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Topological Global and Partial Actions: Some
Properties and Examples

Acciones Globales y Parciales Topológicas: Algunas Propiedades y
Ejemplos

Jesús Ávila1,a, Fabián Molina2,b

Abstract. In this work we study the global and partial group actions of
topological groups on topological spaces. We present the basic concepts and
their properties, together with enough examples to understand the theory. We
introduce the concept of globalization of a topological partial action and we
show that any topological partial action arises from the restriction of a mini-
mal globalization, which is called an enveloping action. Finally, we explicitly
show several examples of topological partial actions and we construct their
enveloping actions in full detail.
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Resumen. En este trabajo estudiamos las acciones globales y parciales de gru-
pos topológicos sobre espacios topológicos. Presentamos los conceptos básicos
y sus propiedades, junto con suficientes ejemplos para entender la teoŕıa. In-
troducimos el concepto de globalización de una acción parcial topológica y
mostramos que cualquier acción parcial topológica proviene de la restricción de
una globalización minimal, la cual es llamada acción envolvente. Finalmente,
mostramos expĺıcitamente varios ejemplos de acciones parciales topológicas y
construimos detalladamente sus acciones envolventes.
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1. Introduction

Historically, the works of Lagrange and Galois on the solvability of an algebraic
equation by radicals originated the concept of group action on a set. Group
actions have because been used successfully throughout the twentieth century
in almost all areas of mathematics (see [9, 11]).
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The theory of partial actions was developed in the last eighteen years and it
has been shown to be an excellent generalisation of global actions. The theory
of partial actions was defined and studied by Exel in [6], and later in [1] and
[10], where the study of the globalizations of a partial action was initiated.
These actions have been fundamental to obtain new results in rings (see [5, 7]),
in metric and topological spaces (see [2, 3]), in homotopy theory ([13]), in
operator theory and in dynamical systems, among many others (see [10, 4]).

Kellendonk and Lawson in [10] introduced the notion of globalization of
a partial action and proved that any partial group action on a set possesses
a unique minimal globalization, which is called an enveloping action. This
concept became relevant for any study on partial actions (see [4]).

The purpose of this paper is to study topological partial actions. Although
this concept was introduced by Abadie in [2] with some properties and general
examples, we believe that it is necessary to explain certain important details
to facilitate the understanding of this topic. In particular, we will explicitly
develop several concrete examples and we will also make several proofs, which
were not included in [2]. In addition, we introduce the concept of globalization
of a topological partial action, which was not considered in [2]. This concept of
globalization naturally leads to the enveloping of a topological partial action,
which was considered in [2]. This paper is organised in the following manner.
In Section 2, we present the topological global actions, some of their prop-
erties and we also give several interesting examples. In Section 3, we study
the topological partial actions and show in detail several results of [2]. More-
over, we include several examples of topological partial actions, which are fully
developed. Finally, in Section 4 we introduce the concept of globalization of
a topological partial action and we prove that any topological partial action
arises from a minimal globalization, which is called an enveloping action. In
addition, we explicitly construct the enveloping actions of the examples given
in the previous section.

2. Topological Global Actions

In this section we present the topological global actions, including a description
of some of their properties and several examples.

Definition 2.1 ([8]). Let G be a topological group with identity element e
and X a topological space. A topological global action of G on X is a function
ϕ : G×X → X which satisfies:

1. ϕ(e, x) = x for each x ∈ X.

2. ϕ(gh, x) = ϕ(g, ϕ(h, x)), for every pair g, h ∈ G and each x ∈ X.

3. ϕ is continuous with the product topology on G×X.

In this case, we say that G acts globally and topologically on X. Also, if
x ∈ X and A ⊆ X, the G−orbit (or simply, orbit) of x with respect to ϕ is
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the set G(x) = {ϕ(g, x) : g ∈ G} and the A− orbit with respect to ϕ is the set
G(A) =

⋃
x∈AG(x).

Example 2.2. 1. Given a topological group G and a topological space X,
the projection πX : G×X → X is a global topological action of G on X.

2. The topological group (Z,+) with the discrete topology, acts globally
and topologically on S1 with the function β : Z × S1 → S1 given by
β(k, z) = e2πikθz, for some fixed angle θ, each pair k ∈ Z, and z ∈ S1.
In fact, 1. and 2. are easy to check. For 3., given (k, z) ∈ Z × S1 and a
basic open set U ⊆ S1 such that β(k, z) ∈ U , there exists r > 0 such that
U = B(β(k, z); r) ∩ S1 where B(β(k, z); r) ⊆ C is the ball with center in
β(k, z) and radius r. Thus, we define V = B(z; r) ∩ S1 and so z ∈ V .
Now, if w ∈ β({k}×V ), then w = β(k, t) for some t ∈ V . That is, ‖t‖ = 1
and t ∈ B(z; r). Therefore, ‖t− z‖ < r and thus

‖w − β(k, z)‖ = ‖e2πikθt− e2πikθz‖ = ‖e2πikθ‖‖t− z‖ < r.

Moreover, ‖w‖ = ‖e2πikθ‖‖t‖ = 1 and thus w ∈ B(β(k, z); r) ∩ S1 = U .
That is, β({k} × V ) ⊆ U and consequently {k} × V is an open set of
Z × S1 such that (k, z) ∈ {k} × V and β({k} × V ) ⊆ U . Hence, β is
continuous.

3. The group GLn(R) with the topology induced by

‖A‖ = sup

{
‖Ax‖
‖x‖

: x ∈ Rn, ‖x‖ 6= 0

}
,

acts globally and topologically on Rn with the function ψ(A, x) = Ax,
for each pair A ∈ GLn(R) and x ∈ Rn. In fact, 1. and 2. are verified
immediately. For 3., given ε > 0, B ∈ GLn(R) and y ∈ Rn, let us define
δ = min{1, ε/(1 + ‖y‖ + ‖B‖)}. Then for each pair A ∈ GLn(R) and
x ∈ Rn such that ‖(A, x)− (B, y)‖ < δ we have

‖ψ(A, x)− ψ(B, y)‖ = ‖Ax−By‖
= ‖(A−B)(x− y) + (A−B)y +B(x− y)‖
≤ ‖(A−B)(x− y)‖+ ‖(A−B)y‖+ ‖B(x− y)‖
≤ ‖A−B‖‖x− y‖+ ‖A−B‖‖y‖+ ‖B‖‖x− y‖
< δ2 + δ‖y‖+ δ‖B‖
≤ δ + δ‖y‖+ δ‖B‖
= δ(1 + ‖y‖+ ‖B‖) ≤ ε.

Thus ψ(A, x) = Ax is continuous and consequently it is a topological
global action of GLn(R) on Rn.
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Note that if ϕ is a topological global action of G on X, then for each g ∈ G,
the function ϕg : X → X defined by ϕg(x) = ϕ(g, x) for each x ∈ X, is a
homeomorphism. In fact, ϕg is bijective for every g ∈ G. Now, let x ∈ X, g ∈ G
and U ⊆ X an open neighborhood of ϕg(x). We then have that ϕ(g, x) ∈ U .
Since ϕ is continuous, there are open sets H ⊆ G and V ⊆ X such that
(g, x) ∈ H × V and ϕ(H × V ) ⊆ U . Thus, V is an open neighborhood of x
such that ϕg(V ) = ϕ({g}×V ) ⊆ ϕ(H ×V ) ⊆ U . Therefore, ϕg is continuous.
Meanwhile, ϕ−1g = ϕg−1 is a continuous function.

Furthermore, the following proposition shows that every topological global
action of G on X determines a representation of G as homeomorphisms of X.

Proposition 2.3. If ϕ is a topological global action of G on X and HX is
the set of all homeomorphisms of X, then the function Θ : G → HX given by
Θ(g) = ϕg for each g ∈ G, is a continuous homomorphism of topological groups
where HX has the topology whose subbase is given by the sets

S(x, U) = {f ∈ HX : f(x) ∈ U},

where x ∈ X and U is an open set of X.

Proof. It is clear that HX is a topological group. Note that

Θ(gh)(x) = ϕgh(x) = ϕ(gh, x) = ϕ(g, ϕ(h, x))

= ϕg(ϕh(x)) = (ϕg ◦ ϕh)(x) = (Θ(g) ◦Θ(h))(x).

So Θ(gh) = Θ(g) ◦ Θ(h). In addition, if S(x, U) is an open neighborhood of
Θ(g), then ϕg ∈ S(x, U) and hence ϕg(x) ∈ U . Since ϕ is continuous, there
are open neighborhoods W ⊆ G and V ⊆ X of g and x, respectively, such that
ϕ(W × V ) ⊆ U . Note that if λ ∈ Θ(W ), then λ = ϕh for some h ∈ W where
λ(x) ∈ ϕh(V ). Furthermore, ϕh(V ) ⊆

⋃
t∈W ϕt(V ) = ϕ(W × V ) ⊆ U, then

λ(x) ∈ U and thus λ ∈ S(x, U). Then, g ∈W and Θ(W ) ⊆ S(x, U); that is, Θ
is continuous.

Reciprocally, each representation of a topological group G by homeomor-
phisms of a topological space X determines a topological global action of G on
X.

Proposition 2.4. Let G be a topological group and X a topological space. If
Ω : G → HX is a continuous homomorphism, then Ω induces a topological
global action of G on X.

Proof. Since Ω(g) : X → X is a homeomorphism, then the function ϕ : G ×
X → X given by ϕ(g, x) = Ω(g)(x), for every pair g ∈ G and x ∈ X, is
a topological global action. In fact, 1. ϕ(e, x) = Ω(e)(x) = iX(x) = x for
each x ∈ X. 2. ϕ(gh, x) = Ω(gh)(x) = (Ω(g) ◦ Ω(h))(x) = Ω(g)(Ω(h)(x)) =
ϕ(g, ϕ(h, x)) for every pair g, h ∈ G and for each x ∈ X. 3. Suppose that U ⊆
X is an open neighborhood of ϕ(g, x), then Ω(g)(x) ∈ U . Thus, Ω(g) ∈ S(x, U)
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and since Ω is continuous, then there exists an open neighborhood W ⊆ G of g
such that Ω(W ) ⊆ S(x, U). On the other hand, if k ∈ W then Ω(k) ∈ S(x, U)
and therefore Ω(k)(x) ∈ U . Thus, there exists an open neighborhood V of x
such that Ω(k)(V ) ⊆ U . Now, if t ∈ ϕ(W × V ), then t = ϕ(h, y) for some
pair h ∈ W and y ∈ V . Hence t = Ω(h)(y) ∈ Ω(h)(V ) ⊆ U and consequently
(g, x) ∈W × V and ϕ(W × V ) ⊆ U . That is, ϕ is continuous.

3. Topological Partial Actions

The main aim of this section is to introduce the concept of topological partial
action, show some examples and properties, and compare it with the concept
of topological global action.

Definition 3.1 ([2]). Let G be a topological group and X a topological space.
We say that α is a topological partial action of G on X, if there exists a class
of pairs {(Xg, αg)}g∈G where Xg is an open set of X and αg : Xg−1 → Xg is a
homeomorphism such that:

1. Xe = X and αe = idX .

2. α−1h (Xh ∩Xg−1) ⊆ X(gh)−1 , for every pair g, h ∈ G.

3. (αg ◦ αh)(x) = αgh(x), for each x ∈ α−1h (Xh ∩Xg−1).

4. The set Γα = {(g, x) ∈ G×X : x ∈ Xg−1} is open in G×X.

5. The function α : Γα → X given by α(g, x) = αg(x), is continuous.

In this case, we also say that G acts partially and topologically on X.

From the previous definition, we claim that all topological global action is
a topological partial action. In fact, if ϕ is a topological global action of G on
X, then {(X,ϕg)}g∈G is a collection of pairs that satisfies the conditions 1-5
of the Definition 3.1.

If α is a topological partial action of G on X, then there exists a class of
pairs {(Xg, αg)}g∈G such that:

1. For each x ∈ X we have that (e, x) ∈ Γα because x ∈ X = Xe. Hence
α(e, x) = αe(x) = x for each x ∈ X.

2. If x ∈ α−1h (Xh ∩Xg−1), then αh(x) ∈ Xh ∩Xg−1 . Thus:

(a) x ∈ Xh−1 and so (h, x) ∈ Γα.

(b) αh(x) ∈ Xg−1 and so (g, αh(x)) ∈ Γα.

Moreover, x ∈ X(gh)−1 where (gh, x) ∈ Γα and therefore

α(gh, x) = αgh(x) = αg(αh(x)) = α(g, α(h, x)).
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3. The function α : Γα → X given by α(g, x) = αg(x), is continuous.

Thus, α is a topological global action of G on X, if and only if, Γα = G×X.
The following example, created by the authors, shows a simple topological

partial action, which is related to the reflection of the plane R2 over the x−axis.

Example 3.2. Let G = {1,−1} (with the discrete topology) and X = {(x, y) ∈
R2 : y > 0} (with the usual topology). If {(Xt, αt)}t∈G is the collection given
by X1 = X, X−1 = ∅, α1 = iX and α−1 = ∅, then Γα = {1} × X and the
function α : Γα → X given by α(1, (x, y)) = (x, y) is a topological partial action
of G on X.

In the next section it will be seen that the following example is closely
related to the concept of suspension in dynamical systems [14].

Example 3.3 ([2]). Let X be a topological space and let h : X → X be a
homeomorphism. If {(Xt, αt)}t∈R is given by Xt = X and αt = ht when t ∈ Z,
and Xt = ∅ and αt = ∅ when t 6∈ Z. Then Γα = Z × X and the function
α : Γα → X given by α(t, x) = ht(x), is a topological partial action of Rd (with
the discrete topology) on X.

The following example shows that topological partial actions appear nat-
urally in differential geometry. Although this example is taken from [2], we
develop all the details to prove that there is a topological partial action. In
addition, we include a particular case to facilitate the understanding of these
concepts.

Example 3.4 ([2]). The flow of a differentiable vector field is a topological
partial action. More precisely, let X be a differentiable manifold of class C2

and let v : X → TX be a vector field of class C1 of X in the tangent bundle
of X. For each x ∈ X, γx denotes the integral curve such that γx(0) = x and
γ′x(t) = v(γx(t)) whose domain is a maximum open interval Ix ⊆ R containing
0. For each t ∈ R, let us define X−t = {x ∈ X : t ∈ Ix} and αt : X−t → Xt the
function given by αt(x) = γx(t). Then, Γα = {(t, x) ∈ R ×X : −t ∈ Ix} and
therefore the function α : Γα → X given by α(t, x) = αt(x) is a topological
partial action of R on X. In fact,

1. For each t ∈ R, Xt is an open set and αt is a diffeomorphism. Then,
αt and α−1t are differentiable and thus they are continuous. So, αt is a
homeomorphism for each t ∈ R.

2. Note that X0 = {x ∈ X : 0 ∈ Ix} = X and α0(x) = γx(0) = x = idX(x),
for each x ∈ X .

3. If s, t ∈ R, then α−1t (Xt∩X−s) ⊆ α−1t (X−s) = X−t∩X−(s+t) ⊆ X−(s+t).

4. If x ∈ α−1t (Xt ∩X−s), then x ∈ X−(s+t) and thus,

(αs ◦ αt)(x) = αs(αt(x)) = αs(γx(t)) = γγx(t)(s) = γx(s+ t) = αs+t(x).
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5. If (t, x) ∈ Γα, then x ∈ X−t and thus t ∈ Ix. So, Ix × X−t is an
open neighborhood of (t, x). Furthermore, Ix × X−t ⊆ Γα. In fact, if
(s, y) ∈ Ix ×X−t, then s ∈ Ix, y ∈ X−t and thus,

y ∈ X−t = α−s(Xs ∩Xs−t) ⊆ α−s(Xs) = α−1s (Xs) = X−s.

Then, (s, y) ∈ Γα and hence Γα is an open set.

6. The funtion α : Γα → X given by α(t, x) = αt(x) is continuous. Suppose
that (t, x) ∈ Γα and let U ⊆ X an open neighborhood of α(t, x). Since
αt is continuous, there is an open set Vt ⊆ Xt−1 such that x ∈ Vt and
αt(Vt) ⊆ U . Hence, t ∈ Ix, (t, x) ∈ Ix × Vt ⊆ Γα, and α(Ix × Vt) =⋃
s∈Ix αs(Vs) ⊆ U.

In particular, let X = R and let v : X → TX be the vector field given
by v(w) = e−w∂/∂w. If α is the topological partial action described in the
previous example, then Xt = {x ∈ R : t < ex} and αt(x) = ln(t + ex) (Figure
1). Moreover, note that Γα = {(t, x) ∈ R2 : −t < ex} ( G×X (Figure 2).

Figure 1. Graph of αt(x). Particular Case of Example 3.4.

Figure 2. Graph of Γα. Particular Case of Example 3.4.

Note that all of the topological partial actions of the previous examples are not
topological global actions. Abadie in [2] determines the sufficient conditions on
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the topological group and the topological spaces under which any topological
partial action necessarily ends up being a topological global action. We present
this result later on and we will include all of the details of the proof by showing
clearly where the correspondence assumptions are used.

Theorem 3.5 ([2]). If α is a topological partial action of G on a compact
topological space X, then there exists an open subgroup H ⊆ G such that H ×
X ⊆ Γα and the restriction of α to H ×X is a topological global action of H
on X. Moreover, if G is connected, then α is a topological global action of G
on X.

Proof. Let {(Xg, αg)} be the collection given by α. For each y ∈ X, let us
define Ay = {g ∈ G : y ∈ Xg−1} and let A =

⋂
{Ay : y ∈ X}. Then:

1. If x ∈ X, then x ∈ Xe. Therefore, e ∈ Ax and so e ∈ A.

2. If x ∈ X and g, h ∈ A, then g, h ∈ Ay for each y ∈ X. In particular,
g ∈ Ax and h ∈ Aαg(x), thus x ∈ Xg−1 and αg(x) ∈ Xh−1 . So αg(x) ∈ Xg

and consequently αg(x) ∈ Xg ∩ Xh−1 . Hence, x ∈ α−1g (Xg ∩ Xh−1) ⊆
X(gh)−1 and so gh ∈ Ax. Therefore, gh ∈ A.

Thus, A is a submonoid of G. In addition, for each x ∈ X we have (e, x) ∈
Γα and so there are open neighborhoods Ux ⊆ X of x and Wx ⊆ G of e such
that Wx×Ux ⊆ Γα. Consequently, there exists a symmetric open neighborhood
Vx of e such that Vx ⊆Wx.

Given that {Ux : x ∈ X} is a covering of X, there are x1, ..., xn ∈ X such
that X =

⋃n
i=1 Uxi

. If V =
⋂n
i=1 Vxi

, then V is a symmetric open neighborhood
of e. Furthermore, if t ∈ V and x ∈ X, then t ∈ Vxi

for every i = 1, ..., n and
x ∈ Uxi0

for some 1 ≤ i0 ≤ n. Therefore, (t, x) ∈ Vxi0
× Uxi0

⊆ Γα and so
x ∈ Xt−1 . Hence t ∈ Ax and consequently V ⊆ A.

Note that V generates an open subgroup contained in A. In fact, since
A is a monoid then V m ⊆ A and it is an open set for every m ∈ N. Thus,
H =

⋃∞
m=1 V

m is an open subgroup generated by V which is contained in A.
Now, if (h, x) ∈ H ×X, then h ∈ A and therefore h ∈ Ax. Thus x ∈ Xh−1 ,

that is, (h, x) ∈ Γα. Therefore, H × X ⊆ Γα. In addition, given that H is a
group, then the restriction ϕ of α to H ×X is a topological partial action of
H on X. So the function ϕ : H × X → X given by ϕ(h, x) = αh(x) is well
defined and it is a topological global action of H on X.

Finally, since H is an open subgroup, then for every g ∈ G is fulfilled that
gH is open (see [12] for details). From group theory, G is the disjoint union
of H and the union of the left cosets gH where g 6∈ H. This implies that
Hc =

⋃
{gH : g 6∈ H} is open and therefore H is closed and not empty. Hence,

if G is connected, then H = G and so Γα = G ×X. Thus, α is a topological
global action of G on X.

Corollary 3.6. The flow of a differentiable vector field on a differentiable
compact manifold is a topological global action.
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Example 3.7. Let X = S1 and let v : X → TX be the vector field given
by v(z) = iz∂/∂z. If α is the topological partial action described in Example
3.4, then αt(x) = xeit and Xt = S1. Thus, Γα = R × S1 and the function
α : Γα → S1 given by α(t, x) = xeit, is a topological global action of R on S1.

The following proposition states that the restriction of a topological global
action to an open set of a topological space is a topological partial action. This
result is very important because from it arises the notion of globalization of a
topological partial action, which will be studied in the next section. This result
is in [2] without proof, but we include it here for the sake of completeness of
this work.

Proposition 3.8 ([2]). Let ϕ be a topological global action of G on X, S
an open subset of X, and the collection given by {(Sg, αg)}g∈G with Sg =
S ∩ ϕg(S) and αg : Sg−1 → Sg defined as αg(x) = ϕg(x), for each x ∈ Sg−1 .
If Γα = {(g, x) ∈ G × S : x ∈ Sg−1}, then the function α : Γα → S given by
α(g, x) = αg(x) is a topological partial action of G on S. This restriction of ϕ
is called the induced topological partial action of G on S.

Proof. 1. Since S is an open set, then ϕg(S) is also an open set. Thus,
Sg = S∩ϕg(S) is an open set of S, for each g ∈ G. Moreover, ϕg : X → X
is a homeomorphism for each g ∈ G and consequently αg : Sg−1 → Sg is
also a homeomorphism.

2. Note that Se = S∩αe(S) = S∩S = S. Furthermore, αe(x) = ϕe(x) = x,
for each x ∈ S and hence αe = idS .

3. If x ∈ S and g, h ∈ G are such that x ∈ α−1h (Sh ∩Sg−1), then x = α−1h (y)
for some y ∈ Sh ∩ Sg−1 . Thus, y ∈ Sg−1 and so y ∈ ϕg−1(S). Therefore,
y = ϕg−1(z) for some z ∈ S. Consequetly,

x = αh−1(y) = ϕh−1(y) = ϕh−1(ϕg−1(z)) = ϕh−1g−1(z) = ϕ(gh)−1(z).

Hence x ∈ ϕ(gh)−1(S) and so x ∈ S ∩ ϕ(gh)−1(S) = S(gh)−1 .

4. If g, h ∈ G and x ∈ α−1h (Sh ∩ Sg−1), then x ∈ S(gh)−1 and therefore

(αg ◦ αh)(x) = (ϕg ◦ ϕh)(x) = ϕgh(x) = αgh(x).

5. If (g, x) ∈ Γα, then x ∈ Sg−1 and thus ϕ(g, x) = αg(x) ∈ Sg ⊆ S.
Since ϕ is continuous in G × X, then it is also continuous in G × S.
Now, since S is an open neighborhood of ϕ(g, x), then there are open
sets U ⊆ G and V ⊆ S such that (g, x) ∈ U × V and ϕ(U × V ) ⊆ S,
which implies that U × V ⊆ Γα. In fact, for each t ∈ U we have that
ϕt(V ) = ϕ({t} × V ) ⊆ ϕ(U × V ) ⊆ S and thus V ⊆ ϕ−1t (S) = ϕt−1(S).
Hence, if (h, y) ∈ U × V , then y ∈ V ⊆ ϕh−1(S); that is, y ∈ Sh−1 and
therefore (h, y) ∈ Γα. Consequently, Γα is open.
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6. The function α : Γα → S, given by α(g, x) = αg(x) is continuous. In
fact, if (g, x) ∈ Γα and W ⊆ S is an open neighborhood of α(g, x), then
x ∈ Sg−1 and α(g, x) = ϕ(g, x). Hence, W is an open neighborhood
of ϕ(g, x) and thus there are open sets U ⊆ G and V ⊆ S such that
(g, x) ∈ U × V and ϕ(U × V ) ⊆ W . Finally, by the previous paragraph,
U × V ⊆ Γα and therefore α(U × V ) = ϕ(U × V ) ⊆W .

4. Enveloping Action of a Topological Partial
Action

In this section, we introduce the concept of globalization of a topological partial
action and prove that any topological partial action arises from a minimal
globalization, which is called an enveloping action. Although this last concept
was introduced in [2], we give several definitions and prove some results to
clarify the difference between globalization and an enveloping action. Finally,
we construct the enveloping actions of the examples given in Section 3.

Definition 4.1 ([2]). Let α and β be topological partial actions of G on X
and Y , respectively. We say that α and β are equivalent, if there exists a
homeomorphism f : X → Y such that f(Xg) ⊆ Yg and βg(f(x)) = f(αg(x)),
for every pair g ∈ G and x ∈ Xg−1 .

Definition 4.2. Given a topological partial action α of G on X, we say that
(Y, ψ, j) is a globalization of α, if ψ is a topological global action of G on Y
and j : X → Y is an injective continuous function, such that, j(X) is an open
subset of Y and the induced topological partial action of G on j(X) and α are
equivalent.

Proposition 4.3 ([2]). If α is a topological partial action of G on X, then the
relation ∼ on G × X given by (g, x) ∼ (h, y) if, and only if, x ∈ Xg−1h and
αh−1g(x) = y, is an equivalence relation.

Theorem 4.4 ([2]). Let ∼ be the equivalence relation of the previous propo-
sition. If Xe = (G × X)/ ∼ and q : G × X → Xe is the quotient function,
then:

1. The function ι : X → Xe given by ι(x) = q(e, x) is injective and open.
Moreover, the set ι(X) is open in Xe.

2. The function αe : G ×Xe → Xe given by αe(g, q(h, x)) = q(gh, x), is a
topological global action of G on Xe.

3. (Xe, αe, ι) is a globalization of α.

Proof. 1. If x, y ∈ X and ι(x) = ι(y), then q(e, x) = q(e, y); that is, (e, x) ∼
(e, y). Thus, x = αe(x) = y. Now, suppose that U ⊆ X is an open
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set. Since α : Γα → X is a topological partial action of G on X, it is
continuous. Thus,

q−1(ι(U)) = {(t, x) : q(t, x) ∈ ι(U)}
= {(t, x) : q(t, x) = q(e, y) for some y ∈ U}
= {(t, x) : x ∈ Xt−1 , αt(x) ∈ U}
= α−1(U),

is an open subset of Γα. Since Γα is open in G×X, then so is q−1(ι(U)).
Finally, for the quotient topology we have that ι(U) is open in Xe. In
particular, ι(X) is open in Xe.

2. It is easy to verify that αe is well defined. Moreover,

(a) αe(e, q(h, x)) = q(eh, x) = q(h, x), for every pair h ∈ G and x ∈ X.

(b) If s, t ∈ G, then for every pair h ∈ G and x ∈ X we have that

αe(st, q(h, x)) = q((st)h, x) = q(s(th), x)

= αe(s, q(th, x)) = αe(s, αe(t, q(h, x))).

(c) Before to prove that αe is continuous, let us γ : G×(G×X)→ G×X
given by γ(g, (h, x)) = (gh, x) for every pair g, h ∈ G and for each
x ∈ X. Then γ is a topological global action of G on G × X. In
fact,

i. γ(e, (h, x)) = (eh, x) = (h, x), for every pair h ∈ G and x ∈ X.

ii. If s, t ∈ G, then for every pair h ∈ G and x ∈ X is fulfilled that

γ(s, γ(t, (h, x))) = γ(s, (th, x)) = (s(th), x)

= ((st)h, x) = γ(st, (h, x))

iii. Now, if g ∈ G, (h, x) ∈ G×X and P ⊆ G×X is an open neigh-
borhood of γ(g, (h, x)). Then, (gh, x) ∈ P and there are open
neighborhoods Q ⊆ G and R ⊆ X of gh and x, respectively
such that Q × R ⊆ P . Furthermore, there are open neighbor-
hoods Q1 and Q2 of g and h, respectively, such that Q1Q2 ⊆ Q.
Thus Q2 × R is an open neighborhood of (h, x) and therefore,
Q1 × (Q2 ×R) is an open neighborhood of (g, (h, x)) such that

γ(Q1 × (Q2 ×R)) = (Q1Q2)×R ⊆ Q×R ⊆ P.

Thus, γ is continuous.

From the previous observation of Proposition 2.3, for each g ∈ G, the
function γg : (G×X)→ (G×X), given by γg(h, x) = γ(g, (h, x)) =
(gh, x) for every (h, x) ∈ G × X, is a homeomorphism of G × X.
With this, we claim that the quotient function q is open in G×X.
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If M × N is a basic open subset of G × X, we shall prove that
q−1(q(M × N)) is open. In fact, if (g, x) ∈ q−1(q(M × N)), then
q(g, x) ∈ q(M × N) and there exists (h, y) ∈ M × N such that
q(g, x) = q(h, y). So x ∈ Xg−1h = X(h−1g)−1e and y = αh−1g(x) =
αe−1(h−1g)(x) ∈ Xh−1g. This implies that q(h−1g, x) = q(e, y).

Since y ∈ N , then q(h−1g, x) = q(e, y) = ι(y) ∈ ι(N) and thus
(h−1g, x) ∈ q−1(ι(N)). Applying γh we obtain that

(g, x) ∈ γh(q−1(ι(N)))

where γh(q−1(ι(N))) is open since ι is open, q is continuous and γh
is a homeomorphism.

On the other hand, let us (k, z) ∈ γh(q−1(ι(N))). Then

q(h−1k, z) ∈ ι(N)

and there exists n ∈ N such that q(h−1k, z) = ι(n) = q(e, n)
and therefore z ∈ X(h−1k)−1e = Xk−1h and n = αe−1(h−1k)(z) =
αh−1k(z). Hence,

q(k, z) = q(h, n) ∈ q(M ×N)

and consequently, (k, z) ∈ q−1(q(M ×N)). So, we have that

(g, x) ∈ γh(q−1(ι(N))) ⊆ q−1(q(M ×N))

and thus q−1(q(M×N)) is open. By the quotient topology, q(M×N)
is open in Xe and thus q is an open function.

Now, let us g ∈ G, q(h, x) ∈ Xe and U ⊆ Xe is an open neigh-
borhood of αe(g, q(h, x)). Then, q(gh, x) ∈ U and since q is con-
tinuous, there are open neighborhoods M ⊆ G and N ⊆ X of gh
and x, respectively such that q(M ×N) ⊆ U . In addition, there are
open neighborhoods V1 and V2 of g and h, respectively, such that
V1V2 ⊆M . Given that q is open, then q(V2×N) is an open neighbor-
hood of q(h, x). Therefore, V1× q(V2×N) is an open neighborhood
of (g, q(h, x)) such that

αe(V1 × q(V2 ×N)) = q(V1V2 ×N) ⊆ q(M ×N) ⊆ U.

Thus, αe is continuous.

3. Given that αe is a topological global action of G on Xe, the restriction of
αe on ι(X) induces a topological partial action ε of G on S = ι(X) given
by the collection {(Sg, εg)}g∈G where Sg = S ∩αe

g(S) and εg : Sg−1 → Sg
is the homeomorphism defined as εg(ι(x)) = αe

g(ι(x)) for each ι(x) ∈ Sg−1 .

Now, if g ∈ G and ι(y) ∈ ι(Xg), then ι(y) = ι(αg(z)) for some z ∈ Xg−1 ⊆
X and so ι(y) = αe

g(ι(z)) ∈ αe
g(S). Note that Xg ⊆ X, then ι(Xg) ⊆ S

and so ι(y) ∈ S ∩ αe
g(S) = Sg. Consequently, ι(Xg) ⊆ Sg.
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In addition, if g ∈ G and x ∈ Xg−1 , then αg(x) ∈ Xg and αg−1e(αg(x)) =
x. So (e, αg(x)) ∼ (g, x) and therefore q(g, x) = q(e, αg(x)) = ι(αg(x)).
Furthermore,

εg(ι(x)) = αe
g(ι(x)) = αe(g, q(e, x)) = q(g, x) = ι(αg(x)).

Finally, ι is the composition of the inclusion function x 7→ (e, x) and the
quotient function q. Because these functions are continuous, then so is
ι. Hence, ι : X → ι(X) is a homeomorphism such that ι(Xg) ⊆ Sg and
ι(αg(x)) = εg(ι(x)), for each g ∈ G and x ∈ Xg−1 . Thus, α and ε are
equivalent and therefore (Xe, αe, ι) is a globalization of α.

With the following definitions, we will prove very important properties of
the globalization defined in the previous proposition.

Definition 4.5. Let ϕ and ψ be topological global actions of G on X and Y ,
respectively. We say that a continuous function f : X → Y is a G−morphism
of X in Y (or simply G−morphism), if for every pair x ∈ X and g ∈ G, it holds
f(ϕ(g, x)) = ψ(g, f(x)).

Definition 4.6. If α is a topological partial action of G on X, we say that the
globalization (Z, φ,m) of α is minimal, if for any globalization (Y, ψ, j) of α,
there exists a unique G−morphism µ : Z → Y such that j = µ ◦m.

The existence of µ guarantees that the following diagram commutes:

X

j
  

m // Z

µ

��
Y

Definition 4.7. Let ϕ and ψ be topological global actions of G on X and Y ,
respectively. We say that ϕ and ψ are equivalent, if there exists a homeomor-
phism f : X → Y , which is a G−morphism.

Proposition 4.8. If α is a topological partial action of G on X and (Z, φ,m) is
a minimal globalization of α, then (Z, φ,m) is unique, except for equivalences.

Proof. Let (W,ω, k) be a minimal globalization of α. Then, there are
G−morphisms µ : Z →W and ν : W → Z such that µ ◦m = k and ν ◦ k = m:

X

k
  

m // Z

µ

��
W

ν

UU

Bolet́ın de Matemáticas 27(1) 43-61 (2020)
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Note that, iZ : Z → Z is a G−morphism such that iZ ◦m = m. Meanwhile,
ν ◦µ is a G−morphism of Z in Z such that (ν ◦µ)◦m = ν ◦(µ◦m) = ν ◦k = m.
Hence, ν ◦ µ = iZ . Analogously, µ ◦ ν = iW and therefore ν = µ−1. Now,
since ν is continuous, then so is µ−1 and so µ : Z → W is a homeomorphism.
Finally, since µ(φ(g, z)) = ω(g, µ(z)), for every pair g ∈ G and z ∈ Z, then φ
and ω are equivalent and hence the proof is complete.

Theorem 4.9. If α is a topological partial action of G on X, then with the
notations of the Theorem 4.4, (Xe, αe, ι) is a minimal globalization of α.

Proof. Let (Y, ψ, j) be a globalization of α. Note that if g ∈ G and x ∈ X, then
q(g, x) ∈ Xe, j(x) ∈ Y and ψ(g, j(x)) ∈ Y . Therefore, the function µ : Xe → Y
given by µ(q(g, x)) = ψ(g, j(x)) is well defined. In fact, if q(g, x) = q(h, y), then
x ∈ Xg−1h and αh−1g(x) = y. So j(αh−1g(x)) = j(y). In addition, ψ induces
a partial topological action β of G on T = j(X) equivalent to α given by the
collection {(Tg, βg)}g∈G where Tg = T ∩ ψg(T ) and βg : Tg−1 → Tg is the
homeomorphism defined as βg(t) = ψg(t) for each t ∈ Tg−1 . Hence,

βh−1g(j(x)) = j(αh−1g(x)) = j(y).

Consequently,

(βh−1 ◦ βg)(j(x)) = ψh−1(ψg(j(x))) = ψh−1g(j(x)) = βh−1g(j(x)) = j(y)

and so βg(j(x)) = βh(j(y)). Thus, ψ(g, j(x)) = ψ(h, j(y)), that is,
µ(q(g, x)) = µ(q(h, y)).

Now, suppose that q(g, x) ∈ Xe and U ⊆ Y is an open neighborhood of
µ(q(g, x)) = ψ(g, j(x)). Since ψ is continuous, there are open sets M ⊆ G
and N ⊆ Y such that (g, j(x)) ∈ M × N and ψ(M × N) ⊆ U . Because the
function j is continuous, there is an open S ⊆ X such that x ∈ S and j(S) ⊆ N .
Moreover, given that the quotient function q is open, V = q(M×S) ⊆ Xe is an
open neighborhood of q(g, x) such that µ(V ) = µ(q(M ×S)) = ψ(M × j(S)) ⊆
ψ(M×N) ⊆ U . Therefore, µ is continuous. In addition, if g, h ∈ G and x ∈ X,
then

µ(αe(g, q(h, x))) = µ(q(gh, x)) = ψ(gh, j(x))

= ψ(g, ψ(h, j(x))) = ψ(g, µ(q(h, x))).

Thus, µ is a G−morphism. Furthermore

(µ ◦ ι)(x) = µ(ι(x)) = µ(q(e, x)) = ψ(e, j(x)) = j(x)

for each x ∈ X. Therefore, j = µ ◦ ι and thus the following diagram is commu-
tative:

X

j
!!

ι // Xe

µ

��
Y

Bolet́ın de Matemáticas 27(1) 43-61 (2020)



57

Finally, if ν : Xe → Y is a G−morphism such that j = ν ◦ ι, then for each
q(g, x) ∈ Xe we have

µ(q(g, x)) = ψ(g, j(x)) = ψ(g, ν(ι(x)))

= ψ(g, ν(q(e, x))) = ν(αe(g, q(e, x))) = ν(q(g, x)).

Thus, µ is unique and therefore (Xe, αe, ι) is the minimal globalization of α.

Definition 4.10 ([2]). Let α be a topological partial action of G on X. The
minimal globalization of α, given by (Xe, αe, ι) is called the enveloping action
of α.

Now, we explicitly construct the enveloping actions of the examples given in
the previous section. We include all of the details for the benefit of the reader.

Example 4.11. Let G = {1,−1}, X = {(x, y) ∈ R2 : y > 0}, and α the
topological partial action of G on X of Example 3.2. For (a, b) ∈ X, we have
that q(1, (a, b)) = {(1, (a, b))} and q(−1, (a, b)) = {(−1, (a, b))}. Thus,

Xe = {q(1, (x, y)) : (x, y) ∈ X} ∪ {q(−1, (x, y)) : (x, y) ∈ X}
∼= {(x, y) ∈ R2 : y > 0} ∪ {(x, y) ∈ R2 : y < 0} (Figure 3).

So αe : G×Xe → Xe is equivalent to αe(t, (x, y)) = (x, ty) and ι(X) ∼= X.

Figure 3. Graph of X and Xe. Example 4.11.

Example 4.12. Let G = Rd, X = R, h : X → X the homeomorphism given
by h(x) = −x for each x ∈ R, and α the topological partial action described in
Example 3.3. Then, αe : Rd×Xe → Xe is defined as αe(s, q(t, x)) = q(s+t, x).
Furthermore,

1. If t ∈ Z and x ∈ X, then

(a) If t ∈ Z is even, we have that q(t, x) = q(0, x).

(b) If t ∈ Z is odd, we have that q(t, x) = q(0,−x).

2. If t 6∈ Z y x ∈ X, then there exist n ∈ Z and s ∈ R such that t− s = n,
where n = [|t|] and 0 < s < 1. Thus,
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(a) If n is even, we have that q(t, x) = q(s, x).

(b) If n is odd, we have that q(t, x) = q(s,−x).

Consequently, Xe ∼= [0, 1)× R (Figure 4) and ι(X) ∼= {(x, y) ∈ R2 : x = 0}.

Figure 4. Enveloping space Xe. Example 4.12.

The enveloping action constructed in the previous example is known in dynam-
ical systems as the suspension of h [14].

Example 4.13. Let us suppose that X = R and let v : X → TX be the vector
field given by v(w) = e−w∂/∂w. If α is the topological partial action described
in Example 3.4, then for every pair t ∈ R and x ∈ X we have that

q(t, x) = {(s, y) ∈ R2 : s < ex + t, y = ln(ex + t− s)}.

Therefore, Xe is the set of all curves of the form y = ln(ex + t − s). While
αe(r, q(t, x)) is the curve y = ln(ex + t + r − s); that is, αe acts globally and
topologically through horizontal translations of the curves of Xe (Figure 5).

Figure 5. Graph of q(t, x) and αe(r, q(t, x)). Example 4.13.

Note that if α is a topological partial action of G on X and x ∈ X, then the
orbit of ι(x) with respect to αe is the set {q(g, x) : g ∈ G}. Consequently, the
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orbit of ι(X) with respect to αe is
⋃
x∈X{q(g, x) : g ∈ G} = Xe. Therefore, X

can be seen as an open subset of Xe and α as the induced topological partial
action of αe on X. So X and Xe have the same local topological properties.
However, its global topological properties are not preserved, as shown later on.

Example 4.14 ([2]). In the Example 4.11 we can see that X is connected, but
the space Xe is not connected.

Example 4.15 ([2]). Consider the topological global action β : Z× S1 → S1

given by β(k, z) = e2πikθz, X an open arc of S1, and α the topological partial
action given by the restriction of β on X. Since the enveloping action of α is
minimal and unique except for equivalences, we have that Xe = S1. However,
X and S1 have a different fundamental group.

Example 4.16 ([2]). Suppose that G = {1,−1}, X = [0, 1], and α is the
topological partial action of G on X given by X1 = X, X−1 = V , α1 = iX ,
α−1 = iV where V = (a, 1] for some fixed 0 < a < 1. If G×X has the product
topology, then Xe is the topological space obtained by identifying the point
(1, t) with (−1, t) for each t ∈ (a, 1] (Figure 6). Note that X is Hausdorff, but
not there are disjoint open neighborhoods in Xe for q(1, a) and q(−1, a); that
is, Xe is not Hausdorff.

Figure 6. Enveloping space Xe. Example 4.16.

Proposition 4.17. Let α be a topological partial action of G on a connected
topological space X. If X is dense in Xe, then Xe is a connected space.

Proof. If X is dense in Xe, then X = Xe. Since X is connected and the closure
of any connected is connected, we have that Xe is connected.

The following result shows under what conditions the enveloping action
turns out to be a Hausdorff space.

Proposition 4.18. Let α be a topological partial action of G on a Hausdorff
topological space X. If K = {(g, x, y) ∈ G × X × X : x, y ∈ Xg−1 , αe

g(x) =
αe
g(y)} is a closed subset of G×X ×X, then the space Xe is Hausdorff, .

Proof. Let xe and ye be distinct elements of Xe and g ∈ G. Then, xe = αe
g(x)

and ye = αe
g(y) for some pair x, y ∈ X ⊆ Xe because αe

g : Xe → Xe is bijective.
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60 Jesús Ávila & Fabián Molina

Therefore, αe
g(x) 6= αe

g(y); that is, (g, x, y) 6∈ K. Since Kc is open, there are
open sets H ⊆ G and M,N ⊆ X such that (g, x, y) ∈ H ×M × N ⊆ Kc. So
xe = αe

g(x) ∈ αe
g(M) and ye = αe

g(y) ∈ αe
g(N) where αe

g(M) and αe
g(N) are

open sets because αe
g is a homeomorphism. Moreover, H ×M ×N and K are

disjoint and this implies that αe
g(M) and αe

g(N) are also disjoint. In fact, if
t ∈ αe

g(M) ∩ αe
g(N), then t = αe

g(m) and t = αe
g(n) for some pair m ∈ M and

n ∈ N . So, αe
g(m) = αe

g(n) and thus (g,m, n) ∈ K which is a contradiction.
Consequently, Xe is Hausdorff.
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Doutorado, Universidade de São Paulo, São Paulo, 1999.

[2] , Enveloping actions and Takai duality for partial actions, J. Funct.
Anal. 197 (2003), no. 1, 14–67.

[3] K. Choi and Y. Lim, Transitive partial actions of groups, Period. Math.
56 (2008), no. 2, 169–181.

[4] M. Dokuchaev, Partial actions: a survey, Contemp. Math. 537 (2011),
173–184.

[5] M. Dokuchaev and R. Exel, Associativity of crossed products by partial
actions, enveloping actions and partial representations, Trans. Am. Math.
Soc. 357 (2005), no. 5, 1931–1952.

[6] R. Exel, Partial actions of groups and actions of inverse semigroups, Proc.
Am. Math. Soc. 126 (1998), no. 12, 3481–3494.

[7] M. Ferrero, Partial actions of groups on algebras, a survey, São Paulo J.
Math. Sci. 3 (2009), no. 1, 95–107.

[8] A. Hatcher, Algebraic Topology, Cambridge University Press, 2009.

[9] L. Ji, A. Papadopoulos, and S. T. Yau (eds.), Handbook of Group Actions,
International Press of Boston, vol. 1, 2015.

[10] J. Kellendonk and M. V. Lawson, Partial actions of groups, Int. J. Algebr.
Comput. 14 (2004), no. 1, 87–114.
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