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Abstract. We introduce in this paper the concept of quadruple
D—synchronous functions which generalizes the concept of a pair of syn-
chronous functions, we establish an inequality similar to Chebyshev inequality
and we also provide some Cauchy-Bunyakovsky-Schwarz type inequalities for
a functional associated with this quadruple. Some applications for univariate
functions of real variable are given. Discrete inequalities are also stated.
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Desigualdades para funciones D—sincrénicas y funciones
relacionadas

Resumen. Introducimos en este articulo el concepto de funciones
D—sincrénicas cuddruples, que generaliza el concepto de un par de funcio-
nes sincrénicas; estableceremos una desigualdad similar a la desigualdad de
Chebyshev y también presentamos algunas desigualdades de tipo Cauchy-
Bunyakovsky-Schwarz para un funcional asociado con este cuadruple. Se dan
algunas aplicaciones para funciones univariadas de la variable real. También
se indican desigualdades discretas.

Palabras clave: Funciones D—sincrénicas, funciones Lipschitzianas, desigual-
dad de Chebyshev, desigualdad de Cauchy-Bunyakovsky-Schwarz.

1. Introduction

Let (2, A,v) be a measurable space consisting of a set 2, a g-algebra A of subsets of
2 and a countably additive and positive measure v on A with values in [0, +occ]. For
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120 S.S. DRAGOMIR

a v-measurable function w : Q@ — R, with w(z) > 0 for v-a.e. (almost every) z € €,
consider the Lebesgue space

L, (Q,v):={f:Q— R, f is v-measurable and /Qw () |f (z)]dv (x) < oo}.

For simplicity of notation we write everywhere in the sequel fQ wdy instead of
Jow (z)dv (x). Assume also that [, wdv = 1.

We say that the pair of measurable functions (f,g) are synchronous on 2 if

(f (@) = f(y) (g(x) —g(y)) =0 (1)

for v-a.e. x,y € Q. If the inequality reverses in (1), the functions are called asynchronous
on (.

If (f,g) are synchronous on  and f, g, fg € L, (,v), then the following inequality,
that is known in the literature as Chebyshev’s Inequality, holds:

/wagduz /wady/ﬂwgdy, (2)

where w (z) > 0 for v-a.e. (almost every) z € Q and [, wdv = 1.

If f, g : Q@ - R are v-measurable functions and f, g, fg € L, (Q2,v), then we may
consider the Chebyshev functional

T, (f.g) = /Q wfody — /Q wfdy /Q wgdv.

The following result is known in the literature as the Griss inequality:

(L= (A=9), (3)

] =

|Tw (f,9)] <

provided

—0<y< f(z) <T < oo, —0<i<g(x) <A< (4)
for v-a.e. z € Q.
The constant % is sharp in the sense that it cannot be replaced by a smaller quantity.
If f € L, (Q,v), then we may define

Do ()= [ wia)

f (@) - / w(y) f (v) dv (y)] dv (). (5)

The following refinement of Griiss inequality in the general setting of measure spaces is
due to Cerone & Dragomir [1]:

Theorem 1.1. Let w, f, g : Q@ = R be v-measurable functions with w > 0 v-a.e. on )
and fQ wdv =1. If f, g, fg € L, (Q,v) and there exist constants 6, A such that

—0<i<gx)<A<oo for v-ae z€Q, (6)
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Inequalities for D—Synchronous Functions and Related Functionals 121

then we have the inequality

(A =0) D (f)- (7)

N —

T (f,9)] <
The constant % is sharp in the sense that it cannot be replaced by a smaller quantity.

Motivated by the above results, we introduce in this paper the concept of quadruple
D—synchronous functions that generalizes the concept of a pair of synchronous functions,
we establish an inequality similar to Chebyshev inequality and also provide some Cauchy-
Bunyakovsky-Schwarz type inequalities for a functional associated with this quadruple.
Some applications for univariate functions of real variable are given. Discrete inequalities
are also stated.

2. D-—Synchronous functions

Let (2, A, v) be a measurable space and f, g, h, £ : Q — R be four v-measurable functions
on .

Definition 2.1. The quadruple (f, g, h,¥) is called D—Synchronous (D—Asynchronous)
on § if
f@) f) hz)  h(y)
det det > (<)0 (8)
g(x)  g) C(x)  L(y)

for v-a.e. (almost every) x, y € Q.

This concept is a generalization of synchronous functions, since for ¢ = 1, ¢ = 1 the
quadruple (f, g, h, ) is D—Synchronous if, and only if, (f, k) is synchronous on .

If g, £ # 0 v-a.e on 2, then

fx)  fy) hiz)  h(y)
det det 9)

= (f(2)g(y) —g () f(y)) (h(x)l(y) - L(x)

0(z)h(y
:g(x)f(x)g(y)ﬁ(y)< g fz>(’2;0)) Zzl//>

for v-a.e. z, y € Q. So, if gf > 0 v-a.e on  the quadruple (f, g, h,¥) is D—Synchronous
if, and only if, (;, 7) is synchronous on 2.

Theorem 2.2. Let f, g, h, £ : Q — R be v-measurable functions on € and such that
the quadruple (f,g,h,£) is D-Synchronous (D—Asynchronous), w > 0 a.e. on § with
Jowdv =1 and fh, gt, gh, fl € Ly, (Q,v). Then,

Jowfhdy Jo wghdy
det > (<)o0. (10)
Jo wfldv Jo wgtdy
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122 S.S. DRAGOMIR

Proof. Since the quadruple
0 <( (z)

( ) h
f(x

,g,h, ) is D—Synchronous, then

(

9W) —g@) f(y)) (h(z)l(y) —L(x)h(y)) (11)
(@) g W)L (y) +9g @) L) f(y)h(y)

)E(x) g (y) h(y) =g (x)h(x) f(y)(y)

for v-a.e. z, y € Q.

This is equivalent to

f ) h(x) g (y)£(y) +g(x)€(x) f(y)h(y)
> f(@)l(z)gy)h(y)+g(x)h(z)f(y)L(y) (12)
for v-a.e. z, y € Q.
Multiply (12) by w (z) w (y) > 0 to get
w (z) f(z) h(x)w(y) g (y) £ (y) +w (@) g (x) £ (z)w(y) f (y) h(y)
2w (z) f(z)l(z)w(y)g(y)h(y) +w(x)g(x)h(@)wly) fy)ly) (13)
for v-a.e. z, y € Q.
If we integrate the inequality (13) over x € Q, then we get

w () g (1)L () /Q wihdy +w (y) f () b () /Q wytdy
> w(y) g (4) h () /Q witdy +w (y) f (4) £ (3) /Q wghdy  (14)

for v-a.e. y € Q.
Finally, if we integrate the inequality (14) over y € Q, then we get

/wfhdu/wg(du—l—/wgﬁdy/wfhdv
Q Q Q Q
Z/wffdu/wghdu—i-/wghdu/wfﬂdu,
Q Q Q Q

which is equivalent to the desired result (10). T4

Corollary 2.3. Let f, g, h, £ : Q — R be v-measurable functions on Q and such that

gl >0 v-a.e on €, L % is synchronous (asynchronous) on Q, w > 0 a.e. on  with

fQ wdv =1 and fh, gf, gh, ft € L, (,v); then the inequality (10) is valid.

Let f, g, h, £ : © — R be v-measurable functions on 2 , w > 0 a.e. on ) with fQ wdy =1
and fh, gf, gh, f€ € L, (Q,v); then we can consider the functionals

Jqwfhdy Jo wghdy )

Jowfldv Jo wgtdy

:/wfhdu/wgfdu—/wfﬁdu/wghdu,
Q Q Q Q
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Inequalities for D—Synchronous Functions and Related Functionals 123
and, for (f,g) = (h,?),

D(f,giw,Q) =D (f,g, [, giw, ) (16)

Jowf?dy Jowfgdv
= det ( )

Jowfgdv Jo wg*dv

:/waZdu/ngde— (/wang)27

provided f2, g2 € L, (Q,v).
We can improve the inequality (10) as follows:
Theorem 2.4. Let f, g, h, £ : Q2 — R be v-measurable functions on Q and such that the

quadruple (f, g, h,?) is D—Synchronous, w > 0 a.e. on Q with fQ wdv =1 and fh, g,
gh, fl € L, (Q,v); then,

D (f,9,h, t;w, Q) = max {[D (|1, |g], b, &;w, Q)] , (17)
D (f: g, bl [l w, QDS gl [h] 1] w, )1}
>0.

Proof. We use the continuity property of the modulus, namely
la —b] > |la] — |b]|, a,b€R.

Since (f, g, h,¢) is D—Synchronous, then

(f (@) g(y) =g (@) f () (h(x)€(y) = £(x) h(y)) (18)
=[f (@) g(y) =g () f W[ (x)(y) = £(x) R (y)]
[(LF @)Hg W) =g @) 1f W) (b (2) £(y) — € () h(y))]

Z 9 (@) g () =g @) f @) (b @)Y = [€@)] R Y))]
(15 @) g W) = lg @)I1f @)D ([P (@) € W) = 1€ ()] 7 (Y)D)]

for v-a.e. z, y € Q.

As in the proof of Theorem 2.2, we have the identity

D, g ht;w,9) / / (f @) g (W) - 9 (@) f W) (19)
h(2) £ (y) — £ (2) h (y)) dv (2) dv (3)
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124 S.S. DRAGOMIR

By using the identity (19) and the first branch in (18) we have

D(fog.h. l:w,Q) > // £ @1g @) - lg @)1 @)
h ()€ (y) — £ (@) h ()| dv () dv ()

_2'// 7 @)g ()]~ lo ()11 W)
% (1 (2) £ (y) — £ (2) b (9)) dv (2) dv (1)

= |D(‘f|v|g‘vhv€’w7ﬂ)|7

which proves the first part of (17).

The second and third part of (17) can be proved in a similar way and details are omitted.
%]

3. Further results for the functional D

We have the following Schwarz’s type inequality for the functional D:

Theorem 3.1. Let f, g, h, £: Q — R be v-measurable functions on Q , w >0 a.e. on )
with [, wdv =1 and f?, g*, h?, (* € Ly, (0, v). Then,

D (f,9,h, ;w, Q) <D (f,g;w, Q) D (h, w, Q). (20)

Proof. As in the proof of Theorem 2.4, we have the identities

D(f, g h b 0,9) = // 29 () — 9 () f ()
(#)£(y) — € (2) h () dv (z) dv (3),
D(fogw,Q) = / / ()9 (W) - g (x) f )2 dv () dv (1)
and
D (b, t;0,9) // (2) £(y) — £ () h (1)) dv (2) dv (y) .

By the Cauchy-Bunyakovsky-Schwarz double integral inequality we have

< | [ e @w) (¢ @90) - 965 ) (@) )~ £ 1) o () <y>)
2
< / / w(@)w(y) (h(z) g (4) — g () h (1) dv () dv ()
2
></Q/Qwu)w(y)(h(w(y)—e<x>h<y>> dv (z) dv (3),
which produces the desired result (20). &4

[Revista Integracion



Inequalities for D—Synchronous Functions and Related Functionals 125

Corollary 3.2. Let f, g, h, £ : Q — R be v-measurable functions on Q with g2, (*> €
Ly, (,v), w >0 a.e. onQ with fQ wdv =1, and a, A, b, B € R such that A > a, B > b,

ag < f<Ag and bl <h < B¢ (21)

v-a.e. on §2. Then,
1
[D(f,g,h,l;w, Q)| < i (A—a)(B- b)/ wggdu/ wl?dy. (22)
Q Q

Proof. In [2] (see also [4, p. 8]) we proved the following reverse of Cauchy-Bunyakovsky-
Schwarz integral inequality

/wa2dy/ﬂw92d1/— (/wagdu>2§i(z4—a)2 (/ngQdu>2

provided that ag < f < Ag v-a.e. on Q and g% € L,, (,v).
Since, we also have

2 2
/whzdy/wﬁzdyf (/ whedu) < - (B-b)? (/ we2du) ,
Q Q Q Q

provided that b¢ < h < Bl v-a.e. on 2 and ¢? € L,, (Q,v). Then, by (20) we have

2 . 1 2in 2 2 2( 2 )2
D2 (f,9,h ti0,0) < 1 (A= a)? (B ~1) (/ngdy) /Qwedy

that is equivalent to the desired result (22). v

|

For positive margins we also have:

Corollary 3.3. Let f, g, h, £: Q — R be four v-measurable functions on Q with ¢2,¢? €
Ly, (,v), w>0 a.e. on Q with fﬂ wdv =1, and a, A, b, B > 0 such that A > a, B >,

ag < f < Ag and bl < h < B{ (23)
v-a.e. on ). Then we have
l(Afa)(be)/ /
D(f,g,h,l;w, Q)| < ——F———= | wfgdrv | whidv. 24
ID(f.g =7 Jadis A fg ; (24)

Proof. In [3] (see also [4, p. 16]) we proved the following reverse of Cauchy-Bunyakovsky-
Schwarz integral inequality:

[ [ ([pome) < U ()

whenever ag < f < Ag v-a.e. on €.

2 2 2
/whzdz// wl?dy — (/ whedy) < B-b)” </ whédy) ,
Q Q Q 4bB Q

provided b¢ < h < Bl v-a.e. on €, then by (20) we get the desired result (24). v

Since
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126 S.S. DRAGOMIR

If bounds for the sum and difference are available, then we have:

Corollary 3.4. Let f, g, h, £ : Q — R be v-measurable functions on Q with g2, {2 €
L, (Qv), w>0 ae onQ with fQ wdv = 1. Assume that there exists the constants Py,
Q1, Py, Q2 such that

lg—fI< P, |g+fl<Qi, |[h—{ <Py |h+{<Q (25)
a.e. on S); then,

1
|D (f7g7h7£aw7Q)| S ZP1Q1P2Q2- (26)

Proof. In the recent paper [5] we obtained amongst other the following reverse of Cauchy-
Bunyakovsky-Schwarz integral inequality:

2
1

/wadV/wQle/— (/ wfgdu) < —PQ3,
Q Q Q 4

provided |g — f| < Py, |[g+ f| < Q1 a.e. on Q.

2
1

/thdV/ wldy — (/ whﬁdu) < -P;Q3,
Q Q Q 4

if |h—¢| < Py, |h+{| < Q2 a.e. on £, then by (20) we get the desired result (26).

Since

If bounds for each function are available, then we have:

Corollary 3.5. Let f, g, h, £ : Q@ — R be v-measurable functions on Q and w > 0 a.e.
on  with fQ wdy = 1. Assume that there exists the constants a; A;, by and B; with
i € {1,2} such that

O0<a; < f<A <o, 0<ay <g< A <oo, (27)
and
0<b1§h§Bl<OO, 0<b2§€§32<00, (28)
a.e. on S); then,
1
D (f,9:h bw, Q) < 5 (A142 — ara2) (BiBz — bibz) . (29)

Proof. We use the following Ozeki’s type inequality obtained in [6]:

2
/ wf2du/ wg’dy — (/ wfgdy) < 1(AlAg — a1a2)2,
Q Q Q 3

provided 0 < a1 < f<A; <00,0<ay <g< Ay < oo a.e. on (.

2
/wh2du/ wldy — </ whzdu) < 1(BlB2 — bybs)?,
Q Q Q 3

when 0 < by <h < By <00,0< by << By <00 ae. on €, then by (20) we get the
desired result (29). v

Since
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Inequalities for D—Synchronous Functions and Related Functionals 127

4. Results for univariate functions

Let © = [a,b] be an interval of real numbers, and assume that f, g, h, £ : [a,b] — R are

measurable D—Synchronous (D—Aynchronous), w > 0 a.e. on [a,b] with f; w(t)dt =1
and fh, g, gh, f€ € Ly, ([a,b]); then,

b b
[woron@a [ wogwewa (30)

Now, assume that [a,b] C (0,00) and take f (t) =P, g(t) =19, h(t) =" and £ (t) = ¢°
with p, ¢, r, s € R. Then,

PO oo g 2D s
g(t) (1)
If (p—q)(r—s) > 0, then the functions (5, %) have the same monotonicity on [a, b]

while if (p — ¢) (r — s) < 0 then (5, %) have opposite monotonicity on [a, b] . Therefore,
by (30) we have for any nonnegative integrable function w with f: w(t)dt =1 that

/bw(t) t”“dt/bw(t) tItsdt > (g)/bw(t) It dt /bw(t) tPredt, (31)

provided (p —q) (r — s) > (<) 0.

Assume that [a,b] C (0,00) and take f (t) = exp (at), g (t) = exp (Bt), h(t) = exp (7t)
and £ (t) = exp (6t) , with a, 8, v, 6 € R. Then,

4 h(t
Li —owla-pd ad H el -0,
If (o — B) (y — &) > 0, then the functions (5, %) have the same monotonicity on [a, b],

while if (o — 8) (v — ) < 0 then (5, %) have opposite monotonicity on [a, b] . Therefore,
by (30) we have for any nonnegative integrable function w with ff w(t)dt =1 that

b

/ w (t) exp [(a +7) 1] dt/ w(t)exp [(B+0)t]dt (32)

a

b b
> (S)/ w (t) exp [(6 + )] dt/ w (1) exp (o +6) ] dt,

provided (o — 3) (v — 48) > (<) 0.

Consider the functional
b b
Dp.grs (0) = / w (t) P dt / w(t) I dt (33)

b b
—/ w(t)t‘”rdt/ w (t) tPH3dt,
a a
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128 S.S. DRAGOMIR

for any nonnegative integrable function w with | b

w(t)dt =1, and p, ¢, r, s € R.
We observe that for ¢ € [a, b]

C (0,00) we have

aP™?, it p > g,

kp.q (a,b) = IR AC SRy (34)
, o ;
i, ifp<q, 9
bP—a, if
< K,q(a,b):=
aP~%if p < q,
and, similarly,
h(t
s (a,b) < ((t)) — 7" < Ky, (a,D).
Using the inequality (22) we have
1
|Dp.g.r,s (w)] < 4 [Kpq (a,b) = kp,q (a,0)] [Krs (a,0) — Ky s (a,D)] (35)
b b
X / w(t) thdt/ w(t) t*5dt,
while from (24) we have
1K ) k (a b)] [Krs (a,b) — krs (a,b)]
Dp.g,rs (W) < - pa p < - (36)
4 kg krs (a,b) Kp 4 (a,0) K 5 (a,b)
b
/ t) Pt / w ()t dt.
We also have for ¢ € [a,b] C (0,00) that
af, if p > 0,
up (a,b) := <f@)=t’
bP, if p <0,
bP, if p >0,
<U,(a,b) :=
aP, if p <0,

and the corresponding bounds for g (t) = t%, h (¢t) = t" and £ (¢)

=t°, with p, ¢, r, s € R.
Making use of the inequality (29) we get

IDp,q,r,s ()| < ( p» (a,b) Uy (a,b) — uyp (a,b) ug (a,b)) (37)

x (U (a,b) Ug (a,b) — uy (a,b) us (a,b)) .

Similar results may be stated for the functional

Dag,,6 (W)

b b
/ w (t) exp [(+ ) ] dt / w (t)exp (8 + 8) 1] dt
‘ b ‘ b
—/ w (t) exp [(B+ 7)1 dt/ w (t)exp [(a + 8) 1] dt
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Inequalities for D—Synchronous Functions and Related Functionals 129

for any nonnegative integrable function w with f; w(t)dt =1, for o, 8,7, 6 € R and
[a,b] C (0,00) . Details are omitted.

We say that the function ¢ : [a,b] — R is Lipschitzian with the constant L > 0 if

lp () = (s)| <Lt —s|
for any ¢, s € [a,b] .

Define the functional
b

b
D (f.9.h 6w, a,b]) ::/ w(t)f(t)h(t)dt/ w(t) g (1) (t)dt
¢ b ¢ b
—/ w(t)g(t)h(t)dt/ w(t) f () €(t) dt.

In the next result we provided two upper bounds in terms of Lipschitzian constants:

Theorem 4.1. Let f, g, h, £ : [a,b] = R be measurable functions and w > 0 a.e. on [a,b]
with [ w (t)dt = 1.
(1) If g (t),£(t) # 0 for any t € [a,b], and 5 is Lipschitzian with the constant L > 0,
and % is Lipschitzian with the constant K > 0, and gf, gle* € Ly, ([a,b]) with
e(t)=t,t€la,b], then

D (f,9,h, t;w, [a,b])]

b b
<IK V w(s)lg (s)| |e<s>|ds/ w ()10 (8)]|g ()] 2t

b 2
—(/ w<t>|g<t>||e<t>tdt> . (38)

(i7) If, in addition, we have wgl € Lo [a,b] and

[wgl|| ., = esssup,c(qp) [w (t) g () £ (t)] < oo,
then

D (f, 9, b 6w, [0, B])] < —

< 55 (0= a) LK g’ (39)

Proof. We have

D(f,g,h.t;w,a,b]) =

Vol. 38, No. 2, 2020]



130 S.S. DRAGOMIR

By taking modulus in this equality, we get

D (F.g.h, w. [a.1) | (10)
<3 [weroes@lseie@ee)x [L0 L0 2O 4,
%LK/‘/ 9 (1)1 1g ()] 1£0)] 1€ 5)] ¢ — 5)° dt s,
Now, observe that
/"/ g ()19 (16O 16()] (¢ — )° deds (41)
// 9 (g IO £ ()] (2 — 215 + ) s

_2<// (Ol1g () 1E@)] 1€ ()] £*dtds
// @1 lg (s )Ilﬁ(t)llﬁ(S)ltsdtds>

b
—2[/ <>|g<>|\e<>|ds/ w(t)|g (1)) |6 (1) 2dt

b 2
- (/ w (t) |g<t>||e<t>|tdt> ]

On making use of (40) and (41) we get the desired result (38).
If wgl € L [a,b], then

// g ()19 () €@ 1E(s)] (¢ = 5)* dtds
b b
<tgtt?, [ [ - ans = Lo ) wgtlZ, . (42

Therefore, by inequalities (40) and (42) we obtain the desired result (39). v

5. Discrete inequalities

Consider the n-tuples of real numbers z = (z1,...,2Zn), ¥y = (Y1, Yn) s 2 = (21, ..., 2n)
and u = (uq,...,u,). We say that the quadruple (z,y, z,u) is D—Synchronous if

Z; Zj Z Zj
0 < det det (43)
Yi Yj U Uj
= (ziy; — ;i) (ziuj — zjui)
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Inequalities for D—Synchronous Functions and Related Functionals 131

for any ¢, j € {1,...,n}.

If p = (p1,...,pn) is a probability distribution, namely, p; > 0 for any ¢ € {1,...,n} and
Yo, pi =1, and the quadruple (z,y,z,u) is D—Synchronous, then by (10) we have:

2?21 PiTiz; E?:l PiYizi
Dy (x,y, z,u;p) := det (44)
Z?:l PiTiug Z?:l Piyit;
n n n n
= Zpixizi Zpiyiui - Zpixiui Zpiyizi = 0.
i=1 i=1 i=1 i=1
For an n-tuples of real numbers = (1, ...,2,) , we denote by |z| := (|z1], ..., |2x]|) . On
making use of the inequality (17), then for any D—Synchronous quadruple (x,y, z,u)
and for any probability distribution p = (p1, ..., pn) we have

Dy, (z,y, z,u;p)
> max {|Dy, (|z],y, 2, w;p)|,|Dn (2, ly|, 2, wp)|, | Pn (2], |y, z,u; p)|} > 0. (45)

Observe that if we consider

2
n n n
Dy (,y;p) = Dy (2,5, 2,55p) = > _pit Y pii — (mew) :
i=1 i=1 i=1
then by (20) we have

Dy, (z,y, 2, u;p)|* < Dy (x,y;p) Dn (2, u; p) (46)

for any quadruple (z,y, z,u) and any probability distribution p = (p1, ..., pn) -
If a, A, b, B € R and (z,y, z,u) are such that A > a, B > b,

ay; < z; < Ay; and bu; < z; < Bu; (47)

for any ¢ € {1,...,n}, then by (22) we have
1 o,
Do (2,9, 2,usp)| < 7 (A—a) (B—0) sz leiui' (48)

If a, A, b, B > 0 and condition (47) is valid, then by (24) we have

1 —b)
|D (a? Y, Z,U; p)\ Z(W szxzyz Zplzzuz (49)

i=1

Now, if we use the Klamkin-McLenaghan’s inequality

n n n 2 n n

2
ZPﬁE?ZPiyf - (Zpﬂ%%) < (\/Z* \/E) szfmyzZPzzzz
i=1 i=1 i=1 i=1 i=1
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that holds for z, y satisfying the condition (47) with A, a > 0, then by (46) we get

|Dn (2, y, 2,u;p) | (50)
< (VA-va) (VB-h)

" 1/2 n 1/2 n 1/2 n 1/2
i=1 i=1 i=1 i=1

provided (z,y, z,u) satisfy (47) with a, A, b, B > 0.
Now, assume that
0<a <z <A <oo, 0<ay<y <Ay < oo, (51)

and
0<by <z, <By<oo, 0<by<u;<Bsy< o0, (52)

for any ¢ € {1,...,n}; then by (29) we get
1
[Dn (2,9, 2,wp)| < 5 (Ardz — a1a2) (B1Bz = biba), (53)

for any probability distribution p = (p1, ..., pn) -
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