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Abstract. We introduce in this paper the concept of quadruple
D−synchronous functions which generalizes the concept of a pair of syn-
chronous functions, we establish an inequality similar to Chebyshev inequality
and we also provide some Cauchy-Bunyakovsky-Schwarz type inequalities for
a functional associated with this quadruple. Some applications for univariate
functions of real variable are given. Discrete inequalities are also stated.
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Desigualdades para funciones D−sincrónicas y funciones
relacionadas

Resumen. Introducimos en este artículo el concepto de funciones
D−sincrónicas cuádruples, que generaliza el concepto de un par de funcio-
nes sincrónicas; estableceremos una desigualdad similar a la desigualdad de
Chebyshev y también presentamos algunas desigualdades de tipo Cauchy-
Bunyakovsky-Schwarz para un funcional asociado con este cuádruple. Se dan
algunas aplicaciones para funciones univariadas de la variable real. También
se indican desigualdades discretas.
Palabras clave: Funciones D−sincrónicas, funciones Lipschitzianas, desigual-
dad de Chebyshev, desigualdad de Cauchy-Bunyakovsky-Schwarz.

1. Introduction

Let (Ω,A, ν) be a measurable space consisting of a set Ω, a σ-algebra A of subsets of
Ω and a countably additive and positive measure ν on A with values in [0,+∞] . For
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120 S.S. Dragomir

a ν-measurable function w : Ω → R, with w (x) ≥ 0 for ν-a.e. (almost every) x ∈ Ω,
consider the Lebesgue space

Lw (Ω, ν) := {f : Ω → R, f is ν-measurable and
∫
Ω

w (x) |f (x)| dν (x) < ∞}.

For simplicity of notation we write everywhere in the sequel
∫
Ω
wdν instead of∫

Ω
w (x) dν (x) . Assume also that

∫
Ω
wdν = 1.

We say that the pair of measurable functions (f, g) are synchronous on Ω if

(f (x)− f (y)) (g (x)− g (y)) ≥ 0 (1)

for ν-a.e. x, y ∈ Ω. If the inequality reverses in (1), the functions are called asynchronous
on Ω.

If (f, g) are synchronous on Ω and f, g, fg ∈ Lw (Ω, ν) , then the following inequality,
that is known in the literature as Chebyshev’s Inequality, holds:∫

Ω

wfgdν ≥
∫
Ω

wfdν

∫
Ω

wgdν, (2)

where w (x) ≥ 0 for ν-a.e. (almost every) x ∈ Ω and
∫
Ω
wdν = 1.

If f, g : Ω → R are ν-measurable functions and f, g, fg ∈ Lw (Ω, ν) , then we may
consider the Chebyshev functional

Tw (f, g) :=

∫
Ω

wfgdν −
∫
Ω

wfdν

∫
Ω

wgdν.

The following result is known in the literature as the Grüss inequality:

|Tw (f, g)| ≤ 1

4
(Γ− γ) (∆− δ) , (3)

provided
−∞ < γ ≤ f (x) ≤ Γ < ∞, −∞ < δ ≤ g (x) ≤ ∆ < ∞ (4)

for ν-a.e. x ∈ Ω.

The constant 1
4 is sharp in the sense that it cannot be replaced by a smaller quantity.

If f ∈ Lw (Ω, ν) , then we may define

Dw (f) :=

∫
Ω

w (x)

∣∣∣∣f (x)−
∫
Ω

w (y) f (y) dν (y)

∣∣∣∣ dν (x) . (5)

The following refinement of Grüss inequality in the general setting of measure spaces is
due to Cerone & Dragomir [1]:

Theorem 1.1. Let w, f, g : Ω → R be ν-measurable functions with w ≥ 0 ν-a.e. on Ω
and

∫
Ω
wdν = 1. If f, g, fg ∈ Lw (Ω, ν) and there exist constants δ, ∆ such that

−∞ < δ ≤ g (x) ≤ ∆ < ∞ for ν-a.e. x ∈ Ω, (6)

[Revista Integración



Inequalities for D−Synchronous Functions and Related Functionals 121

then we have the inequality

|Tw (f, g)| ≤ 1

2
(∆− δ)Dw (f) . (7)

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller quantity.

Motivated by the above results, we introduce in this paper the concept of quadruple
D−synchronous functions that generalizes the concept of a pair of synchronous functions,
we establish an inequality similar to Chebyshev inequality and also provide some Cauchy-
Bunyakovsky-Schwarz type inequalities for a functional associated with this quadruple.
Some applications for univariate functions of real variable are given. Discrete inequalities
are also stated.

2. D−Synchronous functions

Let (Ω,A, ν) be a measurable space and f, g, h, ℓ : Ω → R be four ν-measurable functions
on Ω.

Definition 2.1. The quadruple (f, g, h, ℓ) is called D−Synchronous (D−Asynchronous)
on Ω if

det

 f (x) f (y)

g (x) g (y)

 det

 h (x) h (y)

ℓ (x) ℓ (y)

 ≥ (≤) 0 (8)

for ν-a.e. (almost every) x, y ∈ Ω.

This concept is a generalization of synchronous functions, since for g = 1, ℓ = 1 the
quadruple (f, g, h, ℓ) is D−Synchronous if, and only if, (f, h) is synchronous on Ω.

If g, ℓ ̸= 0 ν-a.e on Ω, then

det

 f (x) f (y)

g (x) g (y)

 det

 h (x) h (y)

ℓ (x) ℓ (y)

 (9)

= (f (x) g (y)− g (x) f (y)) (h (x) ℓ (y)− ℓ (x)h (y))

= g (x) ℓ (x) g (y) ℓ (y)

(
f (x)

g (x)
− f (y)

g (y)

)(
h (x)

ℓ (x)
− h (y)

ℓ (y)

)
for ν-a.e. x, y ∈ Ω. So, if gℓ > 0 ν-a.e on Ω the quadruple (f, g, h, ℓ) is D−Synchronous
if, and only if,

(
f
g ,

h
ℓ

)
is synchronous on Ω.

Theorem 2.2. Let f, g, h, ℓ : Ω → R be ν-measurable functions on Ω and such that
the quadruple (f, g, h, ℓ) is D-Synchronous (D−Asynchronous), w ≥ 0 a.e. on Ω with∫
Ω
wdν = 1 and fh, gℓ, gh, fℓ ∈ Lw (Ω, ν) . Then,

det

 ∫
Ω
wfhdν

∫
Ω
wghdν∫

Ω
wfℓdν

∫
Ω
wgℓdν

 ≥ (≤) 0. (10)
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Proof. Since the quadruple (f, g, h, ℓ) is D−Synchronous, then

0 ≤ (f (x) g (y)− g (x) f (y)) (h (x) ℓ (y)− ℓ (x)h (y)) (11)
=f (x)h (x) g (y) ℓ (y) + g (x) ℓ (x) f (y)h (y)

− f (x) ℓ (x) g (y)h (y)− g (x)h (x) f (y) ℓ (y)

for ν-a.e. x, y ∈ Ω.

This is equivalent to

f (x)h (x) g (y) ℓ (y) + g (x) ℓ (x) f (y)h (y)

≥ f (x) ℓ (x) g (y)h (y) + g (x)h (x) f (y) ℓ (y) (12)

for ν-a.e. x, y ∈ Ω.

Multiply (12) by w (x)w (y) ≥ 0 to get

w (x) f (x)h (x)w (y) g (y) ℓ (y) + w (x) g (x) ℓ (x)w (y) f (y)h (y)

≥ w (x) f (x) ℓ (x)w (y) g (y)h (y) + w (x) g (x)h (x)w (y) f (y) ℓ (y) (13)

for ν-a.e. x, y ∈ Ω.

If we integrate the inequality (13) over x ∈ Ω, then we get

w (y) g (y) ℓ (y)

∫
Ω

wfhdν + w (y) f (y)h (y)

∫
Ω

wgℓdν

≥ w (y) g (y)h (y)

∫
Ω

wfℓdν + w (y) f (y) ℓ (y)

∫
Ω

wghdν (14)

for ν-a.e. y ∈ Ω.

Finally, if we integrate the inequality (14) over y ∈ Ω, then we get∫
Ω

wfhdν

∫
Ω

wgℓdν +

∫
Ω

wgℓdν

∫
Ω

wfhdν

≥
∫
Ω

wfℓdν

∫
Ω

wghdν +

∫
Ω

wghdν

∫
Ω

wfℓdν,

which is equivalent to the desired result (10). □✓✓✓

Corollary 2.3. Let f, g, h, ℓ : Ω → R be ν-measurable functions on Ω and such that
gℓ > 0 ν-a.e on Ω,

(
f
g ,

h
ℓ

)
is synchronous (asynchronous) on Ω, w ≥ 0 a.e. on Ω with∫

Ω
wdν = 1 and fh, gℓ, gh, fℓ ∈ Lw (Ω, ν) ; then the inequality (10) is valid.

Let f, g, h, ℓ : Ω → R be ν-measurable functions on Ω , w ≥ 0 a.e. on Ω with
∫
Ω
wdν = 1

and fh, gℓ, gh, fℓ ∈ Lw (Ω, ν) ; then we can consider the functionals

D (f, g, h, ℓ;w,Ω) := det

 ∫
Ω
wfhdν

∫
Ω
wghdν∫

Ω
wfℓdν

∫
Ω
wgℓdν

 (15)

=

∫
Ω

wfhdν

∫
Ω

wgℓdν −
∫
Ω

wfℓdν

∫
Ω

wghdν,
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and, for (f, g) = (h, ℓ) ,

D (f, g;w,Ω) :=D (f, g, f, g;w,Ω) (16)

= det

 ∫
Ω
wf2dν

∫
Ω
wfgdν∫

Ω
wfgdν

∫
Ω
wg2dν


=

∫
Ω

wf2dν

∫
Ω

wg2dν −
(∫

Ω

wfgdν

)2

,

provided f2, g2 ∈ Lw (Ω, ν) .

We can improve the inequality (10) as follows:

Theorem 2.4. Let f, g, h, ℓ : Ω → R be ν-measurable functions on Ω and such that the
quadruple (f, g, h, ℓ) is D−Synchronous, w ≥ 0 a.e. on Ω with

∫
Ω
wdν = 1 and fh, gℓ,

gh, fℓ ∈ Lw (Ω, ν) ; then,

D (f, g, h, ℓ;w,Ω) ≥ max {|D (|f | , |g| , h, ℓ;w,Ω)| , (17)
|D (f, g, |h| , |ℓ| ;w,Ω)| , |D (|f | , |g| , |h| , |ℓ| ;w,Ω)|}

≥ 0.

Proof. We use the continuity property of the modulus, namely

|a− b| ≥ ||a| − |b|| , a, b ∈ R.

Since (f, g, h, ℓ) is D−Synchronous, then

(f (x) g (y)− g (x) f (y)) (h (x) ℓ (y)− ℓ (x)h (y)) (18)
= |f (x) g (y)− g (x) f (y)| |h (x) ℓ (y)− ℓ (x)h (y)|

≥


|(|f (x)| |g (y)| − |g (x)| |f (y)|) (h (x) ℓ (y)− ℓ (x)h (y))|

|(f (x) g (y)− g (x) f (y)) (|h (x)| |ℓ (y)| − |ℓ (x)| |h (y)|)|

|(|f (x)| |g (y)| − |g (x)| |f (y)|) (|h (x)| |ℓ (y)| − |ℓ (x)| |h (y)|)|

for ν-a.e. x, y ∈ Ω.

As in the proof of Theorem 2.2, we have the identity

D (f, g, h, ℓ;w,Ω) =
1

2

∫
Ω

∫
Ω

w (x)w (y) (f (x) g (y)− g (x) f (y)) (19)

× (h (x) ℓ (y)− ℓ (x)h (y)) dν (x) dν (y) .
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By using the identity (19) and the first branch in (18) we have

D (f, g, h, ℓ;w,Ω) ≥ 1

2

∫
Ω

∫
Ω

w (x)w (y) |(|f (x)| |g (y)| − |g (x)| |f (y)|)

× (h (x) ℓ (y)− ℓ (x)h (y))| dν (x) dν (y)

≥ 1

2

∣∣∣∣∫
Ω

∫
Ω

w (x)w (y) (|f (x)| |g (y)| − |g (x)| |f (y)|)

× (h (x) ℓ (y)− ℓ (x)h (y)) dν (x) dν (y)|
= |D (|f | , |g| , h, ℓ;w,Ω)| ,

which proves the first part of (17).

The second and third part of (17) can be proved in a similar way and details are omitted.
□✓✓✓

3. Further results for the functional D

We have the following Schwarz’s type inequality for the functional D:

Theorem 3.1. Let f, g, h, ℓ : Ω → R be ν-measurable functions on Ω , w ≥ 0 a.e. on Ω
with

∫
Ω
wdν = 1 and f2, g2, h2, ℓ2 ∈ Lw (Ω, ν) . Then,

D2 (f, g, h, ℓ;w,Ω) ≤ D (f, g;w,Ω)D (h, ℓ;w,Ω) . (20)

Proof. As in the proof of Theorem 2.4, we have the identities

D (f, g, h, ℓ;w,Ω) =
1

2

∫
Ω

∫
Ω

w (x)w (y) (f (x) g (y)− g (x) f (y))

× (h (x) ℓ (y)− ℓ (x)h (y)) dν (x) dν (y) ,

D (f, g;w,Ω) =
1

2

∫
Ω

∫
Ω

w (x)w (y) (f (x) g (y)− g (x) f (y))
2
dν (x) dν (y)

and

D (h, ℓ;w,Ω) =
1

2

∫
Ω

∫
Ω

w (x)w (y) (h (x) ℓ (y)− ℓ (x)h (y))
2
dν (x) dν (y) .

By the Cauchy-Bunyakovsky-Schwarz double integral inequality we have(∫
Ω

∫
Ω

w (x)w (y) (f (x) g (y)− g (x) f (y)) (h (x) ℓ (y)− ℓ (x)h (y)) dν (x) dν (y)

)2

≤
∫
Ω

∫
Ω

w (x)w (y) (h (x) g (y)− g (x)h (y))
2
dν (x) dν (y)

×
∫
Ω

∫
Ω

w (x)w (y) (h (x) ℓ (y)− ℓ (x)h (y))
2
dν (x) dν (y) ,

which produces the desired result (20). □✓✓✓
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Corollary 3.2. Let f, g, h, ℓ : Ω → R be ν-measurable functions on Ω with g2, ℓ2 ∈
Lw (Ω, ν), w ≥ 0 a.e. on Ω with

∫
Ω
wdν = 1, and a, A, b, B ∈ R such that A > a, B > b,

ag ≤ f ≤ Ag and bℓ ≤ h ≤ Bℓ (21)

ν-a.e. on Ω. Then,

|D (f, g, h, ℓ;w,Ω)| ≤ 1

4
(A− a) (B − b)

∫
Ω

wg2dν

∫
Ω

wℓ2dν. (22)

Proof. In [2] (see also [4, p. 8]) we proved the following reverse of Cauchy-Bunyakovsky-
Schwarz integral inequality∫

Ω

wf2dν

∫
Ω

wg2dν −
(∫

Ω

wfgdν

)2

≤ 1

4
(A− a)

2

(∫
Ω

wg2dν

)2

provided that ag ≤ f ≤ Ag ν-a.e. on Ω and g2 ∈ Lw (Ω, ν) .

Since, we also have∫
Ω

wh2dν

∫
Ω

wℓ2dν −
(∫

Ω

whℓdν

)2

≤ 1

4
(B − b)

2

(∫
Ω

wℓ2dν

)2

,

provided that bℓ ≤ h ≤ Bℓ ν-a.e. on Ω and ℓ2 ∈ Lw (Ω, ν) . Then, by (20) we have

D2 (f, g, h, ℓ;w,Ω) ≤ 1

16
(A− a)

2
(B − b)

2

(∫
Ω

wg2dν

)2(∫
Ω

wℓ2dν

)2

that is equivalent to the desired result (22). □✓✓✓

For positive margins we also have:

Corollary 3.3. Let f, g, h, ℓ : Ω → R be four ν-measurable functions on Ω with g2, ℓ2 ∈
Lw (Ω, ν), w ≥ 0 a.e. on Ω with

∫
Ω
wdν = 1, and a,A, b, B > 0 such that A > a, B > b,

ag ≤ f ≤ Ag and bℓ ≤ h ≤ Bℓ (23)

ν-a.e. on Ω. Then we have

|D (f, g, h, ℓ;w,Ω)| ≤ 1

4

(A− a) (B − b)√
aAbB

∫
Ω

wfgdν

∫
Ω

whℓdν. (24)

Proof. In [3] (see also [4, p. 16]) we proved the following reverse of Cauchy-Bunyakovsky-
Schwarz integral inequality:∫

Ω

wf2dν

∫
Ω

wg2dν −
(∫

Ω

wfgdν

)2

≤ (A− a)
2

4aA

(∫
Ω

wfgdν

)2

,

whenever ag ≤ f ≤ Ag ν-a.e. on Ω.

Since ∫
Ω

wh2dν

∫
Ω

wℓ2dν −
(∫

Ω

whℓdν

)2

≤ (B − b)
2

4bB

(∫
Ω

whℓdν

)2

,

provided bℓ ≤ h ≤ Bℓ ν-a.e. on Ω, then by (20) we get the desired result (24). □✓✓✓

Vol. 38, No. 2, 2020]
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If bounds for the sum and difference are available, then we have:

Corollary 3.4. Let f, g, h, ℓ : Ω → R be ν-measurable functions on Ω with g2, ℓ2 ∈
Lw (Ω, ν), w ≥ 0 a.e. on Ω with

∫
Ω
wdν = 1. Assume that there exists the constants P1,

Q1, P2, Q2 such that

|g − f | ≤ P1, |g + f | ≤ Q1, |h− ℓ| ≤ P2, |h+ ℓ| ≤ Q2 (25)

a.e. on Ω; then,
|D (f, g, h, ℓ;w,Ω)| ≤ 1

4
P1Q1P2Q2. (26)

Proof. In the recent paper [5] we obtained amongst other the following reverse of Cauchy-
Bunyakovsky-Schwarz integral inequality:∫

Ω

wf2dν

∫
Ω

wg2dν −
(∫

Ω

wfgdν

)2

≤ 1

4
P 2
1Q

2
1,

provided |g − f | ≤ P1, |g + f | ≤ Q1 a.e. on Ω.

Since ∫
Ω

wh2dν

∫
Ω

wℓ2dν −
(∫

Ω

whℓdν

)2

≤ 1

4
P 2
2Q

2
2,

if |h− ℓ| ≤ P2, |h+ ℓ| ≤ Q2 a.e. on Ω, then by (20) we get the desired result (26). □✓✓✓

If bounds for each function are available, then we have:

Corollary 3.5. Let f, g, h, ℓ : Ω → R be ν-measurable functions on Ω and w ≥ 0 a.e.
on Ω with

∫
Ω
wdν = 1. Assume that there exists the constants ai, Ai, bi and Bi with

i ∈ {1, 2} such that

0 < a1 ≤ f ≤ A1 < ∞, 0 < a2 ≤ g ≤ A2 < ∞, (27)

and
0 < b1 ≤ h ≤ B1 < ∞, 0 < b2 ≤ ℓ ≤ B2 < ∞, (28)

a.e. on Ω; then,

|D (f, g, h, ℓ;w,Ω)| ≤ 1

3
(A1A2 − a1a2) (B1B2 − b1b2) . (29)

Proof. We use the following Ozeki’s type inequality obtained in [6]:∫
Ω

wf2dν

∫
Ω

wg2dν −
(∫

Ω

wfgdν

)2

≤ 1

3
(A1A2 − a1a2)

2
,

provided 0 < a1 ≤ f ≤ A1 < ∞, 0 < a2 ≤ g ≤ A2 < ∞ a.e. on Ω.

Since ∫
Ω

wh2dν

∫
Ω

wℓ2dν −
(∫

Ω

whℓdν

)2

≤ 1

3
(B1B2 − b1b2)

2
,

when 0 < b1 ≤ h ≤ B1 < ∞, 0 < b2 ≤ ℓ ≤ B2 < ∞ a.e. on Ω, then by (20) we get the
desired result (29). □✓✓✓
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4. Results for univariate functions

Let Ω = [a, b] be an interval of real numbers, and assume that f, g, h, ℓ : [a, b] → R are
measurable D−Synchronous (D−Aynchronous), w ≥ 0 a.e. on [a, b] with

∫ b

a
w (t) dt = 1

and fh, gℓ, gh, fℓ ∈ Lw ([a, b]) ; then,∫ b

a

w (t) f (t)h (t) dt

∫ b

a

w (t) g (t) ℓ (t) dt (30)

≥ (≤)

∫ b

a

w (t) g (t)h (t) dt

∫ b

a

w (t) f (t) ℓ (t) dt.

Now, assume that [a, b] ⊂ (0,∞) and take f (t) = tp, g (t) = tq, h (t) = tr and ℓ (t) = ts

with p, q, r, s ∈ R. Then,

f (t)

g (t)
= tp−q and h (t)

ℓ (t)
= tr−s.

If (p− q) (r − s) > 0, then the functions
(

f
g ,

h
ℓ

)
have the same monotonicity on [a, b]

while if (p− q) (r − s) < 0 then
(

f
g ,

h
ℓ

)
have opposite monotonicity on [a, b] . Therefore,

by (30) we have for any nonnegative integrable function w with
∫ b

a
w (t) dt = 1 that∫ b

a

w (t) tp+rdt

∫ b

a

w (t) tq+sdt ≥ (≤)

∫ b

a

w (t) tq+rdt

∫ b

a

w (t) tp+sdt, (31)

provided (p− q) (r − s) > (<) 0.

Assume that [a, b] ⊂ (0,∞) and take f (t) = exp (αt) , g (t) = exp (βt) , h (t) = exp (γt)
and ℓ (t) = exp (δt) , with α, β, γ, δ ∈ R. Then,

f (t)

g (t)
= exp [(α− β) t] and h (t)

ℓ (t)
= exp [(γ − δ) t] .

If (α− β) (γ − δ) > 0, then the functions
(

f
g ,

h
ℓ

)
have the same monotonicity on [a, b] ,

while if (α− β) (γ − δ) < 0 then
(

f
g ,

h
ℓ

)
have opposite monotonicity on [a, b] . Therefore,

by (30) we have for any nonnegative integrable function w with
∫ b

a
w (t) dt = 1 that∫ b

a

w (t) exp [(α+ γ) t] dt

∫ b

a

w (t) exp [(β + δ) t] dt (32)

≥ (≤)

∫ b

a

w (t) exp [(β + γ) t] dt

∫ b

a

w (t) exp [(α+ δ) t] dt,

provided (α− β) (γ − δ) > (<) 0.

Consider the functional

Dp,q,r,s (w) :=

∫ b

a

w (t) tp+rdt

∫ b

a

w (t) tq+sdt (33)

−
∫ b

a

w (t) tq+rdt

∫ b

a

w (t) tp+sdt,
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for any nonnegative integrable function w with
∫ b

a
w (t) dt = 1, and p, q, r, s ∈ R.

We observe that for t ∈ [a, b] ⊂ (0,∞) we have

kp,q (a, b) :=

 ap−q, if p ≥ q,

bp−q, if p < q,
≤ f (t)

g (t)
= tp−q (34)

≤ Kp,q (a, b) :=

 bp−q, if p ≥ q,

ap−q if p < q,

and, similarly,

kr,s (a, b) ≤
h (t)

ℓ (t)
= tr−s ≤ Kr,s (a, b) .

Using the inequality (22) we have

|Dp,q,r,s (w)| ≤
1

4
[Kp,q (a, b)− kp,q (a, b)] [Kr,s (a, b)− kr,s (a, b)] (35)

×
∫ b

a

w (t) t2qdt

∫ b

a

w (t) t2sdt,

while from (24) we have

|Dp,q,r,s (w)| ≤
1

4

[Kp,q (a, b)− kp,q (a, b)] [Kr,s (a, b)− kr,s (a, b)]√
kp,q (a, b) kr,s (a, b)Kp,q (a, b)Kr,s (a, b)

(36)

×
∫ b

a

w (t) tp+qdt

∫ b

a

w (t) tr+sdt.

We also have for t ∈ [a, b] ⊂ (0,∞) that

up (a, b) :=

 ap, if p ≥ 0,

bp, if p < 0,
≤ f (t) = tp

≤Up (a, b) :=

 bp, if p ≥ 0,

ap, if p < 0,

and the corresponding bounds for g (t) = tq, h (t) = tr and ℓ (t) = ts, with p, q, r, s ∈ R.
Making use of the inequality (29) we get

|Dp,q,r,s (w)| ≤
1

3
(Up (a, b)Uq (a, b)− up (a, b)uq (a, b)) (37)

× (Ur (a, b)Us (a, b)− ur (a, b)us (a, b)) .

Similar results may be stated for the functional

Dα,β,γ,δ (w) :=

∫ b

a

w (t) exp [(α+ γ) t] dt

∫ b

a

w (t) exp [(β + δ) t] dt

−
∫ b

a

w (t) exp [(β + γ) t] dt

∫ b

a

w (t) exp [(α+ δ) t] dt
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for any nonnegative integrable function w with
∫ b

a
w (t) dt = 1, for α, β, γ, δ ∈ R and

[a, b] ⊂ (0,∞) . Details are omitted.
We say that the function φ : [a, b] → R is Lipschitzian with the constant L > 0 if

|φ (t)− φ (s)| ≤ L |t− s|

for any t, s ∈ [a, b] .

Define the functional

D (f, g, h, ℓ;w, [a, b]) :=

∫ b

a

w (t) f (t)h (t) dt

∫ b

a

w (t) g (t) ℓ (t) dt

−
∫ b

a

w (t) g (t)h (t) dt

∫ b

a

w (t) f (t) ℓ (t) dt.

In the next result we provided two upper bounds in terms of Lipschitzian constants:

Theorem 4.1. Let f, g, h, ℓ : [a, b] → R be measurable functions and w ≥ 0 a.e. on [a, b]

with
∫ b

a
w (t) dt = 1.

(i) If g (t) , ℓ (t) ̸= 0 for any t ∈ [a, b] , and f
g is Lipschitzian with the constant L > 0,

and h
ℓ is Lipschitzian with the constant K > 0, and gℓ, gℓe2 ∈ Lw ([a, b]) with

e (t) = t, t ∈ [a, b] , then

|D (f, g, h, ℓ;w, [a, b])|

≤ LK

[∫ b

a

w (s) |g (s)| |ℓ (s)| ds
∫ b

a

w (t) |ℓ (t)| |g (t)| t2dt

−

(∫ b

a

w (t) |g (t)| |ℓ (t)| tdt

)2
 . (38)

(ii) If, in addition, we have wgℓ ∈ L∞ [a, b] and

∥wgℓ∥∞ = esssupt∈[a,b] |w (t) g (t) ℓ (t)| < ∞,

then

|D (f, g, h, ℓ;w, [a, b])| ≤ 1

12
(b− a)

4
LK ∥wgℓ∥2∞ . (39)

Proof. We have

D (f, g, h, ℓ;w, [a, b]) =
1

2

∫ b

a

∫ b

a

w (t)w (s) (f (t) g (s)− g (t) f (s))

× (h (t) ℓ (s)− ℓ (t)h (s)) dtds

=
1

2

∫ b

a

∫ b

a

w (t)w (s) g (t) g (s) ℓ (t) ℓ (s)

×
(
f (t)

g (t)
− f (s)

g (s)

)(
h (t)

ℓ (t)
− h (s)

ℓ (s)

)
dtds.
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By taking modulus in this equality, we get

|D (f, g, h, ℓ;w, [a, b]) | (40)

≤ 1

2

∫ b

a

∫ b

a

w (t)w (s) |g (t)| |g (s)| |ℓ (t)| |ℓ (s)| ×
∣∣∣∣f (t)

g (t)
− f (s)

g (s)

∣∣∣∣ ∣∣∣∣h (t)ℓ (t)
− h (s)

ℓ (s)

∣∣∣∣ dt ds
≤ 1

2
LK

∫ b

a

∫ b

a

w (t)w (s) |g (t)| |g (s)| |ℓ (t)| |ℓ (s)| (t− s)
2
dt ds.

Now, observe that∫ b

a

∫ b

a

w (t)w (s) |g (t)| |g (s)| |ℓ (t)| |ℓ (s)| (t− s)
2
dtds (41)

=

∫ b

a

∫ b

a

w (t)w (s) |g (t)| |g (s)| |ℓ (t)| |ℓ (s)|
(
t2 − 2ts+ s2

)
dtds

=2

(∫ b

a

∫ b

a

w (t)w (s) |g (t)| |g (s)| |ℓ (t)| |ℓ (s)| t2dtds

−
∫ b

a

∫ b

a

w (t)w (s) |g (t)| |g (s)| |ℓ (t)| |ℓ (s)| tsdtds

)

=2

[∫ b

a

w (s) |g (s)| |ℓ (s)| ds
∫ b

a

w (t) |g (t)| |ℓ (t)| t2dt

−

(∫ b

a

w (t) |g (t)| |ℓ (t)| tdt

)2
 .

On making use of (40) and (41) we get the desired result (38).
If wgℓ ∈ L∞ [a, b] , then∫ b

a

∫ b

a

w (t)w (s) |g (t)| |g (s)| |ℓ (t)| |ℓ (s)| (t− s)
2
dtds

≤ ∥wgℓ∥2∞
∫ b

a

∫ b

a

(t− s)
2
dtds =

1

6
(b− a)

4 ∥wgℓ∥2∞ . (42)

Therefore, by inequalities (40) and (42) we obtain the desired result (39). □✓✓✓

5. Discrete inequalities

Consider the n-tuples of real numbers x = (x1, ..., xn) , y = (y1, ..., yn) , z = (z1, ..., zn)
and u = (u1, ..., un) . We say that the quadruple (x, y, z, u) is D−Synchronous if

0 ≤ det

 xi xj

yi yj

det

 zi zj

ui uj

 (43)

= (xiyj − xjyi) (ziuj − zjui)
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for any i, j ∈ {1, ..., n} .

If p = (p1, ..., pn) is a probability distribution, namely, pi ≥ 0 for any i ∈ {1, ..., n} and∑n
i=1 pi = 1, and the quadruple (x, y, z, u) is D−Synchronous, then by (10) we have:

Dn (x, y, z, u; p) := det

 ∑n
i=1 pixizi

∑n
i=1 piyizi∑n

i=1 pixiui

∑n
i=1 piyiui

 (44)

=

n∑
i=1

pixizi

n∑
i=1

piyiui −
n∑

i=1

pixiui

n∑
i=1

piyizi ≥ 0.

For an n-tuples of real numbers x = (x1, ..., xn) , we denote by |x| := (|x1| , ..., |xn|) . On
making use of the inequality (17), then for any D−Synchronous quadruple (x, y, z, u)
and for any probability distribution p = (p1, ..., pn) we have

Dn (x, y, z, u; p)

≥ max {|Dn (|x| , y, z, u; p)| , |Dn (x, |y| , z, u; p)| , |Dn (|x| , |y| , z, u; p)|} ≥ 0. (45)

Observe that if we consider

Dn (x, y; p) := Dn (x, y, x, y; p) =

n∑
i=1

pix
2
i

n∑
i=1

piy
2
i −

(
n∑

i=1

pixiyi

)2

,

then by (20) we have

|Dn (x, y, z, u; p)|2 ≤ Dn (x, y; p)Dn (z, u; p) (46)

for any quadruple (x, y, z, u) and any probability distribution p = (p1, ..., pn) .

If a, A, b, B ∈ R and (x, y, z, u) are such that A > a, B > b,

ayi ≤ xi ≤ Ayi and bui ≤ zi ≤ Bui (47)

for any i ∈ {1, ..., n} , then by (22) we have

|Dn (x, y, z, u; p)| ≤
1

4
(A− a) (B − b)

n∑
i=1

piy
2
i

n∑
i=1

piu
2
i . (48)

If a, A, b, B > 0 and condition (47) is valid, then by (24) we have

|Dn (x, y, z, u; p)| ≤
1

4

(A− a) (B − b)√
aAbB

n∑
i=1

pixiyi

n∑
i=1

piziui. (49)

Now, if we use the Klamkin-McLenaghan’s inequality

n∑
i=1

pix
2
i

n∑
i=1

piy
2
i −

(
n∑

i=1

pixiyi

)2

≤
(√

A−
√
a
)2 n∑

i=1

pixiyi

n∑
i=1

pix
2
i
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that holds for x, y satisfying the condition (47) with A, a > 0, then by (46) we get

|Dn (x, y, z, u; p) | (50)

≤
(√

A−
√
a
)(√

B −
√
b
)

×

(
n∑

i=1

pixiyi

)1/2( n∑
i=1

pix
2
i

)1/2( n∑
i=1

piziui

)1/2( n∑
i=1

piz
2
i

)1/2

,

provided (x, y, z, u) satisfy (47) with a, A, b, B > 0.

Now, assume that

0 < a1 ≤ xi ≤ A1 < ∞, 0 < a2 ≤ yi ≤ A2 < ∞, (51)

and
0 < b1 ≤ xi ≤ B1 < ∞, 0 < b2 ≤ ui ≤ B2 < ∞, (52)

for any i ∈ {1, ..., n} ; then by (29) we get

|Dn (x, y, z, u; p)| ≤
1

3
(A1A2 − a1a2) (B1B2 − b1b2) , (53)

for any probability distribution p = (p1, ..., pn) .
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