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Abstract. In this paper, we apply the classical viscosity method, coupled with
the flux approximation and the compensated compactness theory to obtain
the global existence of the bounded entropy solutions for the isothermal gas
dynamics system with an outer source. The a-priori time-independent L∞

estimates are proved by applying the maximum principle to a suitable non-
linear coupled parabolic system of two equations.
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Existencia global y estabilidad para un sistema de
dinámica de gases isotérmico con una fuerza externa

Resumen. En este artículo aplicamos el método clásico de viscosidad, junto
con la aproximación de flujo y la teoría de la compacidad compensada, pa-
ra obtener la existencia global de las soluciones entrópicas acotadas para el
sistema dinámico de gas isotérmico con una fuente externa. Las estimaciones
a priori de L∞ independientes del tiempo se prueban aplicando el principio
máximo para un sistema parabólico acoplado no lineal adecuado de dos ecua-
ciones.
Palabras clave: Soluciones L∞ globales, sistema isotérmico, fuerzas externas,
aproximación de flujo, compacidad compensada.
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1. Introduction

In the paper [2] the authors applied the viscosity-flux approximation method coupled
with the maximum principle to obtain the a-priori time-independent L∞ estimates for
the approximation solutions of the following compressible polytropic gas dynamics system
with an outer force:  ρt + (ρu)x = 0,

(ρu)t + (ρu2 + P (ρ))x = α(x, t)ρ,
(1)

with bounded measurable initial data

(ρ(x, 0), u(x, 0)) = (ρ0(x), u0(x)), ρ0(x) > 0, (2)

where the pressure function takes P = 1
γ ρ

γ , γ > 1 denotes the polytropic exponent,
ρ is the density of gas and u is the velocity. The source α(x, t) is a function of the
space variable x and the time variable t. Based on the compactness framework from
the compensated compactness theory [11], [9], [4], [5], the pointwise convergence of the
viscosity-flux approximation solutions and the global existence of the bounded entropy
solutions for the Cauchy problem (1)-(2) were proved under the condition

|α(x, t)− T (t)| ≤ 1

3
X(x), (3)

where T (t) ∈ L1(0,+∞), X(x) ∈ L1(−∞,+∞).
In this paper, we study the isothermal gas, which is corresponding to the case of γ = 1.
System (1) first appeared in [12]. When α(x, t) = 0, γ = 1, the study of the homogeneous
system  ρt + (ρu)x = 0,

(ρu)t + (ρu2 + ρ)x = 0
(4)

has a long history. Under the Lagrangian coordinates, system (4) is equivalent to the
system  vt − ux = 0,

ut + ( 1v )x = 0,
(5)

where v = 1
ρ is the specific volume.

The first large data existence theorem for the Cauchy problem (5) with locally finite total
variation initial data away from the vacuum (v = ∞) was obtained in [10] by using the
Glimm’s scheme method (cf. [1]). The ideas of compensated compactness developed in
[9], [11] were used in [3] to establish a global existence theorem for the Cauchy problem
(4) with arbitrary large initial data including the vacuum (ρ = 0), with the use of the
viscosity method.
To study the Cauchy problem (1)-(2), following [6], we consider the parabolic system ρt + ((ρ− 2δ)u)x = ϵρxx,

(ρu)t + (ρu2 − δu2 + ρ− 2δ ln ρ)x = α(x, t)ρ+ ϵ(ρu)xx,
(6)
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with initial data
(ρδ,ϵ(x, 0), uδ,ϵ(x, 0)) = (ρ0(x) + 2δ, u0(x)), (7)

where δ > 0 denotes a regular perturbation constant, and ϵ > 0 is the viscosity coefficient.

We mainly have the following theorem in this paper,

Theorem 1.1. I. Suppose α(x, t) is a suitable smooth function and it satisfies (3), where
|X(x)|L1(R) + |T (t)|L1(R+) ≤ 1

2 . Let the initial data (2) satisfy

z(ρ0(x), u0(x)) < M − |X(x)|L1(R), w(ρ0(x), u0(x)) < M − |X(x)|L1(R), (8)

where
z(ρ, u) = ln ρ− u, w(ρ, u) = ln ρ+ u (9)

are the Riemann invariants of (4) and M > 1 is a constant. Then, for fixed ϵ, δ, the
Cauchy problem (6) and (7) has a global solution (ρϵ,δ, uϵ,δ), ρϵ,δ ≥ 2δ > 0, satisfying

z(ρϵ,δ, uϵ,δ) < M −
∫ t

0
T (τ)dτ −

∫ x

−∞ X(τ)dτ ≤ M,

w(ρϵ,δ, uϵ,δ) < M +
∫ t

0
T (τ)dτ +

∫ x

−∞ X(τ)dτ,

≤ M +
∫∞
0

T (τ)dτ +
∫∞
−∞ X(τ)dτ.

(10)

II. There exists a subsequence of (ρϵ,δ(x, t), uϵ,δ(x, t)), which converges pointwisely to a
pair of bounded functions (ρ(x, t), u(x, t)) as δ, ϵ tend to zero, and the limit is a weak
entropy solution of the Cauchy problem (1)-(2).

Remark. To construct the approximate solutions of the Cauchy problem (1)-(2), besides
adding the classical viscosity parameter ϵ to the right-hand side of (1), we approximate
the flux by adding a term depending on another parameter δ > 0 which vanishes when
δ = 0. An obvious advantage of this kind of approximation on the flux functions is to
obtain the positive lower bound ρ ≥ 2δ > 0, directly from the first equation in (6), which
grantees that the term ρu2 = m2

ρ is well defined. Moreover, for any weak entropy-entropy
flux pair (η(ρ,m), q(ρ,m)) of system (4), we can easily prove that

η(ρϵ,δ,mϵ,δ)t + q(ρϵ,δ,mϵ,δ)x are compact in H−1
loc (R×R+), (11)

with respect to the viscosity solutions (ρϵ,δ,mϵ,δ) (cf. [7]).

2. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. Multiplying (6) by (∂w∂ρ ,
∂w
∂m ) and (∂z∂ρ ,

∂z
∂m ),

respectively, we have

wt + λδ
2wx = ϵwxx + 2ϵ

ρ ρxwx − ϵ
ρ2 ρ

2
x + α(x, t) (12)

and
zt + λδ

1zx = ϵzxx + 2ϵ
ρ ρxzx − ϵ

ρ2 ρ
2
x − α(x, t), (13)
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where
λδ
1 =

m

ρ
− ρ− 2δ

ρ
, λδ

2 =
m

ρ
+

ρ− 2δ

ρ
(14)

are two eigenvalues of the approximation system (4), and m = ρu denotes the momentum
and (w, z) is given by (9).

Letting

B(x, t) = M −
∫ t

0

T (τ)dτ −
∫ x

−∞
X(τ)dτ, (15)

where T (t), X(x) are given by (3), and z = B(x, t) + v, we have from (13) that

vt − T (t) + (u− ρ−2δ
ρ )vx +X(x)(B(x, t) + v − ln ρ) +X(x)ρ−2δ

ρ

= ϵvxx − ϵ
ρ2 [ρ

2
x + 2ρρxX(x) + (ρX(x))2]

−ϵX ′(x) + ϵX2(x)− α(x, t)

(16)

or
vt − T (t) + a(x, t)vx + b(x, t)v + [−ϵX2(x) + ϵX ′(x) + ϵ1B(x, t)X(x)]

−X(x)(ln ρ− ρ−2δ
ρ ) + (1− ϵ1)B(x, t)X(x) + α(x, t) ≤ ϵvxx,

(17)

where ϵ1 > 0 is a suitable small constant, a(x, t) = u− ρ−2δ
ρ − 2ϵ

ρ ρx and b(x, t) = X(x).

Similarly, letting

C(x, t) = M +

∫ t

0

T (τ)dτ +

∫ x

−∞
X(τ)dτ, (18)

and w = C(x, t) + s, we have from (2.1) that

st + T (t) + c(x, t)sx + d(x, t)s+ [−ϵX2(x)− ϵX ′(x) + ϵ1C(x, t)X(x)]

−X(x)(ln ρ− ρ−2δ
ρ ) + (1− ϵ1)C(x, t)X(x)− α(x, t) ≤ ϵsxx,

(19)

where c(x, t) = u+ ρ−2δ
ρ − 2ϵ

ρ ρx and d(x, t) = X(x).

First, we can choose ϵ = o(ϵ1) (if necessary, we may smooth X(x) by a mollifier as the
authors did in [2]) such that the following three terms on the left-hand side of (17) and
(19)

−ϵX2(x) + ϵX ′(x) + ϵ1B(x, t)X(x) ≥ 0 (20)

and
−ϵX2(x)− ϵX ′(x) + ϵ1C(x, t)X(x) ≥ 0. (21)

Second, by using the maximum principle to the first equation in system (6), we have the
a-priori estimate ρϵ,δ ≥ 2δ.

Finally, by the calculations, we may obtain the some inequalities about the variables v
and s.
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Lemma 2.1.  vt + a(x, t)vx + b1(x, t)v + b2(x, t)s ≤ ϵvxx,

st + c(x, t)sx + d1(x, t)s+ d2(x, t)v ≤ ϵsxx,
(22)

where

b1(x, t) =

 b(x, t), for ρ ≤ 1,

b(x, t)− 1
2X(x), for ρ > 1,

(23)

b2(x, t) =

 0, for ρ ≤ 1,

− 1
2X(x), for ρ > 1,

(24)

d1(x, t) =

 d(x, t), for ρ ≤ 1,

d(x, t)− 1
2X(x), for ρ > 1,

(25)

and

d2(x, t) =

 0, for ρ ≤ 1,

− 1
2X(x), for ρ > 1.

(26)

Proof of Lemma 2.1. First, at the points (x, t) where ρ ≤ 1, the following terms on
the left-hand side of (17)

−T (t)−X(x)(ln ρ− ρ−2δ
ρ ) + (1− ϵ1)B(x, t)X(x) + α(x, t)

≥ X(x)((1− ϵ1)B(x, t)− 1
3X(x)) ≥ 0.

(27)

Second, at the points (x, t) where ρ > 1, we have ρ−2δ
ρ ≥ 1 − ϵ2 > 0 for a small ϵ2 > 0,

and X(x) ln ρ = X(x)( 12 (v + s) +M). Then,

−T (t)−X(x)(ln ρ− ρ−2δ
ρ ) + (1− ϵ1)B(x, t)X(x) + α(x, t)

≥ −X(x)( 12 (v + s) +M) +X(x)(M −
∫ t

0
T (τ)dτ −

∫ x

−∞ X(τ)dτ)

−ϵ1X(x)B(x, t) + (1− ϵ2)X(x)− 1
3X(x))

≥ − 1
2 (v + s)X(x) +X(x)(1− ϵ2 − 1

3 − 1
2 − ϵ1M) ≥ − 1

2 (v + s)X(x).

(28)

Therefore, the first inequality in (22) is proved. Similarly, we may prove the second
inequality in (22). Lemma 2.1 is proved.
Since b2(x, t) ≤ 0, d2(x, t) ≤ 0, under the conditions given in (8), it is clear that
v(x, 0) ≤ 0, s(x, 0) ≤ 0, so, we may apply the maximum principle (cf. Lemma 2.4 given
in [8]) to (22) to obtain the estimates v(x, t) ≤ 0, s(x, t) ≤ 0, and so the estimates in
(10).
From the estimates in (10), we can use the Riemann invariants (9) to obtain the following
uniformly bounded estimates on (ρϵ,δ(x, t),mϵ,δ(x, t)) directly:

2δ ≤ ρϵ,δ(x, t) ≤ M1, |mϵ,δ(x, t)| ≤ M1, (29)
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for a suitable positive constant M1, which is independent of ϵ, δ and the time t. The
existence result of the Cauchy problem (6)-(7) follows by applying the standard theory
on the parabolic systems. Part I of Theorem 1.1 is proved. Furthermore, we
may select a subsequence of (ρϵ,δ(x, t),mϵ,δ,µ(x, t)), which converges pointwisely to a
pair of bounded functions (ρ(x, t),m(x, t)) as δ, ϵ tend to zero by using the compactness
framework given in [3], and prove that the limit (ρ(x, t),m(x, t)) is an entropy solution
of the Cauchy problem (1)-(2), so Theorem 1.1 is proved.
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