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On Pure Hyperideals in Ordered
Semihypergroups

Sobre Hiperideales Puros en Semihipergrupos Ordenados

Thawhat Changphas1,a, Bijan Davvaz2,b

Abstract. In this paper, the notions of pure hyperideal, weakly pure hyper-
ideal and purely prime hyperideal in ordered semihypergroups are introduced
and studied. We prove that the set of all purely prime hyperideals is topolo-
gized.
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1. Introduction and preliminaries

The notions of pure ideal, weakly pure ideal and purely prime ideal have been
introduced and studied in several kinds of algebraic structures. For examples,
Ahsan and Takahashi [1] considered them in semigroups (without order); Bashir
and Shabir [4] discussed in ternary semigroups and Changphas and Sanborisoot
[6] considered them in ordered semigroups, extending the results on semigroups
(without order). The concept of algebraic hyperstructures was introduced in
1934 by Marty [16] and has been studied in the following decades and nowadays
by many mathematicians. Semihypergroups are studied by many authors, for
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example, Anvariyeh et al. [2, 3], Bonansinga and Corsini [5], Davvaz [8, 9], De
Salvo et al. [17], Freni [10], Heidari et al. [12], Hila et al. [14, 13], Leoreanu
[15], Yaqoob et al. [18]. The concept of ordering hypergroups investigated by
Chvalina [7] as a special class of hypergroups and was studied by him and many
others.

One of the main results is that the set of all purely prime ideals is topolo-
gized. The purpose of this paper is to define and study the concepts mentioned
above on the structure which is called ordered semihypergroups. Note that the
results on ordered semigroups become then special cases.

Let S be a non-empty set. A mapping ◦ : S × S → P∗(S), where P∗(S)
denotes the family of all non-empty subsets of S, is called a hyperoperation on
S. The couple (S, ◦) is called a hypergroupoid. In the above definition, if A and
B are two non-empty subsets of S and x ∈ S, then we denote

A ◦B =
⋃

a∈A,b∈B
a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}.

A hypergroupoid (S, ◦) is called a semihypergroup if for every x, y, z in S,

x ◦ (y ◦ z) = (x ◦ y) ◦ z.

That is, ⋃
u∈y◦z

x ◦ u =
⋃

v∈x◦y
v ◦ z.

In [11], Heidari and Davvaz studied a semihypergroup (S, ◦) endowed with a
binary relation ≤, where ≤ is a partial order relation such that satisfies the
monotone condition. Indeed, an ordered semihypergroup (S, ◦,≤) is a semi-
hypergroup (S, ◦) together with a partial order ≤ that is compatible with the
hyperoperation, meaning that for any x, y, z in S,

x ≤ y ⇒ z ◦ x ≤ z ◦ y and x ◦ z ≤ y ◦ z.

Here, z ◦x ≤ z ◦y means for any a ∈ z ◦x there exists b ∈ z ◦y such that a ≤ b.
The case x ◦ z ≤ y ◦ z is defined similarly.

A non-empty subset A of an ordered semihypergroup (S, ◦,≤) is called a
subsemihypergroup of S if A ◦A ⊆ A.

Definition 1.1. A non-empty subset A of an ordered semihypergroup (S, ◦,≤)
is called a left (respectively, right) hyperideal of S if it satisfies the following
conditions:

(i) S ◦A ⊆ A (respectively, A ◦ S ⊆ A);

(ii) if x ∈ A and y ∈ S is such that y ≤ x, then y ∈ A.

If A is both a left and a right hyperideal of S, then it is called a two-sided
hyperideal of S, or simply a hyperideal of S.

Let A be a non-empty subset of an ordered semihypergroup (S, ◦,≤). Define
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(A] = {x ∈ S | x ≤ a for some a ∈ A}.

Note that the condition (ii) in Definition 1.1 is equivalent to A = (A]. If A and
B are non-empty subsets of S, then

(1) A ⊆ (A];

(2) (A ∪B] = (A] ∪ (B];

(3) ((A] ◦ (B]] = (A ◦B];

(4) (A] ◦ (B] ⊆ (A ◦B].

Remark 1.2. Let (S, ◦,≤) be an ordered semihypergroup.

(1) If A and B are hyperideals of S, then (A ◦B] is a hyperideal of S.

(2) Intersection of hyperideals of S is a hyperideal of S if it is nonempty.

(3) Union of hyperideals of S is a hyperideal of S.

(4) Finite intersection of hyperideals of S is a hyperideal of S.

For a non-empty subset A of an ordered semihypergroup (S, ◦,≤), we de-
note by (A)l (respectively, (A)r, (A)) the left (respectively, right, two-sided)
hyperideal of S generated by A.

Lemma 1.3. If A is a non-empty subset of an ordered semihypergroup (S, ◦,≤),
then the following hold:

(1) (A)l = (A ∪ S ◦A];

(2) (A)r = (A ∪A ◦ S];

(3) (A) = (A ∪ S ◦A ∪A ◦ S ∪ S ◦A ◦ S].

Proof. By A ⊆ (A)l and S ◦ A ⊆ (A)l, it follows that (A ∪ S ◦ A] ⊆ (A)l.
Clearly, (A ∪ S ◦A] 6= ∅. We have

S ◦ (A∪S ◦A] ⊆ (S ◦ (A∪S ◦A)] = (S ◦A∪S ◦ (S ◦A)] ⊆ (S ◦A] ⊆ (A∪S ◦A].

Then, (A∪S◦A] is a left hyperideal of S containing A; hence (A)l ⊆ (A∪S◦A].
This proves that (1) holds. The conditions (2) and (3) are proved similarly.

Let (S, ◦,≤) be an ordered semihypergroup. An element a of S is said to be
regular if there exists x in S such that a ∈ (a ◦ x ◦ a], and S is called regular if
every element of S is regular. Note that S is regular if and only if a ∈ (a◦S ◦a]
for all a in S.
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2. Pure hyperideals

We introduce the notion of pure ideal in ordered semihypergroups as follows:

Definition 2.1. Let (S, ◦,≤) be an ordered semihypergroup. A hyperideal A
of S is called a left (respectively, right) pure ideal if for any x in A there exists
y in A such that x ≤ y ◦ x (respectively, x ≤ x ◦ y). Similarly, we can define
for A to be a left and a right pure hyperideal of S.

Equivalent Definition. x ∈ (A ◦ x] (respectively, x ∈ (x ◦A]).

Example 2.2. Suppose that S = {a, b, c, d, e, f, g, h}. We consider the order
semihypergroup (S, ◦,≤), where the hyperoperation ◦ is defined by the follow-
ing table:

◦ a b c d e f g h
a a a a a {a, e} {a, e} {a, e} {a, e}
b a b c a {a, e} {b, f} {c, g} {a, e}
c a a a a {a, e} {a, e} {a, e} {a, e}
d a d a a {a, e} {d, h} {a, e} {a, e}
e a a a a {a, e} {a, e} {a, e} {a, e}
f a b c a {a, e} {b, f} {c, g} {a, e}
g a a a a {a, e} {a, e} {a, e} {a, e}
h a d a a {a, e} {d, h} {a, e} {a, e}

and the order ≤ is defined by

≤ = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (g, g), (h, h),

(a, b), (a, c), (a, d), (e, f), (e, g), (e, h)}

The covering relation and the figure of S are given by:

< = {(a, b), (a, c), (a, d), (e, f), (e, g), (e, h)}

b
a

@
@
@@
bb bc

�
�
��

bd
b
e

@
@
@@
bf bg

�
�
��

bh

It is easy to see that

I1 = {a, e},
I2 = {a, c, e},
I3 = {a, c, e, g},
I4 = {a, d, e, h},
I5 = {a, c, d, e, g, h}
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are hyperideals of S. We have

a ≤ a ◦ a = a, e ≤ e ◦ e = {e, a},
c ≤ b ◦ c = c, g ≤ b ◦ g = {c, g},
d ≤ d ◦ b = d, h ≤ h ◦ f = {d, h},

and there is no x in S such that

c ≤ c ◦ x, g ≤ g ◦ x, d ≤ x ◦ d and h ≤ x ◦ h.

Therefore,

(1) I1 is a left and right pure hyperideal of S.

(2) I2 and I3 are left pure hyperideals of S, but they are not right pure
hyperideals of S.

(3) I4 is a right pure hyperideal of S, but it is not a left pure hyperideal of
S.

(4) I5 is not a left pure hyperideal of S as well as a right pure hyperideal of
S.

Theorem 2.3. Let A be a hyperideal of an ordered semihypergroup (S, ◦,≤).
Then, A is right pure if and only if B ∩A = (B ◦A] for all right hyperideals B
of S.

Proof. Assume that a hyperideal A of S is right pure. Let B be a right
hyperideal of S. Since B ◦ A ⊆ B ◦ S ⊆ B, we have (B ◦ A] ⊆ B. By
B ◦ A ⊆ S ◦ A ⊆ A, it follows that (B ◦ A] ⊆ A. Hence, (B ◦ A] ⊆ B ∩ A. If
x ∈ B ∩ A, then by assumption there exists y in A such that x ≤ x ◦ y; hence
by x ◦ y ⊆ B ◦A we obtain x ∈ (B ◦A]. Thus, B ∩A ⊆ (B ◦A].

Conversely, we assume that B ∩ A = (B ◦ A] for all right hyperideals B of
S. Let x ∈ A. Since (x ∪ x ◦ S] is a right hyperideal of S and S ◦ A ⊆ A, we
have

(x ∪ x ◦ S] ∩A = ((x ∪ x ◦ S] ◦A] ⊆ (x ◦A ∪ x ◦ S ◦A] ⊆ (x ◦A].

Since x ∈ (x ∪ x ◦ S] ∩ A, so x ∈ (x ◦ A]. This proves that A is a right pure
hyperideal of S.

Definition 2.4. An ordered semihypergroup (S, ◦,≤) is said to be right weakly
regular if for any x in S there exist y, z in S such that x ≤ x ◦ y ◦ x ◦ z.

Equivalent Definition. x ∈ (x ◦ S ◦ x ◦ S].

Remark 2.5. Every regular ordered semihypergroup is right weakly regular.

Theorem 2.6. The following are equivalent for an ordered semihypergroup
(S, ◦,≤) :
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(1) S is right weakly regular;

(2) (A ◦A] = A for all right hyperideals A of S;

(3) B ∩A = (B ◦A] for all right hyperideals B and all hyperideals A of S.

Proof. (1) ⇒ (2). Assume that S is right weakly regular. Let A be a right
hyperideal of S. Since A ◦ A ⊆ A ◦ S ⊆ A, we have (A ◦ A] ⊆ A. Let
x ∈ A. By assumption, there exist y, z in A such that x ≤ x ◦ y ◦ x ◦ z. Since
(x ◦ y) ◦ (x ◦ z) ⊆ A ◦ A, we have x ∈ (A ◦ A], and so A ⊆ (A ◦ A]. Hence,
(A ◦A] = A.

(2) ⇒ (1). Assume that (A ◦ A] = A for all right hyperideals A of S. Let
x ∈ S. Since (x ∪ x ◦ S] is a right hyperideal of S, we have

(x ∪ x ◦ S] = ((x ∪ x ◦ S] ◦ (x ∪ x ◦ S]]

⊆ ((x ∪ x ◦ S) ◦ (x ∪ x ◦ S)]

= (x2 ∪ x2 ◦ S ∪ x ◦ S ◦ x ∪ x ◦ S ◦ x ◦ S].

Then,

x ∈ (x2 ∪ x2 ◦ S ∪ x ◦ S ◦ x ∪ x ◦ S ◦ x ◦ S],

hence x ∈ (x ◦ S ◦ x ◦ S]. This proves that S is right weakly regular.
(1) ⇒ (3). Assume that S is right weakly regular. Let B and A be a right

hyperideal and a hyperideal of S, respectively. Since B ◦ A ⊆ B ◦ S ⊆ B, we
have (B◦A] ⊆ B. Similarly, (B◦A] ⊆ A. Then, (B◦A] ⊆ B∩A. Let x ∈ B∩A.
We have (x ◦ S ◦ x ◦ S] ⊆ (B ◦ A]. By assumption, we get x ∈ (x ◦ S ◦ x ◦ S],
hence x ∈ (B ◦A]. Thus, B ∩A ⊆ (B ◦A], whence B ∩A = (B ◦A].

(3) ⇒ (1). Assume that B ∩ A = (B ◦ A] for all right hyperideals B and
all hyperideals A of S. To prove that S is right weakly regular, let x ∈ S. We
have (x ∪ x ◦ S] and (x ∪ S ◦ x ◦ S] are right and (two-sided) hyperideals of S,
respectively. Then,

(x ∪ x ◦ S] ∩ (x ∪ S ◦ x ◦ S]

= ((x ∪ x ◦ S] ◦ (x ∪ S ◦ x ◦ S]]

⊆ (x2 ∪ x ◦ S ◦ x ◦ S ∪ x ◦ S ◦ x ∪ x ◦ S ◦ S ◦ x ◦ S],

thus

x ∈ (x2 ∪ x ◦ S ◦ x ◦ S ∪ x ◦ S ◦ x ∪ x ◦ S ◦ S ◦ x ◦ S].

This implies that x ∈ (x ◦ S ◦ x ◦ S], hence S is right weakly regular.

Theorem 2.7. An ordered semihypergroup (S, ◦,≤) is right weakly regular if
and only if every hyperideal of S is right pure.

Proof. This follows from Theorem 2.3 and Theorem 2.6.

Theorem 2.8. Let (S, ◦,≤) be an ordered semihypergroup with zero 0.
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(1) {0} is a right pure hyperideal of S.

(2) The union of any family of right pure hyperideals of S is a right pure
hyperideal of S.

(3) The finite intersection of right pure hyperideals of S is a right pure hy-
perideal of S.

Proof. (1) This is obvious.
(2) Let {Ai | i ∈ I} be an indexed family of right pure hyperideals of S. We

have
⋃
i∈I Ai is a hyperideal of S. Let x ∈

⋃
i∈I Ai. Then, x ∈ Aj for some j

in I. Since Aj is right pure, there exists y in Aj such that x ≤ x ◦ y. We have
y ∈ Aj ⊆

⋃
i∈I Ai; hence

⋃
i∈I Ai is right pure.

(3) Let {A1, A2, . . . , An} be a finite indexed family of right pure hyper-
ideals of S. Then,

⋂n
i=1Ai is a hyperideal of S. Let x ∈

⋂n
i=1Ai. For

k ∈ {1, 2, . . . , n}, there exists yk ∈ Ak such that x ≤ x ◦ yk. We have

x ≤ x ◦ yn ◦ · · · ◦ y2 ◦ y1.

Since yn · · · y2 ◦ y1 ∈
⋂n
i=1Ai, we conclude that

⋂n
i=1Ai is right pure.

Theorem 2.9. Let (S, ◦,≤) be an ordered semihypergroup with zero 0 and A a
hyperideal of S. Then, A contains the largest right pure hyperideal of S (called
the pure part of A), denoted by S(A).

Proof. Clearly, {0} is a right pure hyperideal of S contained in A. Then, the
union of all right pure hyperideals of S contained in A exists, and it is the
largest right pure hyperideal of S contained in A.

Theorem 2.10. Let (S, ◦,≤) be an ordered semihypergroup with zero 0. Let
A,B and Ai, i ∈ I be hyperideals of S.

(1) S(A ∩B) = S(A) ∩ S(B).

(2)
⋃
i∈I
S(Ai) ⊆ S(

⋃
i∈I

Ai).

Proof. (1) Since S(A) ⊆ A and S(B) ⊆ B, we have S(A) ∩ S(B) ⊆ A ∩ B.
Hence, S(A) ∩ S(B) ⊆ S(A ∩ B). Since S(A ∩ B) ⊆ A ∩ B ⊆ A, we get
S(A∩B) ⊆ S(A). Similarly, S(A∩B) ⊆ S(B). Then, S(A∩B) ⊆ S(A)∩S(B),
whence S(A ∩B) = S(A) ∩ S(B).

(2) Since S(Ai) ⊆ Ai for all i ∈ I, we have
⋃
i∈I S(Ai) ⊆

⋃
i∈I Ai. Then,⋃

i∈I S(Ai) ⊆ S(
⋃
i∈I Ai).

Definition 2.11. A right pure hyperideal A of an ordered semihypergroup
(S, ◦,≤) is said to be purely maximal if for any proper right pure hyperideal B
of S, A ⊆ B implies A = B.

Example 2.12. In Example 2.2, the right pure hyperideal I4 is purely maxi-
mal.
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Definition 2.13. Let A be a proper right pure hyperideal of an ordered semi-
hypergroup (S, ◦,≤). Then, A is called purely prime if for any right pure
hyperideals B1, B2 of S, B1 ∩B2 ⊆ A implies B1 ⊆ A or B2 ⊆ A.

Theorem 2.14. Every purely maximal hyperideal of an ordered semihyper-
group (S, ◦,≤) is purely prime.

Proof. Let A be a purely maximal hyperideal of S. Let B and C be right pure
hyperideals of S such that B ∩C ⊆ A and B 6⊆ A. Since B ∪A is a right pure
hyperideal such that A ⊂ B ∪A, so S = B ∪A. We have

C = C ∩ S = C ∩ (B ∪A) = (C ∩B) ∪ (C ∩A) ⊆ A.

Then, A is purely prime.

Theorem 2.15. Let (S, ◦,≤) be an ordered semihypergroup with zero. The
pure part of any maximal hyperideal of S is purely prime.

Proof. Let A be a maximal ideal of S. To show that S(A) is purely prime, let
B and C be right pure hyperideals of S such that B ∩ C ⊆ S(A). If B ⊆ A,
then B ⊆ S(A). Suppose that B 6⊆ A. We have B ∪ A is an ideal of S. By
maximality of A, S = B ∪A, and hence C ⊆ A. Thus, C ⊆ S(A).

Theorem 2.16. Let (S, ◦,≤) be an ordered semihypergroup and A a right pure
hyperideal of S. If x ∈ S \ A, then there exists a purely prime hyperideal B of
S such that A ⊆ B and x /∈ B.

Proof. Assume that x ∈ S \A. Let

P = {B | B is a right pure hyperideal of S, A ⊆ B and x 6∈ B}.

We have P 6= ∅ since A ∈ P . Moreover, P is a partially ordered set under
the usual inclusion. Let {Bk | k ∈ K} be any totally ordered subset of P . By
Theorem 2.8,

⋃
k∈K Bk is a right pure hyperideal. Since A ⊆

⋃
k∈K Bk and

x 6∈
⋃
k∈K Bk, we obtain

⋃
k∈K Bk ∈ P . By Zorn’s lemma, P has a maximal

element, say M , such that M is a right pure hyperideal, A ⊆ M and x 6∈ M .
We shall show that M is purely prime. Suppose that A1 and A2 are right pure
hyperideals of S such that A1 6⊆ M and A2 6⊆ M . Since A1, A2 and M are
right pure, so A1 ∪M and A2 ∪M are right pure hyperideals containing M .
Since x ∈ A1 ∪M and x 6∈ M , we have x ∈ A1. Similarly, x ∈ A2. Hence,
x ∈ A1 ∩A2. Thus, A1 ∩A2 6⊆M . This shows that M is purely prime.

Theorem 2.17. Any proper right pure hyperideal A of an ordered semihy-
pergroup (S, ◦,≤) is the intersection of all the purely prime hyperideals of S
containing A.

Proof. Let {Bi | i ∈ I} be the set of all purely prime hyperideals of S con-
taining A; by Theorem 2.16 this set is non-empty. We have A ⊆

⋂
i∈I Bi. The

reverse inclusion follows by Theorem 2.16.
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3. Weakly pure hyperideals

In this section, we introduce the concept of weakly pure hyperideal in an ordered
semihypergroup as follows:

Definition 3.1. Let (S, ◦,≤) be an ordered semihypergroup. A hyperideal A
of S is called left (resp. right) weakly pure if A ∩ B = (A ◦ B] (respectively,
A ∩B = (B ◦A]) for all hyperideals B of S.

Remark 3.2. Every left (right) pure two-sided hyperideal is left (right) weakly
pure.

Theorem 3.3. Let (S, ◦,≤) be an ordered semihypergroup with zero 0. If A
and B are hyperideals of S, then

B ◦A−1 = {s ∈ S | ∀x ∈ A, x ◦ s ⊆ B}
A−1 ◦B = {s ∈ S | ∀x ∈ A, s ◦ x ⊆ B}

are hyperideals of S.

Proof. Clearly, 0 ∈ B ◦A−1. Let u, v ∈ S and s ∈ B ◦A−1. Let x ∈ A. Since
x ◦ u ⊆ A, we have (x ◦ u) ◦ s ⊆ B, and hence

x ◦ (u ◦ s ◦ v) = (x ◦ u) ◦ s ◦ v ⊆ B.

Let a ∈ B ◦ A−1 and b ∈ S be such that b ≤ a. Let y ∈ A; then y ◦ b ≤ y ◦ a.
Since y ◦ a ⊆ B, so y ◦ b ⊆ B. This shows that B ◦A−1 is a hyperideal of S.

That A−1 ◦B is a hyperideal of S is proved similarly.

Theorem 3.4. Let (S, ◦,≤) be an ordered semihypergroup and A a hyperideal
of S. Then, A is left (right) weakly pure if and only if A ∩ (B ◦A−1) = A ∩B
(A ∩ (A−1 ◦B) = A ∩B) for all hyperideals B of S.

Proof. Assume that A is left weakly pure. Let B be a hyperideal of S. By
Theorem 3.3, B ◦A−1 is a hyperideal of S, and thus A(∩B ◦A−1) ⊆ (A ◦ (B ◦
A−1)]. Since A ◦ (B ◦ A−1) ⊆ A ◦ S ⊆ A, we have (A ◦ (B ◦ A−1)] ⊆ (A] = A.
Let t ∈ (A◦ (B ◦A−1)] be such that t ≤ x◦y for some x in A and y in B ◦A−1.
By the definition of B ◦ A−1, x ◦ y ⊆ B. Then, t ∈ B. This proves that
A∩B ◦A−1 ⊆ A∩B. Let x ∈ A∩B. Since a ◦ x ⊆ B for any a in A, we have
x ∈ B ◦A−1. We get x ∈ A ∩ (B ◦A−1). Hence, A ∩B ⊆ A ∩ (B ◦A−1).

Conversely, assume that (B ◦ A−1) ∩ A = A ∩ B for all hyperideals B of
S. To show that A is left weakly pure, let C be any hyperideal of S. We shall
show that A ∩ C = (A ◦ C]. By assumption, A ∩ C = A ∩ (C ◦ A−1). Since
A ◦ C ⊆ A ◦ S ⊆ A, we have (A ◦ C] ⊆ A. Let t ∈ (A ◦ C] such that t ≤ x ◦ y
for some x in A and y in C, and let a ∈ A. Since

a ◦ (x ◦ y) = (a ◦ x) ◦ y ⊆ C,
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we obtain x ◦ y ⊆ C ◦A−1, and so t ∈ C ◦A−1. Then, (A ◦C] ⊆ C ◦A−1. This
proves that (A◦C] ⊆ A∩C. For the reverse inclusion, we have C ⊆ (A◦C]◦A−1

because c ∈ C and a ∈ A implies a ◦ c ⊆ A ◦ C ⊆ (A ◦ C]. Then,

A ∩ C ⊆ A ∩ (A ◦ C] ◦A−1) = A ∩ (A ◦ C] ⊆ (A ◦ C].

The second half of this theorem can be proved similarly.

Theorem 3.5. The following are equivalent on an ordered semihypergroup
(S, ◦,≤) :

(1) every hyperideal is left weakly pure;

(2) for every hyperideal A of S, A ◦A = A;

(3) every hyperideal is right weakly pure.

Proof. This can be proved similarly as Proposition 4.4 in [4].

4. Pure spectrums

Let (S, ◦,≤) be an ordered semihypergroup such that S ◦S = S. The set of all
right pure hyperideals of S and the set of all proper pure prime hyperideals of
S will be denoted by P (S) and P ′(S), respectively. For A ∈ P (S), let

IA = {J ∈ P ′(S) | A 6⊆ J} and τ(S) = {IA | A ∈ P (S)}.

Theorem 4.1. τ(S) forms a topology on P ′(S).

Proof. Since {0} is a right pure hyperideal of S and I{0} = ∅, we have ∅ ∈
τ(S). Since S is a right pure hyperideal of itself and IS = P ′(S), we obtain
P ′(S) ∈ τ(S). Now, if {IAα | α ∈ Λ} ⊆ τ(S), then

⋃
α∈Λ IAα = I⋃

α∈Λ Aα
;

hence
⋃
α∈Λ IAα

∈ τ(S).

Let IA1
, IA2

∈ τ(S). We shall show that IA1
∩ IA2

= IA1∩A2
, therefore

let J ∈ IA1
∩ IA2

. Then, J ∈ P ′(S), A1 6⊆ J and A2 6⊆ J . Suppose that
A1 ∩ A2 ⊆ J . Since J is pure prime, we have A1 ⊆ J or A2 ⊆ J . This is
a contradiction. Then, J ∈ IA1∩A2 , and thus IA1 ∩ IA2 ⊆ IA1∩A2 . For the
reverse inclusion, let J ∈ IA1∩A2 . Since A1 ∩ A2 6⊆ J , it follows that A1 6⊆ J
and A2 6⊆ J . This implies that J ∈ IA1

∩ IA2
. Hence, IA1∩A2

⊆ IA1
∩ IA2

.
Therefore, τ(S) forms a topology on P ′(S).

Bolet́ın de Matemáticas 27(1) 63-74 (2020)



On Pure Hyperideals in Ordered Semihypergroups 73

References

[1] J. Ahsan and M. Takahashi, Pure spectrum of a monoid with zero, Kobe
J. Mathematics 6 (1989), 163–182.

[2] S. M. Anvariyeh, S. Mirvakili, and B. Davvaz, On Γ-hyperideals in Γ-
semihypergroups, Carpathian Journal of Mathematics 26 (2010), 11–23.

[3] , Pawlak’s approximations in Γ-semihypergroups, Computers and
Mathematics with Applications 60 (2010), 45–53.

[4] S. Bashir and M. Shabir, Pure ideals in ternary semigroups, Quasigroups
and Related Systems 17 (2009), 149–160.

[5] P. Bonansinga and P. Corsini, On semihypergroup and hypergroup homo-
morphisms, Boll. Un. Mat. Ital. B 6 (1982), no. 1(2), 717–727.

[6] T. Changphas and J. Sanborisoot, Pure ideals in ordered semigroups,
Kyungpook Mathematical Journal 54 (2014), 123–129.

[7] J. Chvalina, Commutative hypergroups in the sense of marty and ordered
sets, General algebra and ordered sets (Horn-Lipova, 1994), 19–30.

[8] B. Davvaz, Some results on congruences in semihypergroups, Bull. Malays.
Math. Soc. 23 (2000), no. 2, 53–58.

[9] , Characterizations of sub-semihypergroups by various triangular
norms, Czechoslovak Mathematical Journal 55 (2005), no. 4, 923–932.

[10] D. Freni, Minimal order semihypergroups of type U on the right, II, J.
Algebra 340 (2011), 77–89.

[11] D. Heidari and B. Davvaz, On ordered hyperstructures, Politehn. Univ.
Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 73 (2011), no. 2, 85–96.

[12] D. Heidari, S. O. Dehkordi, and B. Davvaz, Γ-Semihypergroups and their
properties, UPB Scientific Bulletin, Series A: Applied Mathematics and
Physics 72 (2010), no. 1, 195–208.

[13] K. Hila, B. Davvaz, and J. Dine, Study on the structure of Γ-
semihypergroups, Communications in Algebra 40 (2012), no. 8, 2932–2948.

[14] K. Hila, and B. Davvaz and K. Naka, On Quasi-hyperideals in Semihyper-
groups, Communications in Algebra 39 (2011), 4183–4194.

[15] V. Leoreanu, About the simplifiable cyclic semihypergroups, Ital. J. Pure
Appl. Math. 7 (2000), 69–76.

[16] F. Marty, Sur une generalization de la notion de groupe, 8iem congres
Math. Scandinaves, Stockholm (1934), 45–49.
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