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EXPLORING RELATIONSHIPS BETWEEN 

STUDENTS’ INDIVIDUAL WAYS OF REASONING 

AND NORMATIVE WAYS OF REASONING 

John Gruver 
Through the lens of the emergent perspective (Cobb & Yackel, 1996), this 
study examined the nature and extent of variation in individuals’ ways of 
reasoning from ways of reasoning that were accepted by a classroom 
community. This was done by interviewing seven undergraduate students 
after they had participated in classroom discussions. In contrast to other 
studies that have examined this relationship, the individuals’ ways of 
reasoning were qualitatively different from the accepted ways of 
reasoning. This suggests that even if students actively participate in 
classroom discourse where students’ ideas are considered, debated, and 
refined, they may not meet the major conceptual goals of the unit. As such, 
I argue that the relationship between the nature of social interactions 
students participate in and their subsequent reasoning needs further 
study, if educators are going to successfully support student learning.  

Keywords: Classroom mathematical practices; Emergent perspective; 
Individual variation 

Explorando relaciones entre formas individuales de razonamiento de los 
estudiantes y formas de razonamiento normativas 
A través de la lente de la perspectiva emergente (Cobb y Yackel, 1996), 
este estudio examinó la naturaleza y el grado de variación en las formas 
de razonar de los individuos a partir de formas de razonar que fueron 
aceptadas los integrantes del aula. Se entrevistó a siete estudiantes 
universitarios después de haber participado en debates en el aula. A 
diferencia de otros estudios que han examinado esta relación, las formas 
de razonamiento de los individuos fueron cualitativamente diferentes a las 
formas de razonamiento aceptadas. Esto sugiere que incluso si los 
estudiantes participan activamente en el discurso de la clase donde se 
consideran, debaten y refinan las ideas de los estudiantes, es posible que 
no desarrollen los objetivos conceptuales principales de la unidad. Como 
tal, defiendo que la relación entre la naturaleza de las interacciones 
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sociales en las que participan los estudiantes y su razonamiento posterior 
necesita más estudio, si los educadores van a apoyar con éxito el 
aprendizaje de los estudiantes. 

Términos clave: Perspectiva emergente; Prácticas matemáticas en el aula; 
Variación individual 

Over twenty years ago mathematics education research took what Lerman called 
a “social turn” (2000, p. 19). This meant that researchers began to consider the 
social nature of knowing more seriously. Researchers began to conceive of 
knowledge as inseparable from the social context in which that knowledge was 
developed, explore the semiotic and cultural mediation of thought, and investigate 
learning as enculturation into practice (Brown et al., 1989; Wenger, 1998; 
Wertsch, 1991). This is not to say that social interactions were ignored before this 
time. For example, Piaget acknowledged the contributions of the social world to 
individuals’ construction of knowledge (Cole & Wertsch, 1996). However, after 
the social turn, mathematics educators often expanded the unit of analysis beyond 
the individual to explore how social interactions supported mathematical 
development both in the individual and in the classroom collective.  

This expanded conception of learning and learning processes provided 
important insights that have shaped educators' views of productive teaching. 
Studies conducted from this perspective argued convincingly that productive 
social interactions, particularly participating in mathematical discourse in which 
students' ideas are negotiated and refined, can be beneficial for students (e.g., 
Empson, 2003; Hufferd-Ackles, et al., 2004). These insights have been formally 
adopted in that they have influenced standards documents. For example, the 
National Council of Teachers of Mathematics says that, “effective teaching of 
mathematics facilitates discourse among students to build shared understanding of 
mathematical ideas by analyzing and comparing student approaches and 
arguments” (2014, p. 10). However, as Lerman pointed out, this expanded 
conception of learning also brought challenges to researchers. “A major challenge 
for theories from the social turn is to account for individual cognition and 
difference, and to incorporate the substantial body of research on mathematical 
cognition, as products of social activity” (Lerman, 2000, p. 27). 

Understanding the relationship between the inherent individual variation in 
students' ways of reasoning as they actively make sense of new mathematics and 
the productivity of engaging in social interactions in terms of developing powerful 
mathematical ways of reasoning would be important for teachers in designing 
classroom experiences and for researchers as they analyze classroom interactions. 
Yet this relationship remains unclear. On the one hand, educators know that 
students do not always learn what they hope they would. For nearly 50 years, 
researchers have been sharing cases of students who reason in seemingly 
idiosyncratic ways (e.g., Erlwanger, 1973), making sense of the activities they 
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were given in ways that were presumably inconsistent with what their teacher 
would have hoped. On the other hand, productive social interactions would likely 
constrain, at least to some degree, the nature of individual variation. Mathematical 
discourse where a variety of ways of reasoning are compared, connected, and 
refined has the potential to help students advance their personal conceptions and 
problematize for the individual mathematically unproductive personal 
idiosyncrasies. Yet, despite the progress researchers have made in understanding 
social interactions in the classroom as a result of the social turn, it is unclear the 
extent to which this constrains individual variation. To contribute to this work, I 
address the following research question. 
What is the nature and extent of individual variation from accepted meanings and 
ways of reasoning in a classroom community where students analyze and compare 
various ways of reasoning? 

THEORETICAL PERSPECTIVE 
The emergent perspective (Cobb & Yackel, 1996) is one way to coordinate social 
aspects of the classroom microculture with psychological features of the 
individuals. It does this by combining aspects of symbolic interactionism 
(Bauersfeld et al., 1988) and constructivism (von Glasersfeld, 1984, 1992). In this 
approach, the social and individual planes have equal weight, in contrast to theories 
in which the individual plane has primacy (and the social nature of knowing is 
downplayed) or the social plane has primacy (and the interpretive nature of 
knowing is downplayed). The emergent perspective has been utilized by 
mathematics educators around the world to inform a variety of research efforts 
(Hershkowitz & Jaworski, 2012; Hershkowitz & Schwarz, 1999; Kazemi & 
Stipek, 2001; Rasmussen et al., 2015; Roy, 2008; Stephan & Rasmussen, 2002; 
Voigt, 1995; Wawro, 2011). 

The emergent perspective outlines three social aspects of the classroom—
social norms, socio-mathematical norms, and classroom mathematical practices—
and their individual psychological correlates (see Table 1). Social norms are 
accepted and expected ways of participating in the classroom (e.g., students freely 
engaging with other students’ ideas without necessarily needing teacher 
mediating). Similarly, socio-mathematical norms are expected ways of 
participating that are specific to how students engage with the mathematics (e.g., 
ways of giving valid mathematical arguments). 

In this study I focus on the relationship between the third social aspect, 
classroom mathematical practices, with its individual psychological correlate, 
mathematical conceptions and activity. Classroom mathematical practices, or 
simply emergent practices or math practices, are mathematical ways of reasoning 
and operating that become taken-as-shared. This use of the word “practice” is 
different from other common uses in mathematics education. In particular, this 
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does not refer to disciplinary practices, or standard activities that people engage in 
as they do mathematics. Rather, emergent practices are ways of reasoning that arise 
in the classroom community and eventually become accepted as valid in that 
micro-community. Acceptance means that classroom participants act as if other 
participants are familiar with and understand the way of operating. Researchers 
use the phrase taken-as-shared rather than shared when describing these ways of 
reasoning to emphasize that they are not claiming that all, or even the majority of, 
students reason in identical ways. Rather, they only claim the mathematical 
practice is treated as if it is understood and accepted in the community. In this way, 
the researchers can identify a phenomenon that exists at the classroom level, the 
acceptance of a particular idea, but not make assumptions about what any 
individual participant understands. The individual correlate of classroom 
mathematical practices is students’ own mathematical conceptions and activity. 
This includes students’ individual ways of reasoning about a topic, which is the 
focus on this study. 

Table 1  
The emergent perspective’s interpretive framework (Cobb & Yackel, 1996) 

Social Perspective Individual Perspective 

Classroom social norms Beliefs about own role, others’ roles, and the 
general nature of mathematical activity 

Socio-mathematical norms Mathematical beliefs and values 

Classroom mathematical 
practices 

Mathematical conceptions and activity 

According to Cobb and Yackel (1996) the relationship between individuals’ ways 
of reasoning and mathematical practices is indirect and reflexive. This means that 
individuals’ ideas give rise to classroom mathematical practices as individuals 
share and negotiate ways of reasoning. Then, as ways of reasoning become 
accepted in the community, they influence, but do not determine, students’ further 
reasoning.  

Investigating Coordination of Social and Individual Aspects 
While most of the research conducted by those who have worked from the 
emergent perspective has focused on investigating the social constructs of social 
norms, socio-mathematical norms, and classroom math practices (e.g., Kazemi & 
Stipek, 2001; Pang, 2000; Yackel, 2001), a few studies have elaborated the 
relationship between emergent mathematical practices and individuals' ways of 
reasoning (Cobb, 1999; Rasmussen et al., 2015; Stephan et al., 2003; Tabach et 
al., 2014). This includes tracking the movement of ideas from small group to whole 
class and vice versa (Tabach et al., 2014) and expanding the conceptualizations of 
collective progress (Rasmussen et al., 2015). However, these studies have tended 
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to elucidate the process of establishing mathematical practices in the classroom, 
rather than investigating students’ resulting individual ways of reasoning from 
participation in those practices. 

Two studies have helped researchers understand individuals’ interpretations 
of math practices. Shortly after the emergent perspective was put forth, Cobb 
(1999) demonstrated how students could participate differently in emergent 
practices. He showed examples of students who had difficulty in understanding 
other students’ explanations because of the way they were conceiving of the 
mathematics. Similarly, Stephan et al. (2003) documented some qualitative 
differences in students’ individual ways of reasoning from established math 
practices. They explored two first grade students’, Nancy’s and Meagan’s, 
participation in the development of collective mathematical practices around 
measurement. In the researchers’ description, there were brief periods of time 
when Meagan was reasoning in a way that was not consistent with an established 
mathematical practice1 , but she was always able to eventually reorganize her 
knowledge to be consistent with the practice through continued participation in the 
classroom community. 

These studies begin to show how the interpretive nature of knowledge can 
affect how individual students intellectually engage with emergent practices. 
However, they generally suggest that students reorganize their knowledge to be 
consistent with established practices through continued participation in the 
discourse. If this were always the case, educators could safely assume that they do 
not need to worry much about individuals' interpretations of classroom events. 
However, this study will demonstrate that this is not the case. Here I describe an 
instance where mathematically significant variation in individuals’ ways of 
reasoning from accepted ways of reasoning continued beyond the end of the unit, 
despite students’ active participation in the negotiation of those accepted ways of 
reasoning.  

METHODS 

Setting 
The research question requires documenting individual variation from ways of 
reasoning that have been negotiated, refined, and ultimately accepted in the 
classroom community. To investigate this variation, I compared the ways of 
reasoning that had been accepted in a classroom community with the individual 
ways of reasoning of seven students who participated in that class. The class was 
a capstone course for mathematics majors interested in teaching at the secondary 
level at a large university in the southwestern part of the United States. There were 
26 undergraduates enrolled in the course. The course was taught by an experienced 

 
1 This can most clearly be seen in the development of the first math practice they describe. 
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mathematics education researcher familiar with research on orchestrating whole 
class discussions (e.g., Stein et al., 2008), which seemed to influence her 
instruction. 

The course provided a productive setting to draw participants from because of 
the way the mathematical discourse was orchestrated. Typically, the teacher would 
pose a problem that required authentic problem solving. Students would then 
discuss the problem in small groups, with 3-4 students per group. During this small 
group discussion, the teacher would visit the groups, listen to their discussion, and 
ask questions. After students had time to consider the problem in their groups, she 
would purposefully select several students to share their ways of reasoning. In 
these whole class discussions, these ways of reasoning would be considered, 
debated, and refined. This afforded a setting where students actively participated 
in the negotiation of emergent mathematical practices. 

The Mathematical Practice 
The research question focuses on examining the nature and extent of individual 
variation from an accepted math practice in the classroom community.  The math 
practice chosen was developed in the last unit of the course, which focused on 
developing meanings for exponents and logarithms. Over the 3-week unit 
(consisting of 7.5 hours of instruction across 6 sessions), the students developed 
an exponential number line, which was used to cultivate these meanings. The 
number line was developed over several days during which the students worked 
on a task to represent the history of the earth on a single timeline (a task adapted 
from Confrey, 1991). During this time, several ways of representing the timeline 
were considered, with a wide range of students actively contributing to the 
negotiation. The timeline they eventually developed was an exponentially scaled 
number line. On an exponentially scaled number line, any pair of numbers that 
differ by a particular factor are the same distance apart on a line. This contrasts 
with a linearly scaled number line where any pair of numbers with a particular 
arithmetic difference are the same distance apart. 

While the idea of placing powers of ten (e.g., 101 , 102 , 103 , etc.) at equal 
intervals emerged fairly early in the students' development of a timeline, 
negotiating how to subdivide the segments created by the powers of ten took a 
substantial amount of time. At first, students wanted to subdivide these segments 
linearly. However, they eventually rejected this idea. Instead, they accepted two 
mathematically equivalent ways of reasoning about this subdivision. In the first 
way of reasoning (Normative Way of Reasoning 1 or NWR 1), students recognized 
a linear pattern in the exponents and continued that pattern. In the second way of 
reasoning (Normative Way of Reasoning 2 or NWR 2), students extrapolated from 
the multiplicative relationships between the powers of 10, reasoning that since 
powers of 10 were the same distance apart, any same-sized segments should 
represent a consistent multiplicative increase. Both ways of reasoning yield the 
same answer, but they are cognitively distinct. NWR 1 relies on an arithmetic 
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pattern in the exponents, while NWR 2 relies on a geometric pattern in the values 
on the line. Together, these two normative ways of reasoning form an emergent 
mathematical practice, which I termed Subdividing the Segments. Both ways of 
reasoning are considered normative because they met one of three criteria outlined 
in the documenting collective activity method (Cole et al., 2012; Rasmussen & 
Stephan, 2008). Details about this method and evidence for the emergence of all 
the mathematical practices that were developed during this unit can be found 
elsewhere (Gruver, 2018). 

I focused on variation from this math practice for several reasons. First, by 
coordinating the two ways of reasoning, students coordinate arithmetic growth (in 
the exponents) and geometric growth (in the value on the timeline). Coordination 
of arithmetic and geometric growth is central to understanding exponential 
relationships.  Second, this coordination was central to developing meanings for 
fractional exponents in the class. For example, students reasoned that the halfway 
point between 10!  and 101  should be 101/2 so that the linear pattern in the 
exponents holds. However, they also reasoned the point should be √10. Since the 
segment between 10! and 10"	represents an increase by a factor of 10 and this 
segment has been divided into two same-sized subsections, each subsection should 
represent multiplication by a factor that when multiplied by itself (multiplication 
over the two subsections) is the same as multiplying by 10 (multiplication over the 
whole segment). That factor is √10. These two ways of reasoning together provide 
an explanation for why 101/2=√10. Third, this practice resulted from a shift from 
linear ways of reasoning to exponential ways of reasoning. This shift can be 
difficult for students (Alagic & Palenz, 2006; Berezovski, 2004; De Bock et al., 
2002). 

Data Collection 
Within a week after instruction had ended, I conducted individual clinical 
interviews (Ginsburg, 1997) with seven students from the course. The students 
were selected based on their willingness to be interviewed. In the interview, 
students were asked to solve the task shown in Figure 1. This provided 
opportunities to see how the students reasoned about subdividing an exponential 
number line and how this was similar to or different from the accepted ways of 
reasoning in the class community. The interviews were videotaped so that the 
students' work was clearly visible. 



J. Gruver 

PNA 16(4) 

374 

 
Figure 1. The interview task 

Data Analysis 
In analyzing the interviews, I first created a descriptive, non-inferential narrative 
of the reduced data set (Miles & Huberman, 1994). I then engaged in open coding 
from grounded theory (Strauss & Corbin, 1990). This involved first breaking up 
the data into smaller episodes, where a student expressed an idea or made use of a 
strategy. I then grouped similar episodes to form a category. As I inferred these 
categories, I made use of the constant comparison method (Glaser & Strauss, 1967; 
Strauss, 1987; Strauss & Corbin, 1990, 1994), which is the comparison of different 
pieces of data to create and refine categories. As I began to establish categories, I 
compared the episodes in the category to other episodes in the interviews, both 
within and between subjects. The purpose of these comparisons is to bring into 
greater relief the similarities and differences in categories. This was an iterative 
process. This means that as categories were refined, episodes that had been coded 
earlier were revisited in light of the new categories (Strauss & Corbin, 1990). 

RESULTS 
Students reasoned in one of three ways in the interview task shown in Figure 1. 
The three of ways of reasoning were (a) multiplicative reasoning coordinated with 
reasoning linearly with the exponents, (b) reasoning linearly with the exponents, 
and (c) elements of reasoning linearly (see Table 2). The first way of reasoning, 
multiplicative reasoning coordinated with reasoning linearly with the exponents, 
is characterized by students recognizing the fact that there was a multiplicative 
relationship between the subsections generated by subdividing a segment. At a 
minimum, this means students would reference the fact that #√10$#√10$=10	and 
somehow connect that fact to their reasoning about the subsections. The students 
in this category also reasoned linearly with the exponents, meaning they used the 
linear pattern in the exponents to determine placements, but this linear reasoning 
was accompanied by talk of multiplicative patterns. Three students reasoned in this 
way.  

The second way of reasoning, reasoning linearly with the exponents, was 
characterized by students talking about halving the exponent of 101 to find that the 
midpoints should represent an increase of .5 in the exponent. This differs from the 
first category in that the linear pattern used in these explanations was not connected 
with multiplying by √10. It is important to note as students reasoned in this way, 
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they may have said the word “factor.” Simply uttering this word did not 
automatically mean that they were reasoning multiplicatively. At times students 
would call 101 a factor, but still reasoned solely about the exponent—dividing it 
in a linear way. For a way of reasoning to be placed in the first category, students 
needed to go beyond simply calling something a factor and explain that the factor 
is being multiplied by something. Two students employed reasoning linearly with 
the exponents. Finally, elements of linear reasoning means that at some point the 
student claimed the midpoint was five, presumably because five is half of ten and 
the midpoint is halfway. Two students made this claim. During the interview one 
of the students changed his answer as he began reasoning linearly with the 
exponents, but the other student did not change her answer during the interview. 
To illustrate the nature and extent of variation from normative ways of reasoning 
these individual ways of reasoning represent, I will describe the reasoning of one 
student from each category in detail. 

Table 2 
The three categories for individuals’ ways of reasoning 

Code Characterization 

Multiplicative Reasoning 
Coordinated with Reasoning 
Linearly with the Exponents 

Recognizing the subsections are associated 
with multiplication by the square root of ten in 
addition to using the linear pattern in the 
exponents to determine placements. 

Reasoning Linearly with the 
Exponents 

Finding the midpoints by dividing increases in 
the exponent by two. 

Elements of Linear Reasoning Determining the first midpoint was five by 
taking half of ten. 

The first student's reasoning we consider is Tanya’s. Tanya’s reasoning was 
categorized as Multiplicative Reasoning Coordinated with Reasoning Linearly 
with the Exponents. This means that although she determined the value of the 
midpoint by reasoning linearly with the exponents, she was also aware that the 
subsections represented an increase by a factor of √10. Tanya began the interview 
by claiming the first spot should be labeled 10.5. She said, “Since this is increasing 
by a factor of 101, then half of it would be 101/2.” She then labeled 1 as 100, 10 as 
101, and 100 as 102, as well as marking in a brace over the segment from 1 to 10, 
which she labeled “× 101” and a brace over the subsection from 1 to the midpoint, 
which she labeled “× 101/2” (see Figure 2). 
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Figure 2. Tanya labeled the multiplicative factors 

She then wrote her explanation. 

From 10!  to 10"  we increase by a factor of 101  (100·101= 101 ). We cut this 
increment of 101 in half, so we half the exponent of 101 as well to get 101/2. Check 
by 101/2·101/2=102/2=101. Multiply the previous term by 101/2 to obtain the next 
tick mark, from 100 we get the next by 100·101/2=101/2, then 101/2·101/2=101. 

When the interviewer asked what she meant by, “We cut this increment of 101 in 
half,” she responded with the following.  
Tanya: Since this whole [traces over the segment from 1 to 10], …  w[as] 101 

[points to tick marks labeled 1 and 10 simultaneously] and we only 
wanted to do half the distance [points to tick marks labeled 1 and the 
midpoint of 1 and 10], we don’t halve 10, because that just doesn’t make 
sense. So, we halve the exponent, so instead of moving by a factor of 
101, we’re moving by a factor of 101/2. So, we’re halving the exponent. 

Interviewer: How do you know to halve the exponent? 
Tanya: When we were first trying to figure it out, it didn’t really make sense to 

… halve the ten. … We would multiply 10! times 101 to get 101 and we 
only want to go half the way and so we wouldn't multiply by half of 10, 
we wouldn’t multiply it by 5, so we would halve the exponent.  

While Tanya calculated the midpoint based on linear patterns, multiplication also 
came up several times in Tanya’s argument. First, she immediately marked in the 
multiplicative factors of “× 101” and “× 101/2” (see Figure 2). Importantly, these 
labels included the multiplication symbol “×,” suggesting she saw them as factors. 
Multiplication was also present in her written explanation. She wrote, “Multiply 
the previous term by “101/2 to obtain the next tick mark, from 100 we get the next 
by 100·101/2=101/2, then 101/2·101/2=101.” Finally, multiplication was present as 
she responded to the interviewer’s question, “How do you know to halve the 
exponent?” In response, she explained that her group in class first tried to halve 
the ten, but that was inconsistent with the macro-level multiplication. She said, 
“We wouldn't multiply by half of 10, we wouldn’t multiply it by 5, so we would 
halve the exponent.” Notice that implicit in her comment is the assumption that 
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the relationship should be multiplicative—what needs to be decided is whether the 
multiplication should be by 5 or by 10.5. In summary, even though Tanya talked 
about halving the exponent in her explanation, this was often coordinated with a 
recognition of the multiplicative nature of the subsections. 

The next student's reasoning we consider is Farah’s. Farah’s reasoning was 
categorized as reasoning linearly with the exponents, the second category of 
individual ways of reasoning. This category describes reasoning that relied solely 
on the linear pattern in the exponents and did not include any mention of geometric 
growth. Farah began the task by labeling the spot 10.5 and relabeling 1 as 100 and 
10 as 10" (see Figure 3) and then wrote the following explanation. 
Farah: Because this is an exponential line each label must be representable in 

exponential form. Each labeled tick mark represents 10! , 10" , 10% 
respectively. ... The halfway mark is… half of the exponent of the larger 
endpoint. 1/2 of 1 = 1/2 [therefore] 10.'. 

 

 
Figure 3. Farah’s labels 

Here Farah is clear that she was operating on the exponents. She wrote, “The 
halfway mark is… half of the exponent of the larger endpoint. 1/2 of 1 = 1/2.” She 
did not mention anything about multiplication, despite follow up questions from 
the interviewer. Furthermore, in her explanation she focused on the form the 
numbers were written in, which may suggest a focus on the exponents. 

From the third category, elements of linear reasoning, we consider Lacey’s 
explanation. This category of reasoning contains explanations where students 
consider subdividing the segments linearly. Lacey began the interview by saying, 
“I think it’d [the first unlabeled spot would] be five” and labeled the first unlabeled 
spot 5. She then wrote her justification. As she wrote her justification, she labeled 
the second spot 50 (see Figure 4). 
Lacey: 5 gets in first spot because it looks like 1/2 distance between 1 and 10. 50 in 

second spot because 50 is 1/2 of 100. 
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Figure 4. Lacey’s labels 

After she wrote this, she checked that 5 lay between its surrounding tick marks, 1 
and 10. She then said, “This one’s going to be fifty because it’s half of a hundred 
and it’s still between ten and a hundred.” Lacey’s way of reasoning differed from 
the students’ ways of reasoning in the other categories in that she reasoned linearly 
on the values. In particular, she halved 10 to get 5 and halved 100 to get 50. This 
halving resulted in a number that when added to itself would give the endpoint 
(5+5) instead of a number that when multiplied by itself would give the endpoint 
(√10·√10). This linear reasoning is similar to the reasoning in the second category 
in that both require halving, except here it was applied to the actual value of the 
endpoint (10) instead of the exponent (1) in 101, the factor by which the values 
increased. This difference is crucial as these different ways of reasoning lead to 
different values. 

DISCUSSION 
The research question requires investigation into the nature and extent of variation 
in individuals' ways of reasoning from accepted ways of reasoning. One could 
argue that the extent of variation was limited. All three ways of reasoning were 
rooted in ways of reasoning that were discussed in class. The first category of 
individual reasoning consists of both reasoning linearly with the exponents and 
coordinating this linear pattern with multiplication by a factor of (√10). This 
strongly parallels the math practice, which also consisted of two coordinated ways 
of reasoning, reasoning linearly with exponents (NWR 1) and reasoning that 
preserves multiplicative patterns (NWR 2). One could argue that the second 
category of individual reasoning also represents a small extent of variation from 
the math practice in that it consists of a way of reasoning that is essentially the 
same as NWR 1. The third category of individual way of reasoning represents a 
larger deviation from the math practice than the other two. Using this way of 
reasoning, students arrived, at least initially, at a different answer for the values 
that should lie at the two halfway points. However, despite this variation from the 
normative ways of reasoning, this individual way of reasoning also bore some 
similarities to the practice in that it mirrored the development of the practice in the 
classroom community. Just as the interviewed students considered subdividing 
linearly, the students in class also considered subdividing linearly. It was only after 
significant discussion that they decided to reject that idea in favor of preserving 
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the multiplicative structure that existed between the powers of ten, namely that 
same-sized segments should represent an increase by the same factor. These 
relationships between the individual ways of reasoning and the ways of reasoning 
that were expressed in class are summarized in Table 3. 

Table 3 
The relationship between individual ways of reasoning and the emergent math 
practice 

Individual Ways of Reasoning Relationship to the Math Practice 

Category 1: Multiplicative Reasoning 
Coordinated with Reasoning Linearly 
with the Exponents 

Similar to the math practice in that it also 
consists of two coordinated ways of 
reasoning similar to the NWRs. 

Category 2: Reasoning Linearly with the 
Exponents  

 

Consists of a way of reasoning that is 
similar to NWR 1 (Subdividing Segments 
by Reasoning Linearly About 
Exponents), a constituent piece of the 
math practice. 

Category 3: Elements of Reasoning 
Linearly Among the Values 

Similar to how students in class 
considered subdividing before 
establishing the math practice. 

Even though one could argue that the extent of variation of individual ways of 
reasoning from the math practice was constrained in that the ways of reasoning 
were not idiosyncratic, the nature of the variation was mathematically significant. 
As the emergent practice was negotiated in class, the idea that each of the smaller 
same-sized subsections of a subdivided segment should represent an increase by 
the same factor was central. This idea allowed students to reason about the value 
of numbers raised to a fractional exponent, such as 10.5. The number 10.5 is the 
halfway point between 100 and 101 because of the linear pattern in the exponents, 
but that halfway point should also be √10  because the halfway point subdivides a 
segment that represents an increase by a factor of 10. This means that each of the 
smaller segments should represent an increase by a number that when multiplied 
by itself is 10. Fundamental to this way of reasoning is the coordination of 
geometric growth in the values on the line and arithmetic growth in their 
exponents–a defining characteristic of exponential relationships. However, in 
contrast to this type of reasoning, students using category 2 or category 3 ways of 
reasoning showed no evidence of coordination whatsoever. For them, the timeline 
was likely a linear timeline, whether of the exponents or the values. This 
conception would not offer the same power when reasoning about exponential 
relationships generally or fractional exponents specifically. 

Understanding the nature and extent of individual variation from the 
negotiated math practice in the case presented here can give insights to the 
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relationship between the interpretive nature of knowledge and participating in the 
negotiation of ideas. In this case, participation in the negotiation of emergent 
practices did seem to constrain the extent of individual variation from the 
negotiated practice. All the ways of reasoning expressed in the interviews were 
rooted in and consistent with ways of reasoning that were discussed in class as the 
math practice was being negotiated. However, this constraint of extent of 
individual variation did not mean that all students met the conceptual goals of the 
unit. In fact, presumably because of this similarity between what was being 
discussed in class and individuals' personal ways of reasoning, some individuals 
did not perceive a need to adjust their ways of thinking. This led to four of the 
seven students interviewed showing no evidence of meeting a major conceptual 
goal of the unit. 

This case illustrates the complex nature of individual learning as students 
participate in mathematically rich classroom discourse. This study suggests that 
even if students participate in conceptually focused discussions where a variety of 
students' ways of reasoning are considered, debated, and refined, the participating 
students may not meet the central learning goals of instruction. As they participate 
in the negotiation of accepted ways of reasoning, they may interpret these ways of 
reasoning as consistent with their own, even if there are significant conceptual 
differences. 

This means that NCTM’s vision of effective teaching as teaching that 
“facilitates discourse among students to build shared understanding of 
mathematical ideas” is not straightforward. However, when and why participating 
in mathematically rich discussions is insufficient to help students meet conceptual 
goals is still poorly understood. This suggests that the challenge Lerman (2000) 
identified is still relevant today. Teachers need a better understanding of the nature 
of individual learning processes that occur in social environments if they are to 
design activities and orchestrate discussions that foster conceptual learning for a 
range of students. Future research could elaborate the conditions under which 
subtle variation in individual ways of reasoning, especially those that might be 
hard for a teacher to detect in the moment, could pose challenges to students 
developing powerful ways of reasoning by engaging in class discussions. Future 
research could also elaborate types of activities or ways of orchestrating discourse 
that could help problematize for students’ ways of reasoning that may be similar 
to, but qualitatively different from, what is being developed at the whole class 
level. These future insights could help teachers create learning experiences that 
allow a wider range of students to develop powerful mathematical conceptions. 
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