Properties of the Support of Solutions of a Class of 2-Dimensional Nonlinear Evolution Equations

Eddye Bustamante ${ }^{a} \boxtimes$, José Jiménez Urrea ${ }^{b}$
Universidad Nacional de Colombia, Medellín, Colombia.

Abstract. In this work we consider equations of the form

$$
\partial_{t} u+P(D) u+u^{l} \partial_{x} u=0
$$

where $P(D)$ is a two-dimensional differential operator, and $l \in \mathbb{N}$. We prove that if u is a sufficiently smooth solution of the equation, such that $\operatorname{supp} u(0), \operatorname{supp} u(T) \subset[-B, B] \times[-B, B]$ for some $B>0$, then there exists $R_{0}>0$ such that $\operatorname{supp} u(t) \subset\left[-R_{0}, R_{0}\right] \times\left[-R_{0}, R_{0}\right]$ for every $t \in[0, T]$.

Keywords: Nonlinear evolution equations, weighted Sobolev spaces, Carleman estimates.

MSC2010: 35Q53, 37L50,47J35.

Propiedades del soporte de soluciones de una clase de ecuaciones de evolución no lineales en dos dimensiones

Resumen. En este trabajo consideramos ecuaciones de la forma

$$
\partial_{t} u+P(D) u+u^{l} \partial_{x} u=0
$$

donde $P(D)$ es un operador diferencial en dos dimensiones, y $l \in \mathbb{N}$. Probamos que si u es una solución suficientemente suave de la ecuación, tal que $\operatorname{supp} u(0), \operatorname{supp} u(T) \subset[-B, B] \times[-B, B]$ para algún $B>0$, entonces existe $R_{0}>0$ tal que $\operatorname{supp} u(t) \subset\left[-R_{0}, R_{0}\right] \times\left[-R_{0}, R_{0}\right]$ para todo $t \in[0, T]$.
Palabras clave: Ecuaciones de evolución no lineales, espacios de Sobolev con peso, estimativos Carleman.

[^0]
1. Introduction

In this note we study nonlinear evolution equations of the form

$$
\begin{equation*}
\partial_{t} u+P(D) u+u^{l} \partial_{x} u=0 \tag{1}
\end{equation*}
$$

where $P(D) u:=\sum_{j=0}^{n} \sum_{j^{\prime}=0}^{n-j} a_{j j^{\prime}} \partial_{x}^{j} \partial_{y}^{j^{\prime}} u, a_{j j^{\prime}} \in \mathbb{C}$, with $a_{00}=0$, and $n \in\{1,2,3, \ldots\}$. Some well-known models belong to the class defined by (1) (see [1] and [17]). For instance, the Zakharov-Kuznetsov (ZK) equation, for which

$$
P(D) u=\partial_{x}^{3} u+\partial_{x} \partial_{y}^{2} u
$$

and $l=1$. The ZK equation is a bidimensional generalization of the Korteweg-de Vries (KdV) equation which is a mathematical model to describe the propagation of nonlinear ion-acoustic waves in magnetized plasma ([18]). Some aspects concerning the behavior of the solutions of the ZK equation has been studied in [3], [7], [13], [12], [14].
The class defined by (1) also includes the two dimensional Kawahara equation, for which

$$
P(D) u=\alpha \partial_{x} u+\partial_{x}^{3} u+\partial_{x} \partial_{y}^{2} u-\partial_{x}^{5} u
$$

where α is equal to 1 or 0 (see [11] and references therein), and the Kawahara-Burgers equation (see [10] and references therein). Both of them are perturbations of the (ZK) equation.
In 2011, Bustamante, Isaza and Mejía, in [6], proved that if the support of a sufficiently smooth solution of the ZK equation u is contained in a square at two different times, then the solution must vanish. To obtain this, they first prove that if the hypotheses mentioned are satisfied, then exists a square in which the support of u is contained for all times. Then, using a result obtained by Panthee in [16], they manage to prove that $u=0$.

Our main result is a generalization of the one concerning the support of the solutions of the ZK equation achieved in [6]. Specifically, we extend it to the general case of \mathbb{R}^{2}, showed in equation (1), and we present it in detail in the following theorem.

Theorem 1.1. Let $n \in \mathbb{N}$, and $P(D)$ the operator defined by

$$
P(D) u:=\sum_{j=0}^{n} \sum_{j^{\prime}=0}^{n-j} a_{j j^{\prime}} \partial_{x}^{j} \partial_{y}^{j^{\prime}} u, \quad \text { with } a_{j j^{\prime}} \in \mathbb{C}, \text { and } a_{00}=0
$$

Suppose that $u \in C\left([0, T] ; H^{s}\left(\mathbb{R}^{2}\right)\right) \cap L^{\infty}\left([0, T] ; L^{2}\left(e^{2 \beta|x|} e^{2 \beta|y|} d x d y\right)\right) \cap C^{1}\left([0, T] ; L^{2}\left(\mathbb{R}^{2}\right)\right)$, $s>n$ (in any case $s>3$) for every $\beta>0$, and that u is a solution of (1) in $[0, T] \times \mathbb{R}^{2}$. If $\operatorname{supp} u(0)$ and $\operatorname{supp} u(T)$ are contained in $[-B, B] \times[-B, B]$ for some $B>0$, then there exists $R_{0}>0$ such that $\operatorname{supp} u(t) \subset\left[-R_{0}, R_{0}\right] \times\left[-R_{0}, R_{0}\right]$ for every $t \in[0, T]$.
(See the definition of the space $L^{2}\left(e^{2 \beta|x|} e^{2 \beta|y|} d x d y\right)$ below).
In the proof of Theorem 1.1 we follow the ideas of Bustamante, Isaza and Mejía in [6] for the ZK equation, and Kenig, Ponce and Vega in [9] for the generalized Korteweg-de Vries (KdV) equation.

It is possible to extend the result of Theorem 1.1 to the general case where P is a polynomial with n spatial variables. This would allow to study dispersive equations in higher dimensions. In particular, the use of a result like this, together with the techniques developed by Bourgain in [4], would permit to obtain unique continuation principles to dispersive models in high spatial dimensions.

This paper is organized as follows: in Section 2, we present an interpolation result which allows to obtain estimates for the spatial derivatives of a function with certain regularity. It is at this point where the restriction $s>3$ is needed. In Section 3, we prove a Carleman estimate of $L^{2}-L^{2}$ type. Finally, in Section 4, we establish Theorem 1.1.
Throughout this article the symbol \hat{f} will denote the spatial Fourier transform of a function f in \mathbb{R}^{2}. We say that a function f belongs to the weighted L^{2} space, $L^{2}\left(e^{2 \beta|x|} e^{2 \beta|y|} d x d y\right)$, if it is true that $e^{\beta|\cdot x|} e^{\beta|\cdot y|} f \in L^{2}\left(\mathbb{R}^{2}\right)$; i.e. if

$$
\left(\int_{\mathbb{R}^{2}}|f(x, y)|^{2} e^{2 \beta|x|} e^{2 \beta|y|} d x d y\right)^{1 / 2}<\infty .
$$

In a similar way the spaces $L^{2}\left(e^{2 \beta x} d x d y\right)$ and $L^{2}\left(e^{2 \beta y} d x d y\right)$ are defined.
With respect to the weighted Sobolev space $H^{n}\left(e^{2 \beta|x|} e^{2 \beta|y|} d x d y\right)$, that we use in Theorem 3.2 , we say that a function f belongs to this space if $e^{\beta|\cdot x|} e^{\beta|\cdot y|} f \in H^{n}\left(\mathbb{R}^{2}\right)$. This is true if

$$
\left(\int_{\mathbb{R}^{2}}\left(1+\xi^{2}+\tau^{2}\right)^{n}\left|\left(e^{\beta|\cdot x|} e^{\beta|\cdot y|} f\right)^{\wedge}(\xi, \tau)\right|^{2} d \xi d \tau\right)^{1 / 2}<\infty
$$

Besides, the letter C will denote diverse positive constants which may change from line to line and depend on parameters which are clearly established in each case.

2. Preliminary Estimates in Weighted Sobolev Spaces

The following lemma is an interpolation result and can be proved using the Hadamard Three-lines theorem in a similar way than Lemma 4 in [15]. We omit its proof here.

Lemma 2.1. For $s>0$ and $\beta>0$ let $f \in H^{s}\left(\mathbb{R}^{2}\right) \cap L^{2}\left(e^{2 \beta x} d x d y\right)$. Then, for $\theta \in[0,1]$,

$$
\begin{equation*}
\left\|J^{s \theta}\left(e^{((1-\theta) \beta x)} f\right)\right\|_{L^{2}} \leq C\left\|J^{s} f\right\|_{L^{2}}^{\theta}\left\|e^{\beta x} f\right\|_{L^{2}}^{1-\theta}, \tag{2}
\end{equation*}
$$

where $\left[J^{s} f\right]^{\wedge}(\xi):=\left(1+|\xi|^{2}\right)^{s / 2} \hat{f}(\xi)$ and $C=C(s, \beta)$. Similarly, if $f \in H^{s}\left(\mathbb{R}^{2}\right) \cap$ $L^{2}\left(e^{2 \beta y} d x d y\right)$, then, for $\theta \in[0,1]$,

$$
\begin{equation*}
\left\|J^{s \theta}\left(e^{(1-\theta) \beta y} f\right)\right\|_{L^{2}} \leq C\left\|J^{s} f\right\|_{L^{2}}^{\theta}\left\|e^{\beta y} f\right\|_{L^{2}}^{1-\theta} . \tag{3}
\end{equation*}
$$

Remark 2.2. If $u \in C\left([0, T] ; H^{s}\left(\mathbb{R}^{2}\right)\right) \cap L^{\infty}\left([0, T] ; L^{2}\left(e^{2 \beta|x|} e^{2 \beta|y|} d x d y\right)\right)$ for every $\beta>0$, with $s>3$, it is easy to see that there exists $C_{1}>0$ and $C_{2}>0$ independent of t, such that

$$
\begin{equation*}
\left|\partial_{x} u(t)(x, y)\right| \leq C_{1} e^{-x}, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\partial_{y} u(t)(x, y)\right| \leq C_{2} e^{-y} \tag{5}
\end{equation*}
$$

for every $t \in[0, T]$. In fact, using the Sobolev embedding $H^{2}\left(\mathbb{R}^{2}\right) \subset L^{\infty}\left(\mathbb{R}^{2}\right)$ we have that there exists $C>0$ such that

$$
\begin{aligned}
\left\|e^{x} \partial_{x} u(t)\right\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} & \leq C\left\|e^{x} \partial_{x} u(t)\right\|_{H^{2}\left(\mathbb{R}^{2}\right)}=C\left\|\partial_{x}\left(e^{x} u(t)\right)-e^{x} u(t)\right\|_{H^{2}\left(\mathbb{R}^{2}\right)} \\
& \leq C\left[\left\|e^{x} u(t)\right\|_{H^{2}\left(\mathbb{R}^{2}\right)}+\left\|\partial_{x}\left(e^{x} u(t)\right)\right\|_{H^{2}\left(\mathbb{R}^{2}\right)}\right] \\
& =C\left[\left\|J^{2}\left(e^{x} u(t)\right)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}+\left\|J^{2}\left(\partial_{x}\left(e^{x} u(t)\right)\right)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}\right] \\
& \leq C\left[\left\|J^{2}\left(e^{x} u(t)\right)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}+\left\|J^{3}\left(e^{x} u(t)\right)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}\right]
\end{aligned}
$$

Since $s>3$, we can use Lemma 2.1 taking $\theta:=3 / s$ and $\beta:=(1-3 / s)^{-1}$ to conclude, by inequality (2), that

$$
\left\|J^{3}\left(e^{x} u(t)\right)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq C\left\|J^{s} u(t)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{3 / s}\left\|e^{(1-3 / s)^{-1} x} u(t)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{1-3 / s} \leq C_{1}
$$

and

$$
\left\|J^{2}\left(e^{x}\right) u(t)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq\left\|J^{3}\left(e^{x} u(t)\right)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq C_{1}
$$

Thus, for a.e. $(x, y) \in \mathbb{R}^{2}$,

$$
\left|e^{x} \partial_{x} u(t)(x, y)\right| \leq C_{1}, \quad\left|\partial_{x} u(t)(x, y)\right| \leq C_{1} e^{-x}
$$

which is (4). Obviously, (5) follows in an analogous way, using (3) instead of (2).

3. Estimates of the Carleman Type

The following lemma is used in the proof of the Carleman estimates (Theorem 3.2) and it justifies the formal computation of the temporal derivative of $\widehat{e^{\lambda x}(t)}(\xi)$ and $\widehat{e^{\lambda y}(t)}(\xi)$. Its proof is taken from [6] and it is presented here for the sake of completeness.
Lemma 3.1. Let $w \in C^{1}\left([0, T] ; L^{2}\left(\mathbb{R}^{2}\right)\right)$ be a function such that for all $\beta>$ $0, \quad w$ is bounded from $[0, T]$ with values in $L^{2}\left(e^{2 \beta|x|} e^{2 \beta|y|} d x d y\right)$ and $w^{\prime} \in$ $L^{1}\left([0, T] ; L^{2}\left(e^{2 \beta|x|} e^{2 \beta|y|} d x d y\right)\right)$. Then, for all $\lambda \in \mathbb{R}$ and all $\xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}$, the functions $t \mapsto \widehat{e^{\lambda x} w(t)}(\xi)$ and $t \mapsto e^{\widehat{\lambda y} w(t)}(\xi)$ are absolutely continuous in $[0, T]$ with derivatives $e^{\widehat{\lambda x} w^{\prime}}(t)(\xi)$ and $e^{\widehat{\lambda y} w^{\prime}(t)}(\xi)$ a.e. $t \in[0, T]$, respectively.

Proof. By symmetry, it is sufficient to prove the lemma only for the weight $e^{\lambda x}$. It is easy to see that for all $t \in[0, T]$ and $\lambda \in \mathbb{R}, e^{\lambda x} w(t) \in L^{1}\left(\mathbb{R}^{2}\right)$, and also that $e^{\lambda x} w^{\prime} \in$ $L^{1}\left(\mathbb{R}^{2} \times[0, T]\right)$ for all $\lambda \in \mathbb{R}$. For $R>0$, let χ_{R} be the characteristic function of the square $[-R, R] \times[-R, R]$. Since $w \in C^{1}\left([0, T] ; L^{2}\left(\mathbb{R}^{2}\right)\right)$,

$$
\begin{equation*}
t \mapsto \int_{\mathbb{R}^{2}} e^{-i x \xi_{1}} e^{-i y \xi_{2}} e^{\lambda x} \chi_{R}(x, y) w(t)(x, y) d x d y=\left\langle w(t), e^{i x \xi_{1}} e^{i y \xi_{2}} e^{\lambda x} \chi_{R}\right\rangle_{L^{2}\left(\mathbb{R}^{2}\right)} \tag{6}
\end{equation*}
$$

defines a C^{1} function of the variable t with derivative given by

$$
t \mapsto\left\langle w^{\prime}(t), e^{i x \xi_{1}} e^{i y \xi_{2}} e^{\lambda x} \chi_{R}\right\rangle_{L^{2}\left(\mathbb{R}^{2}\right)}
$$

and in consequence

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} e^{-i x \xi_{1}} e^{-i y \xi_{2}} e^{\lambda x} & \chi_{R}(x, y) w(t)(x, y) d x d y
\end{aligned}=\left\{\begin{aligned}
=\int_{0}^{t} \int_{\mathbb{R}^{2}} e^{-i x \xi_{1}} e^{-i y \xi_{2}} e^{\lambda x} & \chi_{R}(x, y) w^{\prime}(\tau)(x, y) d x d y d \tau \\
& +\int_{\mathbb{R}^{2}} e^{-i x \xi_{1}} e^{-i y \xi_{2}} e^{\lambda x} \chi_{R}(x, y) w(0)(x, y) d x d y
\end{aligned}\right.
$$

The lemma follows from the former equality by an application of the Lebesgue Dominated Convergence Theorem.

The following theorem is the main result of this section. It is a Carleman estimate of $L^{2}-L^{2}$ type and it is crucial in the proof of Theorem 1.1.

Theorem 3.2. For $n \in \mathbb{N}$, let $w \in C\left([0, T] ; H^{n}\left(\mathbb{R}^{2}\right)\right) \cap C^{1}\left([0, T] ; L^{2}\left(\mathbb{R}^{2}\right)\right)$, be a function such that for all $\beta>0$,
(i) w is bounded from $[0, T]$ with values in $H^{n}\left(e^{2 \beta|x|} e^{2 \beta|y|} d x d y\right)$, and
(ii) $w^{\prime} \in L^{1}\left([0, T] ; L^{2}\left(e^{2 \beta|x|} e^{2 \beta|y|} d x d y\right)\right)$.

Then, for all $\lambda \neq 0$,

$$
\left\|e^{\lambda x} w\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq\left\|e^{\lambda x} w(0)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}+\left\|e^{\lambda x} w(T)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}+\left\|e^{\lambda x}\left(w^{\prime}+P(D) w\right)\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)}
$$

where $P(D)$ is the operator defined by

$$
P(D) u:=\sum_{j=0}^{n} \sum_{j^{\prime}=0}^{n-j} a_{j j^{\prime}} \partial_{x}^{j} \partial_{y}^{j^{\prime}} u
$$

with $a_{j j^{\prime}} \in \mathbb{C}$ for $j, j^{\prime}=0, \ldots, n$, and $a_{00}=0$.
A similar estimate also holds with y instead of x in the exponents.

Proof. Let us define $g(t):=e^{\lambda x} w(t)$ and $h(t):=e^{\lambda x}\left(w^{\prime}(t)+P(D) w(t)\right)$. Taking into account that we can write

$$
P(D) w=\sum_{j^{\prime}=0}^{n} \partial_{y}^{j^{\prime}}\left[\sum_{j=0}^{n-j^{\prime}} a_{j j^{\prime}} \partial_{x}^{j} w\right]
$$

Vol. 39, No. 1, 2021]
we have that

$$
\begin{aligned}
P(D) w & =\sum_{j^{\prime}=0}^{n} \partial_{y}^{j^{\prime}}\left[\sum_{j=0}^{n-j^{\prime}} a_{j j^{\prime}} \partial_{x}^{j}\left(g e^{-\lambda x}\right)\right] \\
& =\sum_{j^{\prime}=0}^{n} \partial_{y}^{j^{\prime}}\left[\sum_{j=0}^{n-j^{\prime}} a_{j j^{\prime}} \sum_{k=0}^{j}\binom{j}{k} \partial_{x}^{j-k} g \partial_{x}^{k} e^{-\lambda x}\right] \\
& =e^{-\lambda x} \sum_{j^{\prime}=0}^{n} \partial_{y}^{j^{\prime}}\left[\sum_{j=0}^{n-j^{\prime}} a_{j j^{\prime}} \sum_{k=0}^{j}(-\lambda)^{k}\binom{j}{k} \partial_{x}^{j-k} g\right] \\
& =e^{-\lambda x} \sum_{j^{\prime}=0}^{n} \sum_{j=0}^{n-j^{\prime}} a_{j j^{\prime}} \partial_{y}^{j^{\prime}}\left[\sum_{k=0}^{j}(-\lambda)^{k}\binom{j}{k} \partial_{x}^{j-k} g\right] .
\end{aligned}
$$

This way,

$$
h(t)=e^{\lambda x} w^{\prime}(t)+\sum_{j^{\prime}=0}^{n} \sum_{j=0}^{n-j^{\prime}} a_{j j^{\prime}} \partial_{y}^{j^{\prime}}\left[\sum_{k=0}^{j}(-\lambda)^{k}\binom{j}{k} \partial_{x}^{j-k} g\right] .
$$

Since $w(t) \in H^{n}\left(e^{2 \beta|x|} e^{2 \beta|y|} d x d y\right)$ for all $\beta>0, t \in[0, T]$, and $w^{\prime} \in L^{2}\left(e^{2 \beta|x|} e^{2 \beta|y|} d x d y\right)$ for all $\beta>0$ a.e. $t \in[0, T]$, by using the Cauchy-Schwarz inequality, it can be seen that $h(t) \in L^{1}\left(\mathbb{R}^{2}\right)$ a.e. $t \in[0, T]$. We take the spatial Fourier transform to h and apply Lemma 3.1 to obtain

$$
\frac{d}{d t} \widehat{g(t)}(\xi)+\left[\sum_{j^{\prime}=0}^{n} \sum_{j=0}^{n-j^{\prime}} a_{j j^{\prime}}\left(i \xi_{2}\right)^{j^{\prime}} \sum_{k=0}^{j}(-\lambda)^{k}\binom{j}{k}\left(i \xi_{1}\right)^{j-k}\right] \widehat{g(t)}(\xi)=\widehat{h(t)}(\xi)
$$

a.e. $t \in[0, T]$, where $\xi \equiv\left(\xi_{1}, \xi_{2}\right)$. Taking into account that the expression between squared parentheses is a polynomial function of the variables ξ_{1} and ξ_{2}, with complex coefficients, the former equality can be written in the way

$$
\begin{equation*}
\frac{d}{d t} \widehat{g(t)}(\xi)+\left[i m_{\lambda}(\xi)+a_{\lambda}(\xi)\right] \widehat{g(t)}(\xi)=\widehat{h(t)}(\xi) \quad \text { a.e. } t \in[0, T] \tag{7}
\end{equation*}
$$

where m_{λ} and a_{λ} are polynomial functions in \mathbb{R}^{2}. We do not show interest in the precise form of $m_{\lambda}(\xi)$ and $a_{\lambda}(\xi)$ because when we estimate $|\widehat{g(t)}(\xi)|$ we only use the fact that $m_{\lambda}(\xi) \in \mathbb{R}$ and $a_{\lambda}(\xi) \in \mathbb{R}$, considering two cases: $a_{\lambda}(\xi) \leq 0$ and $a_{\lambda}(\xi)>0$, as we can see below.
(i) When $a_{\lambda}(\xi) \leq 0$, we solve (7) integrating between 0 and t to obtain

$$
\widehat{g(t)}(\xi)=e^{i m_{\lambda}(\xi) t} e^{a_{\lambda}(\xi) t} \widehat{g(0)}(\xi)+\int_{0}^{t} e^{i m_{\lambda}(\xi)(t-\tau)} e^{a_{\lambda}(\xi)(t-\tau)} \widehat{h(\tau)}(\xi) d \tau
$$

for every $t \in[0, T]$. Since $m_{\lambda}(\xi) \in \mathbb{R}$ and $a_{\lambda}(\xi) \leq 0$, we have that

$$
\left|e^{i m_{\lambda}(\xi) t}\right|=1, \quad\left|e^{i m_{\lambda}(\xi)(t-\tau)}\right|=1, \quad e^{a_{\lambda}(\xi) t} \in(0,1] \text { and } e^{a_{\lambda}(\xi)(t-\tau)} \in(0,1]
$$

for every $t \in[0, T]$ and each $\tau \in[0, t]$. Thus, in this case,

$$
\begin{equation*}
|\widehat{g(t)}(\xi)| \leq|\widehat{g(0)}(\xi)|+\int_{0}^{t}|\widehat{g(\tau)}(\xi) d \tau| \tag{8}
\end{equation*}
$$

for each $t \in[0, T]$.
(ii) When $a_{\lambda}(\xi)>0$, we solve (7) this time integrating between t and T to obtain

$$
\widehat{g(t)}(\xi)=e^{-i m_{\lambda}(\xi)(T-t)} e^{-a_{\lambda}(\xi)(T-t)} \widehat{g(T)}(\xi)+\int_{t}^{T} e^{-i m_{\lambda}(\xi)(\tau-t)} e^{-a_{\lambda}(\xi)(\tau-t)} \widehat{h(\tau)}(\xi) d \tau
$$

for every $t \in[0, T]$. Since $m_{\lambda}(\xi) \in \mathbb{R}$ and $a_{\lambda}(\xi)>0$, we have that

$$
\begin{gathered}
\left|e^{-i m_{\lambda}(\xi)(T-t)}\right|=1, \quad\left|e^{-i m_{\lambda}(\xi)(\tau-t)}\right|=1, \\
e^{-a_{\lambda}(\xi)(T-t)} \in(0,1] \quad \text { and } \quad e^{-a_{\lambda}(\xi)(\tau-t)} \in(0,1],
\end{gathered}
$$

for every $t \in[0, T]$ and each $\tau \in[t, \tau]$. Thus, in this case,

$$
\begin{equation*}
|\widehat{g(t)}(\xi)| \leq|\widehat{g(0)}(\xi)|+\int_{t}^{T}|\widehat{g(\tau)}(\xi) d \tau| \tag{9}
\end{equation*}
$$

for each $t \in[0, T]$.
From (8) and (9) we can conclude that, in any case, for every $t \in[0, T]$,

$$
|\widehat{g(t)}(\xi)| \leq|\widehat{g(0)}(\xi)|+|\widehat{g(T)}(\xi)|+\int_{0}^{T}|\widehat{h(\tau)}(\xi)| d \tau
$$

Hence, by Plancherel's Formula,

$$
\left\|e^{\lambda x} w\right\| \leq\left\|e^{\lambda x} w(0)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}+\left\|e^{\lambda x} w(T)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}+\left\|e^{\lambda x}\left(w^{\prime}+P w\right)\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)}
$$

The proof of the estimate with the weight $e^{\lambda y}$ is similar.

4. Proof of Theorem 1.1

Let $\tilde{\phi} \in C^{\infty}(\mathbb{R})$ a non-decreasing function such that $\tilde{\phi}(x)=0$ for $x<0$, and $\tilde{\phi}(x)=1$ for $x>1$ and, for $R>B$, let $\phi(x) \equiv \phi_{R}(x):=\tilde{\phi}(x-R)$. We define $w \equiv w_{R}:=\phi(x) u$, and $v \equiv v_{R}:=\phi(y) u$. It is easy to check that w and v satisfy the hypotheses of Theorem 3.2. Taking into account that $w(0)=w(T)=0$, from Theorem 3.2, we conclude that, for every $\lambda \neq 0$,

$$
\begin{align*}
\left\|e^{\lambda x} w\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)} & \leq\left\|e^{\lambda x}\left(w^{\prime}+P(D) w\right)\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)} \\
& =\left\|e^{\lambda x}\left(\phi u^{\prime}+P(D) w\right)\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)} . \tag{10}
\end{align*}
$$

As in the proof of Theorem 3.2, we take into account that

$$
P(D) w=\sum_{j^{\prime}=0}^{n} \partial_{y}^{j^{\prime}}\left[\sum_{j=0}^{n-j^{\prime}} a_{j j^{\prime}} \partial_{x}^{j} w\right] .
$$

Vol. 39, No. 1, 2021]

Hence,

$$
\begin{aligned}
P(D) w & =P(D)(\phi u)=\sum_{j^{\prime}=0}^{n} \partial_{y}^{j^{\prime}}\left[\sum_{j=0}^{n-j^{\prime}} a_{j j^{\prime}} \partial_{x}^{j}(\phi u)\right] \\
& =\sum_{j^{\prime}=0}^{n} \partial_{y}^{j^{\prime}}\left[\sum_{j=0}^{n-j^{\prime}} a_{j j^{\prime}} \sum_{k=0}^{j}\binom{j}{k} \partial_{x}^{j-k} u \phi^{(k)}\right] \\
& =\phi \sum_{j^{\prime}=0}^{n} \partial_{y}^{j^{\prime}}\left[\sum_{j=0}^{n-j^{\prime}} a_{j j^{\prime}} \partial_{x}^{j} u\right]+\sum_{j^{\prime}=0}^{n-1} \partial_{y}^{j^{\prime}}\left[\sum_{j=1}^{n-j^{\prime}} a_{j j^{\prime}} \sum_{k=1}^{j}\binom{j}{k} \partial_{x}^{j-k} u \phi^{(k)}\right] \\
& =\phi P u+\sum_{j^{\prime}=0}^{n-1} \partial_{y}^{j^{\prime}}\left[\sum_{j=1}^{n-j^{\prime}} a_{j j^{\prime}} \sum_{k=1}^{j}\binom{j}{k} \partial_{x}^{j-k} u \phi^{(k)}\right]
\end{aligned}
$$

Therefore, from (10), and (1), we conclude that

$$
\left\|e^{\lambda x} w\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)} \leq\left\|e^{\lambda x} \phi u^{l} \partial_{x} u\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)}+\left\|e^{\lambda x} F_{1 \phi, u}\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)}
$$

where

$$
F_{1 \phi, u}:=\sum_{j^{\prime}=0}^{n-1} \partial_{y}^{j^{\prime}}\left[\sum_{j=1}^{n-j^{\prime}} a_{j j^{\prime}} \sum_{k=1}^{j}\binom{j}{k} \partial_{x}^{j-k} u \phi^{(k)}\right]
$$

Since all the derivatives of ϕ are supported in $[R, R+1]$, let us observe that

$$
\begin{aligned}
\left|F_{1 \phi, u}\right| \leq & \max \left\{a_{j j^{\prime}}: j=1, \ldots, n ; j^{\prime}=0, \ldots, n-1\right\} \\
& \cdot \max \left\{\binom{j}{k}: j=1, \ldots, n ; k=1, \ldots, n\right\} \cdot \sum_{k=1}^{n}\left|\phi^{(k)}\right|\left|\sum_{j^{\prime}=0}^{n-1} \partial_{y}^{j^{\prime}}\left[\sum_{j=1}^{n-j^{\prime}} \sum_{k=1}^{j} \partial_{x}^{j-k} u\right]\right| \\
\leq & C \sum_{k=1}^{n}\left|\phi^{(k)}\right| \sum_{j^{\prime}=0}^{n-1} \sum_{j=0}^{n-1-j^{\prime}}\left|\partial_{y}^{j^{\prime}} \partial_{x}^{j} u\right| \leq C \chi_{[R, R+1]}(\cdot x) \sum_{j^{\prime}=0}^{n-1} \sum_{j=0}^{n-1-j^{\prime}}\left|\partial_{y}^{j^{\prime}} \partial_{x}^{j} u\right|,
\end{aligned}
$$

(here χ_{A} is the characteristic function of a set A). Then, for $\lambda>1$,

$$
\begin{aligned}
\left\|e^{\lambda x} F_{1 \phi, u}\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)}^{2} & \leq C \int_{0}^{T} \int_{\mathbb{R}} \int_{R}^{R+1} e^{2 \lambda x}\left[\sum_{j^{\prime}=0}^{n-1} \sum_{j=0}^{n-1-j^{\prime}}\left|\partial_{y}^{j^{\prime}} \partial_{x}^{j} u\right|\right]^{2} d x d y d t \\
& \leq C e^{2 \lambda(R+1)} \int_{0}^{T} \int_{\mathbb{R}} \int_{R}^{R+1}\left[\sum_{j^{\prime}=0}^{n-1} \sum_{j=0}^{n-1-j^{\prime}}\left|\partial_{y}^{j^{\prime}} \partial_{x}^{j} u\right|\right]^{2} d x d y d t \\
& \leq C e^{2 \lambda(R+1)}\|u\|_{C\left([0, T] ; H^{n-1}\left(\mathbb{R}^{2}\right)\right)}^{2} \leq C e^{2 \lambda(R+1)}
\end{aligned}
$$

and $\left\|e^{\lambda x} F_{1} \pi, u\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)} \leq C e^{\lambda(R+1)}$, where $C=C\left(\|u\|_{C\left([0, T] ; H^{n-1}\left(\mathbb{R}^{2}\right)\right)}\right)$ is independent from λ and R. Therefore

$$
\begin{aligned}
\left\|e^{\lambda x} \phi u\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)} & \leq\left\|e^{\lambda x} \phi u^{l} \partial_{x} u\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)}+\left\|e^{\lambda x} F_{1 \phi, u}\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)} \\
& \leq\left\|e^{\lambda x} \phi u^{l}\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)}\left\|\partial_{x} u\right\|_{L^{\infty}([R, \infty) \times \mathbb{R} \times[0, T])}+C e^{\lambda(R+1)}
\end{aligned}
$$

Using (4) we have that $\left\|\partial_{x} u\right\|_{L^{\infty}([R, \infty) \times \mathbb{R} \times[0, T])} \leq C_{1} e^{-R}$. Besides, employing the Sobolev immersion $H^{2}\left(\mathbb{R}^{2}\right) \subset L^{\infty}\left(\mathbb{R}^{2}\right)$,

$$
\begin{aligned}
\left\|e^{\lambda x} \phi u^{l}\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)} & =\left[\int_{0}^{T} \int_{\mathbb{R}} \int_{\mathbb{R}} e^{2 \lambda x}|\phi u|^{2}|u|^{2(l-1)} d x d y d t\right]^{1 / 2} \\
& \leq \sup _{t \in[0, T]}\|u(t)\|_{L_{x y}^{\infty}}^{l-1}\left\|e^{\lambda x} \phi u\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)} \leq C\left\|e^{\lambda x} \phi u\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)}
\end{aligned}
$$

This way

$$
\left\|e^{\lambda x} \phi u\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)} \leq C_{1} e^{-R}\left\|e^{\lambda x} \phi u\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)}+C e^{\lambda(R+1)}
$$

Since ϕ is a bounded function, from the hypotheses it is clear that $\left\|e^{\lambda x} \phi u\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)}<$ ∞. Hence, taking $R>B$ such that $C_{1} e^{-R}<1 / 2$, we obtain

$$
\left\|e^{\lambda x} \phi u\right\|_{L^{2}\left(\mathbb{R}^{2} \times[0, T]\right)} \leq C e^{\lambda(R+1)}
$$

Thus, since $\phi(x)=1$ for $x \geq 2 R$,

$$
e^{2 \lambda R}\left[\int_{0}^{T} \int_{\mathbb{R}} \int_{2 R}^{\infty}|u(t)(x, y)|^{2} d x d y d t\right]^{1 / 2} \leq\left\|e^{\lambda x} \phi u\right\| \leq C e^{\lambda(R+1)}
$$

for all $\lambda>0$, where C is independent from λ. If we choose $R>1$ and let $\lambda \rightarrow+\infty$, it follows that

$$
\left[\int_{0}^{T} \int_{\mathbb{R}} \int_{2 R}^{\infty}|u(t)(x, y)|^{2} d x d y d t\right]^{1 / 2}=0
$$

Therefore $u \equiv 0$ in $[2 R, \infty) \times \mathbb{R} \times[0, T]$. Now, taking into account the symmetry of the operator $P(D)$, it is easy to see that

$$
P(D) v=\phi P(D) u+\sum_{j=0}^{n-1} \partial_{x}^{j} \sum_{j^{\prime}=1}^{n-j} a_{j j^{\prime}} \sum_{k=1}^{j^{\prime}}\binom{j^{\prime}}{k} \partial_{y}^{j^{\prime}-k} u \phi^{(k)}
$$

Then, reasoning as above, using (5) instead of (4), we can conclude that there exists $\tilde{R}>0$ such that $u \equiv 0$ in $\mathbb{R} \times[2 \tilde{R}, \infty) \times[0, T]$. Taking $R_{0}:=\max \{2 R, 2 \tilde{R}\}$, we have that $\operatorname{supp} u(t) \subset\left[-R_{0}, \times R_{0}\right] \times\left[-R_{0}, R_{0}\right]$ for every $t \in[0, T]$.
Acknowledgement: Supported by Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, project "Problemas en Ecuaciones Diferenciales", Hermes code 48952.

References

[1] Ablowitz M., Nonlinear dispersive waves: asymptotic analysis and solitons, Cambridge University Press, 2011.
[2] Benzekry S., et. al., "Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth", PLOS Comput. Biol., 10 (2014), No. 8, 1-19. doi: 10.1371/journal.pcbi. 1003800
[3] Biagioni H.A. and Linares F., "Well-posedness results for the modified Zakharov-Kuznetsov equation", Birkhäuser, Basel, 54 (2003), 181-189.
[4] Bourgain J., "On the compactness of the support of solutions of dispersive equations", Internat. Math. Res. Notices, (1997), No. 9, 437-447. doi: 10.1155/S1073792897000305
[5] Bustamante E., Isaza P. and Mejía J., "On uniqueness properties of solutions of the Zakharov-Kuznetsov equation", J. Funct. Anal., 254 (2013), No. 11, 2529-2549. doi: 10.1016/j.jfa.2013.03.003
[6] Bustamante E., Isaza P. and Mejía J., "On the support of solutions to de ZakharovKuznetsov equation", J. Differential Equations, 251 (2011), No. 10, 2728-2736. doi: 10.1016/j.jde.2011.05.013
[7] Faminskii A.V., "The Cauchy problem for the Zakharov-Kuznetsov equation", Differential Equations, 31 (1995), No. 6, 1002-1012.
[8] Hall E.J. and Giaccia A.J., Radiobiology for the Radiologists, Lippincott Williams \& Wilkins (LWW), 8th ed., Philadelphia, 2018.
[9] Kenig C., Ponce G. and Vega L., "On the support of solutions to the generalized KdV equation", Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), No. 2, 191-208. doi: 10.1016/S0294-1449(01)00073-7
[10] Larkin N.A., Kawahara-Burgers equation on a strip, Adv. Math. Phys., Maringá, (2015). doi: $10.1155 / 2015 / 269536$
[11] Larkin N.A., "The 2D Kawahara equation on a half-strip", Appl. Math. Optim., 70 (2014), No. 3, 443-468. doi: 10.1007/s00245-014-9246-4
[12] Linares F. and Pastor A., "Local and global well-posedness for the 2D generalizes Zakharov-Kuztnesov equation", J. Funct. Anal., 260 (2011), No. 4, 1060-1085. doi: 10.1016/j.jfa.2010.11.005
[13] Linares F. and Pastor A., "Well-posedness for the two-dimensional modified ZakharovKuznetsov equation", SIAM J. Math. Anal., 41 (2009), No. 4, 1323-1339. doi: 10.1137/080739173
[14] Linares F., Pastor A. and Saut J.C., "Well-Posedness for the ZK Equation in a Cylinder and on the Background of a KdV Soliton", Comm. Partial Differential Equations, 35 (2010), No. 9, 1674-1689. doi: 10.1080/03605302.2010.494195
[15] Nahas J. and Ponce G., "On the persistent properties of solutions to semi-linear Schrödinger equation", Comm. Partial Differential Equations, 34 (2009), No. 10-12, 1208-1227. doi: 10.1080/03605300903129044
[16] Panthee M., "A note on the unique continuation property for Zakharov-Kuznetsov equation", Nonlinear Anal., 59 (2004), No. 3, 425-438. doi: 10.1016/j.na.2004.07.022
[17] Tao T., Nonlinear dispersive equations, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, vol. 106, Providence, RI, 2006.
[18] Zakharov V.E. and Kuznetsov E.A., "On three-dimensional solitons", Soviet Phys. JETP., 29 (1974), 594-597.

[^0]: E-mail: eabusta0@unal.edu.co ${ }^{a} \boxtimes$, jmjimene@unal.edu.co ${ }^{b}$.
 Received: 27 April 2020, Accepted: 14 September 2020.
 To cite this article: E. Bustamante and J. Jiménez Urrea, Properties of the Support of Solutions
 of aClass of Two-Dimensional Nonlinear Evolution Equations, Rev. Integr. temas mat. 39 (2021),
 No. 1, 41-51. doi: $10.18273 /$ revint.v39n1-2021003

