-rule (15), we
obtain Ψλ(xk + λmk−1dk) > Ψλ(xk)− σθmk−1∥dk∥2 or, equivalently,

Ψλ(xk + λmk−1dk)−Ψλ(xk)

θmk−1
> −σ∥dk∥2. (30)

By taking the limit k → ∞ on L, we obtain from (30), the continuous differentiability
of Ψλ, dk = −∇Ψλ(xk) for all k ∈ L and the fact that θmk−1 → 0 for k → ∞, in L,

−∇Ψλ(x∗)T∇Ψλ(x∗) ≥ −σ∇Ψλ(x∗)T∇Ψλ(x∗).

This implies that σ ≥ 1, which is clearly a contradiction with the initial choice of
parameter σ. Therefore,

∇Ψλ(x∗) = 0. □✓✓✓

The following lemmas are useful results for the proof of the main global convergence
theorem.

Lemma 5.9. Let {xk} be a sequence generated by Algorithm 1 and let {xk}L be a
subsequence converging to x∗ ∈ Rn. If dk is a Newton direction for all k ∈ L, and
the set K is finite, then the sequence {∥dk∥}L is bounded, that is, there exist positive
constants m and M such that

0 < m ≤ ∥dk∥ ≤ M, ∀ k ∈ L. (31)

Proof. Let assume that dk is a Newton direction for all k ∈ L, Thus, for these indices,
we have that

∥Φλ(xk)∥ = ∥Φ′
λµk

(xk)dk∥ ≤ ∥Φ′
λµk

(xk)∥∥dk∥. (32)

If {∥dk∥}L̂ → 0 on a subset L̂ ⊆ L then, from (32), {∥Φλ(xk)∥}L̂ → 0 because
{∥Φ′

λµk
(xk)∥}L̂ is bounded on the convergent sequence {xk}L̂. The continuity of Φλ
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would imply that Φλ(x∗) = 0 and, from Lemma 5.1, K would be infinite, contradicting
that K is finite. On the other hand, from (12), for all k ∈ L,

−∥Φ′
λµk

(xk)TΦλ(xk)∥∥dk∥ ≤ Φλ(xk)TΦ′
λµk

(xk)dk ≤ −ρ∥dk∥p. (33)

Since {Φ′
λµk

(xk)TΦλ(xk)}L is convergent (either by Lemma 3.14 or because µk is con-
stant, for k sufficiently large) and therefore bounded, there exists a positive constant
C such that ∥Φ′

λµk
(xk)TΦλ(xk)∥ ≤ C for all k ∈ L. From this and (33), we have

ρ∥dk∥p ≤ ∥Φ′
λµk

(xk)TΦλ(xk)∥∥dk∥ ≤ C∥dk∥, for all k ∈ L . Since p > 1, {∥dk∥}L is
bounded, which guarantees (31). □✓✓✓

Lemma 5.10 ([30]). Let {xk} be generated by Algorithm 1 and {xk}L a subsequence
converging to x∗ ∈ Rn. If dk is a Newton direction for k ∈ L, and K is finite, then
lim infk∈L tk = 0.

Proof. The details of the proof are given in [30]. □✓✓✓

The next theorem is the main convergence result of the proposed algorithm.

Theorem 5.11. Let {xk} a sequence generated by Algorithm 1. Then each accumulation
point of {xk} is a stationary point of Ψλ.

Proof. If K is infinite, Proposition 5.7 guarantees the conclusion of this theorem. If K
is finite and k̂ denote its largest index then (25) to (27) are satisfied for all k ≥ k̂. On
the other hand, let x∗ be an accumulation point of {xk}. There exists a subsequence
{xk}L of {xk} converging to x∗. If dk = −∇Ψλ(xk) for a finite number of index
k ∈ L, Proposition 5.8 guarantees that x∗ is a stationary point of Ψλ. Without loss of
generality, we assume that dk is a Newton direction for all k ∈ L. Since K is finite, we
can assume that for all k ∈ L, it is satisfied that k /∈ K, thus the updating rules (17)
and (18) do not apply to these indices.

We proceed by contradiction and assume that x∗ is not a stationary point of the function
Ψλ. That is, Ψλ(x∗) ̸= 0. By Lemma 5.10, lim infk∈L tk = 0. Let L0 be a subsequence
of L such that {tk}L0 converges to zero. Then, mk > 0 for all k ∈ L0, sufficiently
large, where mk ∈ N is the exponent in (14). Then, −2σ θmk−1 Ψλ(xk) < Ψλµk

(xk +

θmk−1dk) − Ψλµk
(xk) for all k ∈ L0, sufficiently large. Dividing both inequalities by

θmk−1, we obtain

−2σΨλ(xk) <
Ψλµk

(xk + θmk−1dk)−Ψλµk
(xk)

θmk−1
·

Let µ∗ be the limit of {µk} and if µ∗ = 0, we denote ∇Ψλµ∗(x∗) for the gradient of
the unperturbed function Ψλ in x∗. From (31), we can assume (through a subsequence)
that {dk}L0 → d∗ ̸= 0. By taking the limit k → ∞, we obtain

−2σΨλ(x∗) ≤ ∇Ψλµ∗(x∗)T d∗. (34)

For µ∗ = 0, this follows from Lemma 3.15. If µ∗ > 0 , then µk = µ∗ for k suffi-
ciently large, then (34) follows from the Mean Value Theorem. Using (11), (27) and
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Proposition 2.2, we have that, for all k ∈ L0, ∇Ψλµk
(xk)T dk ≤ −2(1 − σ)Ψλ(xk) +

κ∥Φλ(xk)∥(√µk−1 −
√
µk); passing to the limit k → ∞, k ∈ L0 , from (34) we obtain

(and from Lemma 3.14, if µ∗ = 0 ),

−2σΨλ(x∗) ≤ ∇Ψλµ∗(x∗)T d∗ ≤ −2(1− α)Ψλ(x∗). (35)

From Proposition 5.6, {Ψλ(xk)} is bounded. Moreover, (
√
µk−1 − √

µk ) → 0, since
{µk} converges. We have that Ψλ(x∗) > 0, (in another case, K would be infinite).
Therefore, from (35), σ ≥ (1− α), which contradicts that σ < (1− α). This completes
the proof. □✓✓✓

6. Local convergence

In this section, we prove under certain hypotheses that the algorithm proposed converges
locally and q-superlinearly or q-quadratically. The first result gives a sufficient condition
for the convergence of a sequence

{
xk

}
generated by Algorithm 1.

Theorem 6.1. If one of the accumulation points of
{

xk
}
, let us say x∗, is an isolated

solution of the NCP, then
{

xk
}

converges to x∗.

Proof. From Lemma 5.1, the index set K defined by (19) is infinite and {µk} converges
to zero. Therefore, Proposition 5.7 guarantees that each accumulation point of

{
xk

}
is

also a solution of the NCP. Thus, x∗ must be an isolated point of
{

xk
}
. Let assume

that
{

xk
}
L

is an arbitrary subsequence of
{

xk
}

converging to x∗. Using the updating
rule of S3 in Algorithm 1, we have

∥xk+1 − xk∥ = θmk∥dk∥ ≤ ∥dk∥. (36)

From (36), it is enough to prove that {dk}L → 0. We have that

{∇Ψλ(xk)}L → ∇Ψλ(x∗) = 0 (37)

because Ψλ is continuous differentiable and the solution x∗ is a stationary point of Ψλ.
If {dk}L has a finite number of Newton directions then it converges to zero. Because
of this, let us assume that there exists a subsequence {dk}L0 of {dk}L such that dk is

a solution of (11) for all k ∈ L0. From (13), ρ∥dk∥p ≤ −
(
Φ′

λµk
(xk)TΦλ(xk)

)T

dk ≤
∥Φ′

λµk
(xk)TΦλ(xk)∥∥dk∥, for all k ∈ L0, thus,

∥dk∥ ≤
(
ρ−1 ∥Φ′

λµk
(xk)TΦλ(xk)∥

) 1
p−1 , (38)

since p > 1. Since {xk} → x∗ and {µk} → 0, with k ∈ L0, the Lemma 3.14 allows to
conclude that,

lim
k→∞, k∈L0

Φ′
λµk

(xk)TΦλ(xk) = ∇Ψλ(x∗) = 0,

and this implies that the right side of (38) converges to zero; therefore, {dk}L0 → 0.
From (38), we have that {dk}L\L0

→ 0, if L \ L0 is infinite. Thus, from (36), we
have that

{
∥xk+1 − xk∥

}
L
→ 0 , and therefore, from Proposition 3.8,

{
xk

}
converges to

x∗. □✓✓✓

Vol. 39, No. 2, 2021]



206 Wilmer Sánchez, Rosana Pérez & Héctor J. Martínez

The two following results are technical lemmas that we will use in the proof of Theorem
6.6. The first one guarantees that, for all k ∈ K, the matrices Φ′

λµk
(xk) are nonsingular

and its inverses are bounded. The second guarantees that the Newton direction satisfies
the descent condition (12), for all k ∈ K, with k sufficiently large. The details of the
proof of each lemma are given in [30].

Lemma 6.2 ([30]). Let {xk} be a sequence generated by Algorithm 1. If one of the
limit points, lets us say, x∗, is a R-regular solution of the NCP then for all k ∈ K ;
sufficiently large, the matrices Φ′

λµk
(xk) are nonsingular and its inverses satisfies that

∥Φ′
λµk

(xk)−1∥ ≤ 2c, for some positive constant c.

Lemma 6.3 ([30]). Under the hypotheses of Lemma 6.2, the solution of linear system
(11) satisfies the descent condition (12) for all k ∈ K sufficiently large.

The following result will be useful to verify that Algorithm 1 eventually takes the full
stepsize tk = 1. Its proof is the same of Lemma 3.2 en [9].

Lemma 6.4 ([30]). If there exists a scalar ω ∈
[
1
2 − (1−α−2σ)2

2(2+α)2 , 1
2

]
such that Ψλ(y) ≤

Ψλ(xk) − 2ωΨλ(xk), for some k ∈ K and y ∈ Rn , then Ψλµk
(y) ≤ Ψλµk

(xk) −
2σΨλ(xk), where µk is the smoothing parameter in the k-th step of Algorithm 1.

The next lemma guarantees that the indices of the iterations xk remain in K. By
repeating this argument, we will guarantee that k ∈ K and tk = 1 for all k ∈ N,
sufficiently large.

Lemma 6.5. Assume the hypotheses of Lemma 6.2. There exists an index k̂ ∈ K such
that for all k ≥ k̂, the index k + 1 also remain in K and xk+1 = xk + dk.

Proof. By Lemma 6.2, there is c > 0 such that ∥Φ′
λµk

(xk)−1∥ ≤ 2c, for all k ∈ K
sufficiently large. For this k, from the Algorithm 1, we have

∥xk + dk − x∗∥ = ∥xk − x∗ − Φ′
λµk

(xk)−1Φλ(xk)∥

≤ ∥Φ′
λµk

(xk)−1∥(∥(Φ′
λµk

(xk)−1 −Hk)(xk − x∗)∥
+∥Hk(xk − x∗)− Φλ(xk) + Φλ(x∗)∥)

≤ 2c(γβk∥xk − x∗∥+ ∥Hk(xk − x∗)− Φλ(xk) + Φλ(x∗)∥).
(39)

Here, Hk ∈ ∂CΦλ(xk) is such that distF (Φ
′
λµk

(xk), ∂CΦλ(xk)) = ∥Φ′
λµk

(xk)−Hk∥F ≤
γ βk, where the inequality is obtained by the part b) of the Proposition 4.1. Moreover,
using Proposition 3.6 and since βk → 0, we have

∥xk + dk − x∗∥ = o(∥xk − x∗∥), (40)

with k → ∞ for k ∈ K. From this and Proposition 3.9 we have

∥Φλ(xk + dk)∥ = o(∥Φλ(xk)∥), (41)

with k → ∞. for k ∈ K. Let ω = max
{

1
2 − (1−α−2σ)2

2(2+α)2 , (1−η)2

2

}
, where α, η and σ

are the constants defined by Algorithm 1. From (41), there exists an index k̂ ∈ K such
that

Ψλ(xk + dk) ≤ Ψλ(xk)− 2ωΨλ(xk), (42)
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for all k ∈ K with k ≥ k̂. Then, from Lemma 6.4, Ψλµk
(xk + dk) ≤ Ψλµk

(xk) −
2σΨλ(xk). Thus, full step is accepted for all k ≥ k̂, k ∈ K. In particular, xk̂+1 =

xk̂+dk̂. From (42) and the definition of ω, we have ∥Φλ(xk̂+1)∥ ≤
√
1− 2ω∥Φλ(xk̂)∥ ≤

η ∥Φλ(xk̂)∥ = ηβk̂, which implies k̂ + 1 ∈ K. By repeating this process, we can prove
that, for all k ≥ k̂, itholds k ∈ K and xk+1 = xk + dk. □✓✓✓

The next result gives sufficient conditions for the rate of convergence of Algorithm 1.

Theorem 6.6. Let {xk} be generated by Algorithm 1. If one of its limit points, let us say
x∗, is a R-regular solution of the NCP, then {xk} converges to x∗ at least q-superlinearly
to x∗. If F is continuous differentiable with Jacobian matrix locally Lipschitz, the con-
vergence is q-quadratic.

Proof. Lemma 6.5 guarantees that k ∈ K and tk = 1, for all k ∈ N sufficiently large.
Then the q-superlinear convergence is obtained from (40). If F is continuous differentiable
with Jacobian matrix locally Lipschitz, then by Proposition 3.6, we have ∥Hk(xk+dk)−
Φλ(xk) + Φλ(x∗)∥ = O(∥xk − x∗∥2). Since Φλ is locally Lipschitz, βk = ∥Φλ(xk)∥ =
∥Φλ(xk)−Φλ(x∗)∥ = O(∥xk−x∗∥). Using these two inequalities in (39), ∥xk+dk−x∗∥ =
O(∥xk − x∗∥2); therefore, {xk} converges q-quadratically to x∗. □✓✓✓

7. Numerical results

In this section, we analyze the global numerical performance of Algorithm 1 and compare
it with three global methods for solving the NCP. The first, a nonsmooth quasi-newton
method proposed in [5] which we call Algorithm 2. The second, a smoothing Jacobian
method proposed in [18] which, unlike our proposal, uses a smoothing of the Fischer
function (Algorithm 1 with λ = 2), which Algorithm 3 and, the third, a smooth Newton
method proposed recently in [32], which we call Algorithm 4. We vary λ in two forms
obtaining two versions of our algorithm, namely, Method 1: we use the dynamic choice
of λ used in [5], (this strategy combines the efficiency of Fisher function far from the
solution with that of the minimum function near to it), Method 2: we vary randomly λ
in the interval (0, 4) . We finalized the section with a local analysis of our algorithmic
proposal.

For the parameters, we use the following values: ρ = 10−18, p = 2.1, θ = 0.5, σ =
10−4, γ = 30, α = 0.95, η = 0.9, ϵ1 = 10−12 ϵ2 = 10−6, kmax = 300, tmin = 10−16

(minimum stepsize in linear search), where ϵ1, ϵ2 are the tolerances for Φλ(xk) and
∥∇Ψλ(xk)∥, respectively [18].

For the numerical test, we consider nine complementarity problems associated with
the functions Kojima-Shindo (Koj-Shi), Kojima-Josephy (Koj-Jo), Mathiesen modificado
(Math mod), Mathiesen (Mathiesen) Billups (Billups) [7], [25]; Nash-Cournot (Nash-Co)
[16], Hock-Schittkowski (HH 66 ) [32], Geiger-Kanzow (Geiger-Kanzow) [15], Ahn (Ahn)
[2]. We implemented Algorithms 1 (with Methods 1 and 2) and the test functions in
MATLAB and use the following starting points taking from [5], [32],
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x1 = (1 1 1 1)T x8 = (1 2 3 4)T x15 = (1 1 1 1 1)T

x2 = 1 x9 = (2 − 3 − 3 2)T x16 = (100 · · · 100)T
x3 = (10 10 10 10 10)T x10 = 100x1 x17 = −2x1

x4 = (10 10 · · · 10)T x11 = (1 0 1 0)T x18 = (1 4 4 1)T

x5 = 10x1 x12 = (1 0 0 0)T x19 = 3x1

x6 = (−1 · · · − 1)T x13 = (1 1 1 1 0 0)T x20 = (0 · · · 0)T

x7 = 6x1 x14 = 0

x21 = (−1 · · · − 1 1 · · · 1)T .

To analyze the global convergence of Algorithm 1 and the variation of λ, we generate 100
random initial vectors for each problem with each of the methods described previously.
We present the results in Table 1, which contains the problem and the method used to
choose the parameter λ; the execution average time in seconds ( t ); the average number
of iterations ( k ), and the percentage of times that the algorithm finds a solution to the
problem (Success (%)).

Problem Method k t (sec) Success (%)

Koj-Shi 1 14.87 0.0141 99
2 12.85 0.0055 97

Koj-Jo 1 14.66 0.0170 100
2 24.06 0.0101 100

Math mod 1 9.5135 0.0123 74
2 8.8028 0.0066 71

Billups 1 17.65 0.0093 100
2 38.65 0.0040 61

Nash-Co (5 ) 1 8.09 0.0148 100
2 8.36 0.0096 100

Nash-Co (10 ) 1 12.02 0.0325 100
2 12.71 0.0398 100

Mathiesen 1 10.91 0.0129 99
2 10.91 0.0056 100

HH 66 1 10.54 0.0128 100
2 12.1 0.0096 100

Geiger-Kanzow 1 6 1.342 100
2 6.61 1.179 100

Table 1. Algorithm 1 varying λ with random starting points.

The results of Table 1 show that the number of iterations with Methods 1 and 2 are
similar, except for two of the problems for which Method 2 increases them. In average
time, except for one problem, Method 2 always is better (even with the problems where
there are more iterations). In Succes(%), they are similar, except in the case of Billups
Problem, where it decreases by 31 % with Method 2. Thus, for this set of numerical test,
Method 1, generally used to choose λ in nonsmooth Newton-type methods for NCP, is
not better than a random choice of this parameter (Method 2), which indicates that it
would be convenient to find an alternative to choosing λ.

Now, we compare Algorithm 1 with Algorithms 2, 3, and 4. For this comparison, first,
we consider Algorithm 1 with Method 1 versus the other three algorithms. Afterward,
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we consider Algorithm 1 with Method 2. We do numerical tests using the fixed starting
points described previously. In addition, we take λ = 2 in our algorithm to obtain Algo-
rithm 3 [18]. We measure the average of iterations and the average algorithm execution
time. We present the results in Table 2.

To compare with Algorithm 2, we consider the results associate with Koj-Jo, Koj-Shi,
Math mod, and Billups problems, which were also used in [5] to analyze the performance
of its algorithm (Tabla 4.2 in [5]). Algorithm 1, with Methods 1 and 2, converges for some
starting points for which Algorithm 2 does not converge. For example, with Method 1,
the Koj-Jo problem with x10 and the Billups problem with x14, and with Method 2,
the Koj-Jo problem with x20. To compare with Algorithm 3, we consider the results in
Table 2 for Methods 1 and 2 versus those in the same table for λ = 2. We observe that
with Method 1, the average number of iterations and the execution time of Algorithms 1
and 3 are similar. Now, Algorithm 3 compared to Algorithm 1 using Method 2 presents
better performance for some problems in the average number of iterations, (Mathiesen
and Geiger-Kanzow problems). On the other hand, the execution time with these two
methods is very similar, except for 3 problems (Mathiesen Mod, Billups, H66 ), where it
is less using Method 2. Thus, being able to choose λ brings advantages.

Problem Method x0 t̄ (sec) k̄

Koj-Shi λ = 2 x7 0.0090 14.00
Koj-Shi 1 x7 0.0064 11.00
Koj-Shi 2 x7 0.0062 11.82
Koj-Shi λ = 2 x8 0.0062 11.00
Koj-Shi 1 x8 0.0069 12.00
Koj-Shi 2 x8 0.0081 13.92
Koj-Shi λ = 2 x9 0.0057 10.00
Koj-Shi 1 x9 0.0062 10.00
Koj-Shi 2 x9 0.0412 30.56
Koj-Jo λ = 2 x10 0.0354 31.00
Koj-Jo 1 x10 0.0360 31.00
Koj-Jo 2 x10 0.0381 32.58
Koj-Jo λ = 2 x11 0.0025 6.00
Koj-Jo 1 x11 0.0027 6.00
Koj-Jo 2 x11 0.0026 6.08
Koj-Jo λ = 2 x12 0.0041 10.00
Koj-Jo 1 x12 0.0046 10.00
Koj-Jo 2 x12 0.0044 10.31
Math mod (4 ) λ = 2 x10 0.0129 9.00
Math mod (4 ) 1 x10 0.0130 9.00
Math mod (4 ) 2 x10 0.0094 10.68
Math mod (4 ) λ = 2 x1 0.0017 4.00
Math mod (4 ) 1 x1 0.0018 4.00
Math mod (4 ) 2 x1 0.0016 3.84
Math mod (4 ) λ = 2 x11 0.0017 4.00
Math mod (4 ) 1 x11 0.0015 3.00
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Problem Method x0 t̄ (sec) k̄
Math mod (4 ) 2 x11 0.0015 3.64
Billups λ = 2 x14 0.0092 20.00
Billups 1 x14 0.0097 19.00
Billups 2 x14 0.0065 16.62
Billups λ = 2 x2 0.0005 4.00
Billups 1 x2 0.0008 5.00
Billups 2 x2 0.0005 3.99
Nash-Co (5 ) λ = 2 x15 0.0097 8.00
Nash-Co (5 ) 1 x15 0.0103 8.00
Nash-Co (5 ) 2 x15 0.0095 8.50
Nash-Co (5 ) λ = 2 x3 0.0069 6.00
Nash-Co (5 ) 1 x3 0.0081 6.00
Nash-Co (5 ) 2 x3 0.0070 6.07
Nash-Co (5 ) λ = 2 x16 0.0117 9.00
Nash-Co (5 ) 1 x16 0.0131 9.00
Nash-Co (5 ) 2 x16 0.0118 9.24
Nash-Co (10 ) λ = 2 x17 0.0120 10.00
Nash-Co (10 ) 1 x17 0.0117 7.00
Nash-Co (10 ) 2 x17 0.0109 7.82
Nash-Co (10 ) λ = 2 x18 0.0181 11.00
Nash-Co (10 ) 1 x18 0.0189 10.00
Nash Co (10 ) 2 x18 0.0194 11.31
Nash-Co (10 ) λ = 2 x19 0.0981 7.00
Nash-Co (10 ) 1 x19 0.0907 7.00
Nash-Co (10 ) 2 x19 0.1100 8.90
Mathiesen λ = 2 x6 0.0034 8.00
Mathiesen 1 x6 0.0036 8.00
Mathiesen 2 x6 0.0188 19.50
Mathiesen λ = 2 x20 0.0021 5.00
Mathiesen 1 x20 0.0020 4.00
Mathiesen 2 x20 0.0021 4.67
Mathiesen λ = 2 x21 0.0115 11.00
Mathiesen 1 x21 − −
Mathiesen 2 x21 0.0355 21.18
HH 66 λ = 2 x6 0.0077 9.00
HH 66 1 x6 0.0063 8.00
HH 66 2 x6 0.0062 9.53
HH 66 λ = 2 x4 0.0053 8.00
HH 66 1 x4 0.0049 7.00
HH 66 2 x4 0.0056 8.89
HH 66 λ = 2 x16 0.0045 8.00
HH 66 1 x16 0.0042 7.00
HH 66 2 x16 0.0049 8.80
Geiger-Kanzow λ = 2 x6 1.2476 5.00
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Problem Method x0 t̄ (sec) k̄
Geiger-Kanzow 1 x6 1.0896 4.00
Geiger-Kanzow 2 x6 2.8282 13.97
Geiger-Kanzow λ = 2 x4 1.1148 5.00
Geiger-Kanzow 1 x4 0.8795 4.00
Geiger-Kanzow 2 x4 4.2205 15.03

Table 2: Comparison of the Algorithms 1 and 3.

Taking into account the results for Koj-Shi, Mathiesen, HH 66, and Geiger-Kanzow prob-
lems, reported in Table 2 for Algorithm 1 and in Tables 1 to 4 in [32] for Algorithm 4,
we observe that in all cases, our algorithm with Methods 1 finds a solution in fewer iter-
ations. However, with Method 2, it generally exceeds the number of iterations reported
in [32].

Finally, we analyze the local performance of Algorithm 1. In Section 6, we prove, under
certain hypotheses, that Algorithm 1 converges superlinear and even quadratically, which
is desirable for an iterative method. To illustrate this types of convergence we calculate
the quotients

R1k =
∥xk+1 − x∗∥
∥xk − x∗∥

and R2k =
∥xk+1 − x∗∥
∥xk − x∗∥2

,

which are related to the definitions of superlinear and quadratic convergence of a vector
sequence, respectively. In Table 3, we present the results for Billups problem (for more
examples, see [30]). In this Table, R1k, clearly, converges to zero, which means that
Algorithm 1 converges at least superlinearly, and R2k seems to be bounded, which
means that Algorithm 1 may converge quadratically. This fast convergence of Algorithm
1 is due to (closely related to what was proved in Section 6: near the solution, the
Newton step is full ( tk = 1 ). Moreover, this is illustrated in Table 4, where the column
np indicates the full number of steps in the linear search which also correspond to the
last steps.

k R1k R2k

1 0.8909 0.8494
2 0.1629 0.1744
3 0.0634 0.4163
4 0.0045 0.4713
5 0.0000 0.1238

Table 3. Convergence rate for Algorithm 1 with Billups Problem.

It is important to mention that in all cases, Algorithm 1 uses the Newton direction which
is desirable because it makes its convergence fast. In the 77% of numerical tests, the
number of full Newton steps in the monotone linear search (np) is greater than or equal to
half the number of iterations ( k/2, ) which explains the fast convergence of our algorithm
for this set of tests.
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Problema x0 Método Dim k np

Koj-Shi x1
1 4 7 3
2 4 7 3

Koj-Jo x1
1 4 6 3
2 4 6 3

Math mod x1
1 4 4 4
2 4 4 4

Billups x2
1 1 5 4
2 1 4 4

Nash Co (5 ) x3
1 5 6 5
2 5 7 6

Nash Co (10 ) x4
1 10 10 3
2 10 11 4

Mathiesen x5
1 4 6 5
2 4 8 8

HH 66 x6
1 8 8 7
2 8 9 8

Geiger-Kanzow x6
1 500 4 4
2 500 5 5

Table 4. Full Newton steps of Algoritmo 1 varying λ.

In the other part, we use three indices to collect additional information to compare
Algorithm 1, varying λ (Methods 1 and 2) with Algorithm 3 (Algorithm 1 with λ = 2).
These indices are the follows [6]:

Robustness index:

Rj =
tj
nj

(43)

Efficiency index:

Ej =

m∑
i=1 rij ̸=0

(
rib
rij

)
/rj (44)

Combined robustness and efficiency index:

Ej ×Rj =

m∑
i=1, rij ̸=0

(
rib
rij

)
/nj , (45)

where rij is the number of iterations required to solve the problem i by the method
j, rib = minj rij , tj is the number of successes by method j and nj is the number of
problems attempted by method j.

For the calculation of the indices, we use the data from Table 4 and Table 7.1 in [30],
the latter for λ = 2. In Table 5, we present the results obtained.
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Método 1 Método 2 λ = 2

tj 9 9 9
Rj 1 1 1
Ej 0.9777 0.9116 0.9394
Ej ×Rj 0.9777 0.9116 0.9394

Table 5. Indices for the Algorithm 1 varying λ.

On this set of problems, the results in Table 5 confirm robustness of Algorithm 1 with
the three choices of parameter λ. Also, the algorithm is more efficient with the dynamic
choice of λ (Method 1) of the three, although further testing will indicate to what extent
this is true of broader classes of problems.

8. Final Remarks

One way to deal with the non-differentiability of the NCP is using the smoothed Jacobian
strategy [9], [18], which allows us to approximate the reformulation of the problem by
a succession of differentiable nonlinear systems that depend on a positive parameter.
In this article, we proposed a global smoothed Jacobian algorithm that generalizes the
one proposed in [18] to all members of the family defined in (5). We developed their
convergence theory and did numerical tests to analyze their global and local performance.
Our proposal presents some advantages in terms of global convergence compared to other
methods as those proposed in [5], [18], and [32].

Finally, we believe that it is necessary to study a relationship between the parameter
λ and the nonlinear complementarity problem, which may improve the convergence of
the algorithm. It would also be interesting to apply the smoothing Jacobian strategy to
equation-reformulation of the nonlinear complementarity problem presented in [32].

Acknowledgments. The authors are grateful an anonymous referee for valuable sug-
gestions and comments.
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