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Abstract. A topological space X is C-normal if there exists a bijective
function f : X — Y, for some normal space Y, such that the restriction
fle: C — f(C) is a homeomorphism for each compact C C X. The purpose
of this work is to extend the known classes of C-normal spaces and clarify the
behavior of C-normality under several usual topological operations; in partic-
ular, it is proved that C-normality is not preserved under closed subspaces,
unions, continuous and closed images, and inverse images under perfect func-
tions. These results are used to answer some questions raised in [1], [2] and
[6].
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Algunas propiedades topoldgicas de la C-normalidad

Resumen. Un espacio topoldgico X es C-normal si existe una funciéon bi-
yectiva f : X — Y, para algin espacio normal Y, tal que la restriccion
f le: € — f(C) es un homeomorfismo para cada compacto C C X. El
propésito de este trabajo es extender las clases conocidas de los espacios
C-normales y aclarar el comportamiento de C-normalidad bajo varias opera-
ciones topoldgicas habituales; en particular, se demuestra que la normalidad
C no se conserva bajo subespacios cerrados, uniones, imagenes continuas y
cerradas e imagenes inversas bajo funciones perfectas. Estos resultados se uti-
lizan para responder algunas preguntas planteadas en [1], [2] v [6].
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1. Introduction

In 2012 Arhangel’skii proposed the study in General Topology of two variants of nor-
mality; C-normality and epi-normality. Years later AlZahrani and Kalantan published a
study of the behavior of these two topological properties and their relations with other
normal-type properties (see [1],[6]).

At the beginning of this work we present a systematic study of the classes C-P and epi-
‘P of topological spaces. These classes are defined in a similar way to C-normality and
epi-normality, but considering an arbitrary topological property P instead of normality.
We show that the classes C-P and epi-P are hereditary (additive or productive) when P
is hereditary (additive or productive, respectly). Then we apply these results to study
C-normal spaces; we extend the known classes of C-normal spaces by showing that
they include products of locally compact spaces and locally Lindelof spaces. We also
describe some specific examples. In [6] Saeed showed the existence of a Tychonoff space
which is not C-normal; we use some spaces associated with such example to prove that
C-normality is not preserved under closed subspaces, unions of subspaces, continuous
and closed images, and perfect preimages. This shows that the categorical behavior of
C-normality is very different from normality’s categorical behavior, and answers some
questions posed in [1]. We conclude the work comparing some characteristics of C-
normality and epi-normality.

2. Notation

Throughout the text all spaces under consideration will be assumed to be Hausdorff. The
symbol w represents the first infinite ordinal and w; is the first uncountable ordinal. The
continuum is denoted by ¢. The set of natural numbers is denoted by N and the symbol
R stands for the set of real numbers.

We say that a space X is a k-space if a set U C X is open if, an only if, U N C' is open
in C' for every compact C' C X. The space X is locally Lindeldf if for each point x in
X there is a neighborhood U of x which is Lindel6f. The space X is Urysohn if for each
pair of different points z,y € X there exist open sets U,V C X satisfying z e U, y € V
and UNV = 0.

Given a space X, we denote as A(X) the Alezandroff duplicate X U X’ of X, where X’
is a disjoint copy of X and there exist a bijective assignment x — 2z’ from X onto X'.
Given a set U C X we choose U’ = {a'},cu. The topology of A(X) is defined as follows.
All points of X’ are isolated and a point z € X has as a basis of open neighborhoods the
family of all sets of the form U U U’ \ {z’}, where U is a open neighborhood of z in X.

All non stated concepts and notation can be understood as in [5].
3. The classes of epi-P and C-P spaces

The following notions describe two different ways in which we can extend the class of all
topological spaces satisfying a given property.

Definition 3.1. Let P be a topological property.
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= A topological space X is called epi-P if there exists a bijective continuous function
f X =Y for some space Y which satisfies P.

= A topological space X is C-P if there exists a bijective function f : X — Y, where
Y has property P, and f [¢: C — f(C) is a homeomorphism for each compact
CcX.

Given a topological property P, since every bijective continuous function defined on a
compact Hausdorff space is a homeomorphism onto its image, all epi-P spaces are C-P.
The other implication is not always true, for example when P coincides with normality
(see Example 6.5). The following result gives us a condition under which these two
notions are equivalent; the proof follows since for a k-space X a function f: X — Y is
continuous if, and only if, f [¢ is continuous for each compact C' C X (see [5, Theorem
3.3.21)).

Proposition 3.2. If P is a topological property and X is a k-space, then X is C-P if,
and only if, X is epi-P.

The classes C-P and epi-P can coincide, for example when a space X satisfies P if, and
only if, every compact subset of X is metrizable.

If a topological property P implies another topological property Q, then all epi-P (C-P)
spaces are epi-Q (C-Q). Besides, if P and Q are different properties, the class of epi-P
spaces and the class of epi-Q spaces can coincide; for example, when Q is the class of
epi-P spaces the class of epi-P spaces coincides with the class of epi-Q spaces. Similarly,
the classes C-P and C-Q can coincide, as we will show now.

Theorem 3.3. If P is a topological property, the class of C-P spaces and the class of
C-(C-P) spaces coincide.

Proof. Tt is sufficient to prove that every C-(C-P) space is C-P. Suppose that there
exists a bijective function f : X — Y, where Y is C-P and f [¢: C — f(C) is a
homeomorphism for each compact subspace C' C X; we shall prove that X is C-P. AsY
is C-P, there exists a space Z with property P and a bijective function g : Y — Z such
that g [p: D — g(D) is a homeomorphism for each compact subspace D C Y. We claim
that g o f witnesses that X is C-P. Indeed, let C' C X compact. Since f [¢: C — f(C)
is a homeomorphism, the space D = f(C) is compact. It follows that g [p: D — g(D) is
a homeomorphism. Thus (go f) [c= (g [p)o(f [c¢): C — go f(C) is a homeomorphism
and, since Z has property P, we conclude that X is C-P. ]

In what follows we will analyze some properties of the classes epi-P and C-P inherited
from the property P.
Theorem 3.4. If a property P is hereditary, then the classes C-P and epi-P are closed

under arbitrary subspaces.

Proof. We will show the case of C-P spaces; the proof for the epi-P spaces is similar. Let
A be a subset of X. As X is a C-P space, there exists a bijective function f: X — Y,
where Y has property P, such that f [¢: C — f(C) is a homeomorphism for each
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compact subspace C' C X. Since the property P is hereditary, the space f(A) has
property P. It is clear that f [4: A — f(A) is bijective. Since any compact subspace
of A is compact in X, the restriction (f [4) [¢= f [¢ is a homeomorphism for each
compact subspace C C A. Thus A is C-P. ]

Theorem 3.5. If k is a cardinal and P is a k-productive property, then the classes C-P
and epi-P are closed under products of k-factors.

Proof. We will prove the result for the class C-P; the case of the class epi-P is similar.
Let {Xs}scs be a family of C-P spaces where S has cardinality . For each s € S let
fs + Xs — Y5 be a bijective function for some Yy with property P such that fs [c.:
Cs — f<(Cs) is a homeomorphism for each compact subspace Cs C X . Note that
f=1lses fs : [lses Xs = [lscg Ys is bijective. Besides, as P is a k-productive property,
it follows that J],.g Ys has property P. Given a compact set C' C ], X, notice that
D = [],cg7s(C) is compact, and so the function f [p= [[,cq fs [x, ()= D — f(D) is
a homeomorphism; consequently, f [¢: C — f(C) also is a homeomorphism. Thus, the

product [, X is C-P. v

Theorem 3.6. If P is a x-aditive property, then the classes C-P and epi-P are closed
under disjoint sums of k-factors.

Proof. We will prove the result for the class of C-P spaces, the other case is similar. Let
{Xs}ses be a family of spaces C-P where |S| = k. For each s € S, let fs : X; — Y5 be
a bijective function for some space Yy with property P such that f, [¢.: Cs — fs(Cs) is
a homeomorphism for each compact subspace Cy; C X,. As P is a k-additive property,
it follows that @, ¢ Y, has property P. Besides, the function @, g fs : P,cg Xs —
P.csYs is bijective. Now let C C @, X, be a compact space, then the set Sy =
{s €S :CnNX, # 0} is finite and Cs = C N X, is compact for each s € Sy. Then
(Dses fs) le= Dyes, fs [c. is a homeomorphism, because fs [c, is a homeomorphism
for each s € Syp. Thus, the disjoint sum @, g X, is C-P. ]

By an argument similar to the one used in the proof of Theorem 3.5 we can prove the
following result.

Proposition 3.7. Consider two properties P and Q such that X XY has P when X has
P andY has Q. Then X XY is C-P when X is C-P and Y is C-Q.

Theorem 3.8. Let P be a property preserved under Alezandroff duplicates; then A(X) is
C-P (epi-P) whenever X is C-P (epi-P).

Proof. We will show the case of C-P spaces; the case for the epi-P spaces is similar. Let
X be a C-P space; then, there exists a space Y with property P and a bijective function
f+ X = Y such that f [¢: C — f(C) is a homeomorphism for each compact subspace
C C X. Consider the Alexandroff duplicated A(X) and A(Y) of X and Y, respectly.
Since Y has P, the space A(Y) also has P. Define F : A(X) — A(Y) by F(x) = f(x)
and F(z') = f(z)" for each z € X, the natural function induced by f. Notice that F'
is a bijective function. Let C C A(X) be a compact subspace. We shall prove that
F ¢: C — F(C) is a homeomorphism. Let p : A(X) — X be the function given by
p(z) = p(a’) = z, for each z € X. Observe that p is continuous. For the compact set
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D = p(C) we have that g = f [p is bijective and continuous. It is easy to verify that
the natural function G : A(D) — A(g(D)) induced by g, given by G(z) = g(z) and
G(2") = g(x)’ for each x € D, also is bijective and continuous. As A(D) is compact, the
function G is a homeomorphism. We know that C C A(D) C A(X), thus F [¢= G |¢
also is a homeomorphism. v

We consider now the following well known construction. Let X be an arbitrary space.
Take kX = X. Define a topology on kX as follows. A set of kX is open if, and only
if, its intersection with any compact subspace C of X is open in C. Then the space
kX endowed with this topology is a k-space, has exactly the same compact subspaces
that X, and induces the same topology that X on these compact subspaces. From these
observations it is easy to conclude the following.

Proposition 3.9. Let P be a topological property. A space X is C-Pif, and only if, kX is C-P.

4. (C-normal spaces

In this text we will be particularly interested in C-normality and some related properties.
Notice that all epi-normal spaces, all C-compact spaces and all C-metrizable spaces are
C-normal. We will provide another classes of spaces which are C-normal.

As is stated in Exercise 3.3.D from [5], every locally compact space is epi-compact, so we
can apply Theorem 3.5 to obtain the following corollary.

Corollary 4.1. If {X,}ses is a family of locally compact spaces, then the product [ ], g X
18 epi-compact.

Example 4.2. The space of real numbers R is locally compact, because of Corollary 4.1
the product R® is C-normal, for any set S. Moreover, if S is the Sorgenfrey line, then
S% admits a bijective continuous function onto RS, so we can apply Theorem 3.3 to see
that S is C-normal. However, RS is not normal when the set S is not countable (see [5,
Exercise 2.3.E]) and S® is not normal when S has at least two elements (see [5, Exvample

Now we will deal with a notion more general than locally compactness, local Lindel6fness,
in order to get more examples of C-normal spaces.

Theorem 4.3. If X is reqular and locally Lindeldf, then X is epi-Lindeldf.

Proof. We must prove that X admits a bijective and continuous function onto a Lindel6f
space. Let Y = X U {y} where y ¢ X. We define a topology in Y in the following way.
The topology of Y is the minimal topology on Y which satisfies the following conditions:

1. It contains the topology of X.

2. Tt contains each set U C Y such that y € U and whose complement Y \ U, is closed
in X and has a neighborhood in X whose closure in X has the Lindelof property.
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As X is regular and locally Lindeldf, the space Y is T;. We will verify now that Y is
regular. Given A C X, along this proof A always refers to the closure of A in X. Take
a point x € Y and a neighborhood U of z in Y. If x # y, since X is regular, we can
suppose that U C X and U is Lindel6f. By the regularity of X, there exists an open
neighborhood V of z such that z € V € V C U. Notice that V is closed in Y. If z = y
we can suppose that F' =Y \ U is closed in X and has a neighborhood V in X whose
closure V in X has the Lindelsf property. As V is normal, there exists an open set W in
X such that F C W C W Cc V C V. It follows that W is closed in Y, and if O = Y \ W,
theny € O C {y}UO\{y} CY\W C Y\ F =U, where {y} UO \ {y} is the closure of
O in Y. Thus, the space Y is regular.

It is easy to verify that Y is Lindelof. Fix x € X and consider the space Z which is
obtained from Y identifying the points = and y, and let ¢ : Y — Z be the quotient
function associated with this identification. As Y is normal and ¢ only identifies a closed
set, the space Z is regular. Since ¢ is continuous, the space Z is Lindelof. Finally, is
clear that the function ¢ [x: X — Z is bijective, and hence this function witnesses that
X is epi-Lindelof. ]

We now describe some examples of locally Lindelof spaces, and hence C-normal spaces,
which are neither locally compact nor normal.

Example 4.4. Let X be a locally compact not normal space and let Y be a Lindeldf not
locally compact space. Consider the space X XY . Note that X XY is not normal, because
it has a closed subspace homeomorphic to X which is not normal. Observe that X XY
is not locally compact, because it has a closed subspace homeomorphic to'Y which is not
locally compact. Howewver, the product X XY is locally Lindeldf, because the product of a
compact space and a Lindeldf space is always Lindeldf. Thus, Theorem 4.3 implies that
X XY is C-normal. As a particular case, we can take X as the deleted Tychonoff plank
and Y as the Sorgenfrey line.

Example 4.5. Consider the following variant of a V-space. Let A be a maximal family
of uncountable subsets of w1 such that AN B is countable for each A,B € A. It is easy
to deduce from the mazimality of A that |A| > wo. Consider the space U, (A) = w1 UA,
where each point in w1 is isolated and every A € A has as a basis of open neighborhoods
the family {A\ C : C € [w1]<“1}. It follows immediately from the definition that W, (A)
1s locally Lindeldf and not locally compact.

We will prove that U, (A) is not normal. Suppose on the contrary, that ¥, (A) is
normal. Let {Au}ta<w, be a partition of A in nonempty subsets and fix Ay € Ay for
each o < wy. Given a < wy, because of the normality of V., (A) we can choose an
uncountable subset B, of w1 such that the subsets A, U By, and (A\ Ay) U (w1 \ Ba)
form a partition of U, (A) in open sets. We will construct a subset {xq}a<w, Of w1
recursively as follows. Fix xzo € Ao, and if {xo}ta<p is defined for some 8 < w1, fix
25 € Ag \ Un<s({Za} U Ba). Consider the uncountable set B = {2o}a<w,; then the
mazimality of A implies that ANB is uncountable for some A € A. We know that A € A,
for some v < wyi. Since {A} U B, is open, we must have that (AN B)\ By C A\ B,
is countable, and hence (AN B) \ By C {Za}a<p for some v < f < wy. Since AN B is
uncountable, we can suppose that B is such that xg € AN B. However, the construction
implies that xg & B, which is not possible. Thus, the space W, (A) is not normal.
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Question 4.6. Is there a locally normal regular space X which is not C-normal?

Proposition 4.7. If any countable subspace of X is discrete, then X is C'-normal.

Proof. By [1, Corollary 1.4] it is sufficient to verify that all compact subsets of X are
finite; namely, under such conditions any bijection onto a discrete space witnesses the
C-normality of X. Let A C X infinite. Take B C A infinite and countable. Note that B
is closed in X because B U {z} is discrete for each x € X. As B is closed, discrete and
infinite, it follows that A is not compact. ]

We now describe an example of a space in which all countable subsets are discrete,
and hence a C-normal space, but which is not normal. This example was obtained by
Shakhmatov (see [3, Example 1.2.5]).

Example 4.8. Let I¢ be the Tychonoff cube of weight ¢. Let
YSIf={z el {a<c:my(z) #0} <w} CI"

Observe that |Z1¢| = ¢, and take an enumeration {Tq}a<c of the elements of 1€ where
each element appears c-many times. Moreover, take an enumeration {Aq}a<c of the
elements from [c|S% where each element appears c-many times. For each a < ¢ define a
point yo € 1¢ by:

w5(zq), i B <a;

ﬂ—ﬁ(ya) =41 if >a,B € Ay

0, ifg>apdA,.

As it is proved in [3, FExample 1.2.5], the space Y = {yq}a<c C I° is dense in I,

pseudocompact, and every countable subset of Y is discrete. As'Y is pseudocompact but
not countably compact, we conclude from [5, Theorem 3.10.21] that'Y is not normal.

5. Operations with C'-normal spaces

In [6] Saeed showed the existence of a Tychonoff space which is not C-normal. Such
example is constructed as follows: Let 2¢! be the Cantor cube of size wq; the product of
wi-many copies of the discrete two points space. Now consider the subspace

¥2ur = {x € 2% : |z~ (1)] < w} C 2+

Then the product 2«1 x %21 is Tychonoff but not C-normal (see [6, Example 8]). This
example provides us a compact space and a normal space whose product is not C-normal,
so C-normality is not a productive property. However, we still do not know the answer
to the following question.

Question 5.1. Is there a C-normal space X such that its square is not C-normal?

We know that normality is preserved under closed subspaces and closed continuous im-
ages. In the following examples we will show that C-normality is not necessary preserved
in these cases.

Example 5.2. There exists an epi-compact space containing a closed subspace which is
not C-normal.
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Proof. Consider the cartesian product Y = 2%t x 2“1 endowed with the product topology,
and the cartesian product X = 2“1 x 2“1 endowed with the topology obtained from the
product topology by adding 2«! x 321 and its complement as open sets. Notice that X
is epi-normal; indeed, the identity function ¢d : X — Y is continuous and Y is compact.
It is clear that 2«1 x 32“! is closed in X. Moreover, the topology on 2¢1 x Y21 inherited
from X coincides with the topology inherited from Y. Thus, 2** x ¥2“! is a closed
subspace of X which is not C-normal. v

Example 5.3. There exists an epi-compact space admitting a closed continuous image
which is not C'-normal.

Proof. Take the spaces X and Y as in Example 5.2. Now consider the function f : X — Y
given by:
id(z), if z e 291 x ¥2%1;
fla) = {11 .
0, otherwise.

Notice that f is continuous and f(X) = 24t x X2¢1. Besides, if F is closed in X, then
either f(F) = FN (29 x 32“) or f(F) = (FN(2* x £2¢1))UJ{0}. It follows that f is a
closed function. Finally, we know that X is epi-compact and f(X) is not C-normal. ¥

Any closed continuous function is quotient; from the previous result we conclude that C-
normality is not preserved under quotient functions. It happens that C-normality is also
not preserved under open perfect preimages. Indeed, take the proyection m : 291 x 3241 —
¥:2¢1 on the second factor. As 2 is compact, it follows from [5, Theorem 3.7.1.] that the
function 7 is perfect. However, the space ¥2! is C-normal while 241 x ¥2¢1 = 7~ 1(32%1)
is not C'-normal.

Question 5.4. Suppose X x K is C-normal for some compact K. Is it true that X is
C-normal?

We will prove now that C-normality is not preserved under the union of two arbitrary
subspaces; we will use an example obtained in [4].

Example 5.5. There exists a non-C-normal space which is the union of a compact sub-
space and a locally compact subspace.

Proof. Consider the topological product (wy +1) x [0, 1], the subspace R = {w1} x (0, 1),
the space X = ((w1 + 1) x [0,1]) \ R, and the space Y = X x (w; + 1). Then the
space Y is not C-normal (see [4]). Now, take A = (w; + 1) x {0,1} X (wy + 1) and
B = (w1 +1) x(0,1) X (w; + 1). Clearly A is compact, B is locally compact, and
Y =AUB. ]

Question 5.6. Is there a non-C-normal Tychonoff space X which is the union of two
C-normal closed subspaces?

Now we will answer in the positive the following question which is attributed to
Arhangel’skii in [7]; Is there a normal space which is not C-paracompact?

Example 5.7. There exists a normal space which is not C-paracompact.
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Proof. Consider the normal space 3241, We claim that ¥2“! is not C-paracompact.
Suppose that the space ¥X2“1 is C-paracompact. Since 2¢! is C-compact, we can ap-
ply Proposition 3.7 and the fact that the product of a compact space and a paracom-
pact space is paracompact (see [5, Theorem 5.1.36]), to conclude that 2! x 324 is
C-paracompact and thus C-normal; which we know is not true. Thus, the space 321 is
not C-paracompact. ]

Note that using the space described in examples 5.2 and 5.7 we can conclude that C-
paracompactness is not inherited by closed subspaces. It is worth to mention that Ex-
ample 5.7 also provides an epi-normal space which is not C-paracompact. This answers
another question from [7].

6. Epi-normal spaces

It follows from Examples 5.2, 5.3 and 5.5 that epi-normality is not necessarily preserved
under closed subspaces, unions, products, continuous and closed images, and inverse
images of perfect functions. Now we will analyze other properties of epi-normal spaces.

Proposition 6.1. Let X be an epi-normal space. If g : C — R is a continuous function,
where C' C X is compact, then there exists a continuous function g : X — R such that

Jgle=gy.

Proof. Let f : X — Y be bijective and continuous, for some normal space Y. Notice that
f lc: C — f(C) is a homeomorphism. As Y is normal, the function h = go (f [¢)™ ! :
f(C) = R admits a continuous extension i : ¥ — R. We consider the continuous
function § = ho f : X — R. Notice that

gle=(hof)le=(hlpe)e(flc)=go(fle) o fle=g
is the required extension of g. v

Corollary 6.2. If X is epi-normal, then X is Urysohn.

Proof. Given two distinct points x,y € X, by Proposition 6.1 we can take a continu-
ous function f : X — R such that f(z) = 2 and f(y) = 5. Then the open subsets
U= f"(1,3)) and V = f~1((4,6)) of X have disjoint closures and contain = and v,
respectively. v

The following example shows that, in general, epi-normal spaces are not necessary regular.

Example 6.3. Let X = R and consider the sequence A = {1/(n + 1)}nen. Define a
topology in X as the family of all sets of the form U\ B where B C A and U is open
in the usual topology of R. Clearly X is epi-normal, because its topology is finer than
the usual topology. However, the space X is not regular, because {0} and A cannot be
separated by disjoint open subsets.

Example 6.4. There exists a space X which is neither C-normal nor Urysohn, but which
is the union of two epi-normal closed subspaces.
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Proof. Let X = (R?\ {0}) U {z1, 22}, where x; and z2 do not belong to R2. Define a
topology in X as follows. The space R?\ {0} endowed with its usual topology is an open
subspace of X. Besides, for each i = 1,2 the point x; has as a basis of open neighborhoods
the family of all sets of the form

Uni = {z:} U{(z,y) : 2> + 9> < 1/(n+1)? and (—1)'y > 0},

where n € N. Note that x; and x5 cannot be separated using neighborhoods with disjoint
closures, thus X is not Urysohn. As an application of Corollary 6.2 we obtain that X is
not epi-normal. Observe that X is Fréchet-Urysohn, so we can apply Proposition 3.2 to
conclude that X is not C-normal. Choose i € {1,2}. Let A; = {(z,y) : (—1)'y > 0}\{0}.
Note that A; U{z;} admits a bijective continuous function onto the subspace 4; U{0} of
R? and hence is epi-normal. Therefore, the space X = (A; U {z1}) U (Az U {x2}) is the
union of two closed epi-normal subspaces. v

It happens that C-normal spaces are not necessarily Urysohn, as the following example
shows.

Example 6.5. There exists a C'-normal space which is not Urysohn.

Proof. Consider the space wy with the discrete topology. Let L = w;+1 endowed with the
following topology. The space w; is open in L and w; has as a basis of open neighborhoods
the family of all sets (o, w;], where o < wy. Consider the open subspace O = L X w;
of L x L. Let {A;, Ao} be a partition of w; into uncountable sets. Consider the space
X = OU{x1, 22}, where 21,22 ¢ L x L, endowed with the following topology. The space
O is open in X and, for i € {1,2} the point x; has as a basis of open neighborhoods the
family of all sets of the form (U N (4; X w1)) U {x;} where U is a neigborhood of (wy,w1)
in L x L. Note that X is Hausdorff. Besides, the space X is not Urysohn because the
points x1 and x2 cannot be separated by open sets in X with disjoint closures. However,
if we take Y = O @ {x1} & {22}, then Y is normal and the restriction of the identity
function from X onto Y to each compact subspace is a homeomorphism, that is, the
space X is C-normal. ]
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