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Abstract. In this work we consider equations of the form

∂tu+ P (D)u+ ul∂xu = 0,

where P (D) is a two-dimensional differential operator, and l ∈ N. We
prove that if u is a sufficiently smooth solution of the equation, such
that suppu(0), suppu(T ) ⊂ [−B,B] × [−B,B] for some B > 0, then there
exists R0 > 0 such that suppu(t) ⊂ [−R0, R0]× [−R0, R0] for every t ∈ [0, T ].
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Propiedades del soporte de soluciones de una clase de
ecuaciones de evolución no lineales en dos dimensiones

Resumen. En este trabajo consideramos ecuaciones de la forma

∂tu+ P (D)u+ ul∂xu = 0,

donde P (D) es un operador diferencial en dos dimensiones, y l ∈ N. Proba-
mos que si u es una solución suficientemente suave de la ecuación, tal que
suppu(0), suppu(T ) ⊂ [−B,B]× [−B,B] para algún B > 0, entonces existe
R0 > 0 tal que suppu(t) ⊂ [−R0, R0]× [−R0, R0] para todo t ∈ [0, T ].
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1. Introduction

In this note we study nonlinear evolution equations of the form

∂tu+ P (D)u+ ul∂xu = 0, (1)

where P (D)u :=
∑n

j=0

∑n−j
j′=0 ajj′∂

j
x∂

j′

y u, ajj′ ∈ C, with a00 = 0, and n ∈ {1, 2, 3, . . . }.
Some well-known models belong to the class defined by (1) (see [1] and [17]). For instance,
the Zakharov-Kuznetsov (ZK) equation, for which

P (D)u = ∂3
xu+ ∂x∂

2
yu,

and l = 1. The ZK equation is a bidimensional generalization of the Korteweg-de Vries
(KdV) equation which is a mathematical model to describe the propagation of nonlinear
ion-acoustic waves in magnetized plasma ([18]). Some aspects concerning the behavior
of the solutions of the ZK equation has been studied in [3], [7], [13], [12], [14].
The class defined by (1) also includes the two dimensional Kawahara equation, for which

P (D)u = α∂xu+ ∂3
xu+ ∂x∂

2
yu− ∂5

xu,

where α is equal to 1 or 0 (see [11] and references therein), and the Kawahara-Burgers
equation (see [10] and references therein). Both of them are perturbations of the (ZK)
equation.
In 2011, Bustamante, Isaza and Mejía, in [6], proved that if the support of a sufficiently
smooth solution of the ZK equation u is contained in a square at two different times,
then the solution must vanish. To obtain this, they first prove that if the hypotheses
mentioned are satisfied, then exists a square in which the support of u is contained for
all times. Then, using a result obtained by Panthee in [16], they manage to prove that
u = 0.
Our main result is a generalization of the one concerning the support of the solutions
of the ZK equation achieved in [6]. Specifically, we extend it to the general case of R2,
showed in equation (1), and we present it in detail in the following theorem.

Theorem 1.1. Let n ∈ N, and P (D) the operator defined by

P (D)u :=

n∑
j=0

n−j∑
j′=0

ajj′∂
j
x∂

j′

y u, with ajj′ ∈ C, and a00 = 0.

Suppose that u ∈ C([0, T ];Hs(R2))∩L∞([0, T ];L2(e2β|x|e2β|y|dxdy))∩C1([0, T ];L2(R2)),
s > n (in any case s > 3) for every β > 0, and that u is a solution of (1) in [0, T ]×R2.
If suppu(0) and suppu(T ) are contained in [−B,B] × [−B,B] for some B > 0, then
there exists R0 > 0 such that suppu(t) ⊂ [−R0, R0]× [−R0, R0] for every t ∈ [0, T ].
(See the definition of the space L2(e2β|x|e2β|y|dxdy) below).

In the proof of Theorem 1.1 we follow the ideas of Bustamante, Isaza and Mejía in [6]
for the ZK equation, and Kenig, Ponce and Vega in [9] for the generalized Korteweg-de
Vries (KdV) equation.
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Properties of the Support of Solutions of a Class of 2-Dimensional Nonlinear Evolution Equations 43

It is possible to extend the result of Theorem 1.1 to the general case where P is a
polynomial with n spatial variables. This would allow to study dispersive equations in
higher dimensions. In particular, the use of a result like this, together with the techniques
developed by Bourgain in [4], would permit to obtain unique continuation principles to
dispersive models in high spatial dimensions.

This paper is organized as follows: in Section 2, we present an interpolation result which
allows to obtain estimates for the spatial derivatives of a function with certain regularity.
It is at this point where the restriction s > 3 is needed. In Section 3, we prove a Carleman
estimate of L2 − L2 type. Finally, in Section 4, we establish Theorem 1.1.

Throughout this article the symbol f̂ will denote the spatial Fourier transform of
a function f in R2. We say that a function f belongs to the weighted L2 space,
L2(e2β|x|e2β|y|dxdy), if it is true that eβ|·x|eβ|·y|f ∈ L2(R2); i.e. if(∫

R2

|f(x, y)|2e2β|x|e2β|y|dxdy
)1/2

< ∞.

In a similar way the spaces L2(e2βxdxdy) and L2(e2βydxdy) are defined.

With respect to the weighted Sobolev space Hn(e2β|x|e2β|y|dxdy), that we use in Theorem
3.2, we say that a function f belongs to this space if eβ|·x|eβ|·y|f ∈ Hn(R2). This is true
if (∫

R2

(1 + ξ2 + τ2)n
∣∣∣∣(eβ|·x|eβ|·y|f)∧ (ξ, τ)

∣∣∣∣2 dξdτ
)1/2

< ∞.

Besides, the letter C will denote diverse positive constants which may change from line
to line and depend on parameters which are clearly established in each case.

2. Preliminary Estimates in Weighted Sobolev Spaces

The following lemma is an interpolation result and can be proved using the Hadamard
Three-lines theorem in a similar way than Lemma 4 in [15] . We omit its proof here.

Lemma 2.1. For s > 0 and β > 0 let f ∈ Hs(R2) ∩ L2(e2βxdxdy). Then, for θ ∈ [0, 1],

‖Jsθ(e((1−θ)βx)f)‖L2 ≤ C‖Jsf‖θL2‖eβxf‖1−θ
L2 , (2)

where [Jsf ]∧(ξ) := (1 + |ξ|2)s/2f̂(ξ) and C = C(s, β). Similarly, if f ∈ Hs(R2) ∩
L2(e2βydxdy), then, for θ ∈ [0, 1],

‖Jsθ(e(1−θ)βyf)‖L2 ≤ C‖Jsf‖θL2‖eβyf‖1−θ
L2 . (3)

Remark 2.2. If u ∈ C([0, T ];Hs(R2)) ∩ L∞([0, T ];L2(e2β|x|e2β|y|dxdy)) for every β > 0,
with s > 3, it is easy to see that there exists C1 > 0 and C2 > 0 independent of t, such
that

|∂xu(t)(x, y)| ≤ C1e
−x, (4)
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44 E. Bustamante & J. Jiménez Urrea.

and

|∂yu(t)(x, y)| ≤ C2e
−y, (5)

for every t ∈ [0, T ]. In fact, using the Sobolev embedding H2(R2) ⊂ L∞(R2) we have
that there exists C > 0 such that

‖ex∂xu(t)‖L∞(R2) ≤ C‖ex∂xu(t)‖H2(R2) = C‖∂x(exu(t))− exu(t)‖H2(R2)

≤ C[‖exu(t)‖H2(R2) + ‖∂x(exu(t))‖H2(R2)]

= C[‖J2(exu(t))‖L2(R2) + ‖J2(∂x(e
xu(t)))‖L2(R2)]

≤ C[‖J2(exu(t))‖L2(R2) + ‖J3(exu(t))‖L2(R2)].

Since s > 3, we can use Lemma 2.1 taking θ := 3/s and β := (1 − 3/s)−1 to conclude,
by inequality (2), that

‖J3(exu(t))‖L2(R2) ≤ C‖Jsu(t)‖3/sL2(R2)‖e
(1−3/s)−1xu(t)‖1−3/s

L2(R2) ≤ C1,

and
‖J2(ex)u(t)‖L2(R2) ≤ ‖J3(exu(t))‖L2(R2) ≤ C1.

Thus, for a.e. (x, y) ∈ R2,

|ex∂xu(t)(x, y)| ≤ C1, |∂xu(t)(x, y)| ≤ C1e
−x,

which is (4). Obviously, (5) follows in an analogous way, using (3) instead of (2).

3. Estimates of the Carleman Type

The following lemma is used in the proof of the Carleman estimates (Theorem 3.2) and
it justifies the formal computation of the temporal derivative of êλx(t)(ξ) and êλy(t)(ξ).
Its proof is taken from [6] and it is presented here for the sake of completeness.

Lemma 3.1. Let w ∈ C1([0, T ];L2(R2)) be a function such that for all β >
0, w is bounded from [0, T ] with values in L2(e2β|x|e2β|y|dxdy) and w′ ∈
L1([0, T ];L2(e2β|x|e2β|y|dxdy)). Then, for all λ ∈ R and all ξ = (ξ1, ξ2) ∈ R2, the
functions t 7→ ̂eλxw(t)(ξ) and t 7→ ̂eλyw(t)(ξ) are absolutely continuous in [0, T ] with
derivatives ̂eλxw′(t)(ξ) and ̂eλyw′(t)(ξ) a.e. t ∈ [0, T ], respectively.

Proof. By symmetry, it is sufficient to prove the lemma only for the weight eλx. It is
easy to see that for all t ∈ [0, T ] and λ ∈ R, eλxw(t) ∈ L1(R2), and also that eλxw′ ∈
L1(R2 × [0, T ]) for all λ ∈ R. For R > 0, let χR be the characteristic function of the
square [−R,R]× [−R,R]. Since w ∈ C1([0, T ];L2(R2)),

t 7→
∫
R2

e−ixξ1e−iyξ2eλxχR(x, y)w(t)(x, y)dxdy =
〈
w(t), eixξ1eiyξ2eλxχR

〉
L2(R2)

(6)

[Revista Integración



Properties of the Support of Solutions of a Class of 2-Dimensional Nonlinear Evolution Equations 45

defines a C1 function of the variable t with derivative given by

t 7→
〈
w′(t), eixξ1eiyξ2eλxχR

〉
L2(R2)

,

and in consequence∫
R2

e−ixξ1e−iyξ2eλxχR(x, y)w(t)(x, y)dxdy =

=

∫ t

0

∫
R2

e−ixξ1e−iyξ2eλxχR(x, y)w
′(τ)(x, y)dxdydτ

+

∫
R2

e−ixξ1e−iyξ2eλxχR(x, y)w(0)(x, y)dxdy.

The lemma follows from the former equality by an application of the Lebesgue Dominated
Convergence Theorem. □✓✓✓

The following theorem is the main result of this section. It is a Carleman estimate of
L2 − L2 type and it is crucial in the proof of Theorem 1.1.

Theorem 3.2. For n ∈ N, let w ∈ C([0, T ];Hn(R2)) ∩ C1([0, T ];L2(R2)), be a function
such that for all β > 0,

(i) w is bounded from [0, T ] with values in Hn(e2β|x|e2β|y|dxdy), and

(ii) w′ ∈ L1([0, T ];L2(e2β|x|e2β|y|dxdy)).

Then, for all λ 6= 0,

‖eλxw‖L2(R2) ≤ ‖eλxw(0)‖L2(R2) + ‖eλxw(T )‖L2(R2) + ‖eλx(w′ + P (D)w)‖L2(R2×[0,T ]),

where P (D) is the operator defined by

P (D)u :=

n∑
j=0

n−j∑
j′=0

ajj′∂
j
x∂

j′

y u,

with ajj′ ∈ C for j, j′ = 0, . . . , n, and a00 = 0.

A similar estimate also holds with y instead of x in the exponents.

Proof. Let us define g(t) := eλxw(t) and h(t) := eλx(w′(t) + P (D)w(t)). Taking into
account that we can write

P (D)w =

n∑
j′=0

∂j′

y

n−j′∑
j=0

ajj′∂
j
xw

 ,
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we have that

P (D)w =

n∑
j′=0

∂j′

y

n−j′∑
j=0

ajj′∂
j
x(ge

−λx)


=

n∑
j′=0

∂j′

y

n−j′∑
j=0

ajj′
j∑

k=0

(
j
k

)
∂j−k
x g∂k

xe
−λx


= e−λx

n∑
j′=0

∂j′

y

n−j′∑
j=0

ajj′
j∑

k=0

(−λ)k
(

j
k

)
∂j−k
x g


= e−λx

n∑
j′=0

n−j′∑
j=0

ajj′∂
j′

y

[
j∑

k=0

(−λ)k
(

j
k

)
∂j−k
x g

]
.

This way,

h(t) = eλxw′(t) +

n∑
j′=0

n−j′∑
j=0

ajj′∂
j′

y

[
j∑

k=0

(−λ)k
(

j
k

)
∂j−k
x g

]
.

Since w(t) ∈ Hn(e2β|x|e2β|y|dxdy) for all β > 0, t ∈ [0, T ], and w′ ∈ L2(e2β|x|e2β|y|dxdy)
for all β > 0 a.e. t ∈ [0, T ], by using the Cauchy-Schwarz inequality, it can be seen that
h(t) ∈ L1(R2) a.e. t ∈ [0, T ]. We take the spatial Fourier transform to h and apply
Lemma 3.1 to obtain

d

dt
ĝ(t)(ξ) +

 n∑
j′=0

n−j′∑
j=0

ajj′(iξ2)
j′

j∑
k=0

(−λ)k
(

j
k

)
(iξ1)

j−k

 ĝ(t)(ξ) = ĥ(t)(ξ),

a.e. t ∈ [0, T ], where ξ ≡ (ξ1, ξ2). Taking into account that the expression between
squared parentheses is a polynomial function of the variables ξ1 and ξ2, with complex
coefficients, the former equality can be written in the way

d

dt
ĝ(t)(ξ) + [imλ(ξ) + aλ(ξ)]ĝ(t)(ξ) = ĥ(t)(ξ) a.e. t ∈ [0, T ], (7)

where mλ and aλ are polynomial functions in R2. We do not show interest in the precise
form of mλ(ξ) and aλ(ξ) because when we estimate |ĝ(t)(ξ)| we only use the fact that
mλ(ξ) ∈ R and aλ(ξ) ∈ R, considering two cases: aλ(ξ) ≤ 0 and aλ(ξ) > 0, as we can
see below.

(i) When aλ(ξ) ≤ 0, we solve (7) integrating between 0 and t to obtain

ĝ(t)(ξ) = eimλ(ξ)teaλ(ξ)tĝ(0)(ξ) +

∫ t

0

eimλ(ξ)(t−τ)eaλ(ξ)(t−τ)ĥ(τ)(ξ)dτ

for every t ∈ [0, T ]. Since mλ(ξ) ∈ R and aλ(ξ) ≤ 0, we have that

|eimλ(ξ)t| = 1, |eimλ(ξ)(t−τ)| = 1, eaλ(ξ)t ∈ (0, 1] and eaλ(ξ)(t−τ) ∈ (0, 1],
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for every t ∈ [0, T ] and each τ ∈ [0, t]. Thus, in this case,

|ĝ(t)(ξ)| ≤ |ĝ(0)(ξ)|+
∫ t

0

|ĝ(τ)(ξ)dτ |, (8)

for each t ∈ [0, T ].

(ii) When aλ(ξ) > 0, we solve (7) this time integrating between t and T to obtain

ĝ(t)(ξ) = e−imλ(ξ)(T−t)e−aλ(ξ)(T−t)ĝ(T )(ξ) +

∫ T

t

e−imλ(ξ)(τ−t)e−aλ(ξ)(τ−t)ĥ(τ)(ξ)dτ

for every t ∈ [0, T ]. Since mλ(ξ) ∈ R and aλ(ξ) > 0, we have that

|e−imλ(ξ)(T−t)| = 1, |e−imλ(ξ)(τ−t)| = 1,

e−aλ(ξ)(T−t) ∈ (0, 1] and e−aλ(ξ)(τ−t) ∈ (0, 1],

for every t ∈ [0, T ] and each τ ∈ [t, τ ]. Thus, in this case,

|ĝ(t)(ξ)| ≤ |ĝ(0)(ξ)|+
∫ T

t

|ĝ(τ)(ξ)dτ |, (9)

for each t ∈ [0, T ].

From (8) and (9) we can conclude that, in any case, for every t ∈ [0, T ],

|ĝ(t)(ξ)| ≤ |ĝ(0)(ξ)|+ |ĝ(T )(ξ)|+
∫ T

0

|ĥ(τ)(ξ)|dτ.

Hence, by Plancherel’s Formula,

‖eλxw‖ ≤ ‖eλxw(0)‖L2(R2) + ‖eλxw(T )‖L2(R2) + ‖eλx(w′ + Pw)‖L2(R2×[0,T ]).

The proof of the estimate with the weight eλy is similar. □✓✓✓

4. Proof of Theorem 1.1

Let ϕ̃ ∈ C∞(R) a non-decreasing function such that ϕ̃(x) = 0 for x < 0, and ϕ̃(x) = 1
for x > 1 and, for R > B, let ϕ(x) ≡ ϕR(x) := ϕ̃(x − R). We define w ≡ wR := ϕ(x)u,
and v ≡ vR := ϕ(y)u. It is easy to check that w and v satisfy the hypotheses of Theorem
3.2. Taking into account that w(0) = w(T ) = 0, from Theorem 3.2, we conclude that,
for every λ 6= 0,

‖eλxw‖L2(R2×[0,T ]) ≤‖eλx(w′ + P (D)w)‖L2(R2×[0,T ])

=‖eλx(ϕu′ + P (D)w)‖L2(R2×[0,T ]). (10)

As in the proof of Theorem 3.2, we take into account that

P (D)w =

n∑
j′=0

∂j′

y

n−j′∑
j=0

ajj′∂
j
xw

 .
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48 E. Bustamante & J. Jiménez Urrea.

Hence,

P (D)w = P (D)(ϕu) =

n∑
j′=0

∂j′

y

n−j′∑
j=0

ajj′∂
j
x(ϕu)


=

n∑
j′=0

∂j′

y

n−j′∑
j=0

ajj′
j∑

k=0

(
j
k

)
∂j−k
x uϕ(k)


= ϕ

n∑
j′=0

∂j′

y

n−j′∑
j=0

ajj′∂
j
xu

+

n−1∑
j′=0

∂j′

y

n−j′∑
j=1

ajj′
j∑

k=1

(
j
k

)
∂j−k
x uϕ(k)


= ϕPu+

n−1∑
j′=0

∂j′

y

n−j′∑
j=1

ajj′
j∑

k=1

(
j
k

)
∂j−k
x uϕ(k)

 .

Therefore, from (10), and (1), we conclude that

‖eλxw‖L2(R2×[0,T ]) ≤ ‖eλxϕul∂xu‖L2(R2×[0,T ]) + ‖eλxF1ϕ,u‖L2(R2×[0,T ]),

where

F1ϕ,u :=

n−1∑
j′=0

∂j′

y

n−j′∑
j=1

ajj′
j∑

k=1

(
j
k

)
∂j−k
x uϕ(k)

 .

Since all the derivatives of ϕ are supported in [R,R+ 1], let us observe that

|F1ϕ,u| ≤max{ajj′ : j = 1, . . . , n; j′ = 0, . . . , n− 1}·

·max

{(
j
k

)
: j = 1, . . . , n; k = 1, . . . , n

}
·

n∑
k=1

|ϕ(k)|

∣∣∣∣∣∣
n−1∑
j′=0

∂j′

y

n−j′∑
j=1

j∑
k=1

∂j−k
x u

∣∣∣∣∣∣
≤C

n∑
k=1

|ϕ(k)|
n−1∑
j′=0

n−1−j′∑
j=0

|∂j′

y ∂j
xu| ≤ Cχ[R,R+1](·x)

n−1∑
j′=0

n−1−j′∑
j=0

|∂j′

y ∂j
xu|,

(here χA is the characteristic function of a set A). Then, for λ > 1,

‖eλxF1ϕ,u‖2L2(R2×[0,T ]) ≤ C

∫ T

0

∫
R

∫ R+1

R

e2λx

n−1∑
j′=0

n−1−j′∑
j=0

|∂j′

y ∂j
xu|

2

dxdydt

≤ Ce2λ(R+1)

∫ T

0

∫
R

∫ R+1

R

n−1∑
j′=0

n−1−j′∑
j=0

|∂j′

y ∂j
xu|

2

dxdydt

≤ Ce2λ(R+1)‖u‖2C([0,T ];Hn−1(R2)) ≤ Ce2λ(R+1),

and ‖eλxF1π, u‖L2(R2×[0,T ]) ≤ Ceλ(R+1), where C = C(‖u‖C([0,T ];Hn−1(R2))) is indepen-
dent from λ and R. Therefore

‖eλxϕu‖L2(R2×[0,T ]) ≤ ‖eλxϕul∂xu‖L2(R2×[0,T ]) + ‖eλxF1ϕ,u‖L2(R2×[0,T ])

≤ ‖eλxϕul‖L2(R2×[0,T ])‖∂xu‖L∞([R,∞)×R×[0,T ]) + Ceλ(R+1).
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Using (4) we have that ‖∂xu‖L∞([R,∞)×R×[0,T ]) ≤ C1e
−R. Besides, employing the Sobolev

immersion H2(R2) ⊂ L∞(R2),

‖eλxϕul‖L2(R2×[0,T ]) =

[∫ T

0

∫
R

∫
R
e2λx|ϕu|2|u|2(l−1)dxdydt

]1/2
≤ sup

t∈[0,T ]

‖u(t)‖l−1
L∞

xy
‖eλxϕu‖L2(R2×[0,T ]) ≤ C‖eλxϕu‖L2(R2×[0,T ]).

This way

‖eλxϕu‖L2(R2×[0,T ]) ≤ C1e
−R‖eλxϕu‖L2(R2×[0,T ]) + Ceλ(R+1).

Since ϕ is a bounded function, from the hypotheses it is clear that ‖eλxϕu‖L2(R2×[0,T ]) <
∞. Hence, taking R > B such that C1e

−R < 1/2, we obtain

‖eλxϕu‖L2(R2×[0,T ]) ≤ Ceλ(R+1).

Thus, since ϕ(x) = 1 for x ≥ 2R,

e2λR

[∫ T

0

∫
R

∫ ∞

2R

|u(t)(x, y)|2dxdydt

]1/2
≤ ‖eλxϕu‖ ≤ Ceλ(R+1),

for all λ > 0, where C is independent from λ. If we choose R > 1 and let λ → +∞, it
follows that [∫ T

0

∫
R

∫ ∞

2R

|u(t)(x, y)|2dxdydt

]1/2
= 0.

Therefore u ≡ 0 in [2R,∞)× R× [0, T ]. Now, taking into account the symmetry of the
operator P (D), it is easy to see that

P (D)v = ϕP (D)u+

n−1∑
j=0

∂j
x

n−j∑
j′=1

ajj′
j′∑

k=1

(
j′

k

)
∂j′−k
y uϕ(k).

Then, reasoning as above, using (5) instead of (4), we can conclude that there exists
R̃ > 0 such that u ≡ 0 in R× [2R̃,∞)× [0, T ]. Taking R0 := max{2R, 2R̃}, we have that
suppu(t) ⊂ [−R0,×R0]× [−R0, R0] for every t ∈ [0, T ]. □✓✓✓
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