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ABSTRACT 

We generalize in this work three geometrical challenging problems addressed in mathematics 
literature. In generalizations, we adopt the theoretical assumptions established for this process 
and use GeoGebra to build figures and animation. The proposed and solved generalizations 
establish natural links between some mathematics areas, highlighting the importance of 
generalization processes for constructing mathematical knowledge in undergraduate programs 
in mathematics teacher education. We conclude that the use of GeoGebra was essential to a 
comprehensive understanding of the structures for generalization. 
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RESUMO 

Neste trabalho, generalizamos três problemas geométricos desafiadores presentes na literatura 
matemática. Nas generalizações, adotamos os pressupostos teóricos estabelecidos para esse 
processo e empregamos o GeoGebra para construir figuras e animações. As generalizações 
propostas  e solucionadas estabelecem conexões naturais entre algumas áreas da matemática, 
destacando a importância dos processos de generalização à construção do conhecimento 
matemático em cursos de graduação que preparam professores de matemática. Concluímos que 
o emprego do GeoGebra foi essencial à compreensão abrangente das estruturas para a 
generalização. 

Palavras-chave: teoremas geométricos; Ensino de Matemática; aplicativo de geometria. 
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Introduction  
Vygotsky (1986) considers that every concept is the result of a generalization 

process. Thus, for him, all concepts learned by human beings, and here we highlight 
the concepts and mathematical properties, are internalized through a generalization 
process. 

According to Dumitrascu (2017, p. 47):  
In the mathematics literature, generalization can be seen as a 
statement that is true for a whole category of objects; it can be 
understood as the process through which we obtain a general 
statement; or it can be the way to transfer knowledge from one 
setting to a different one. 
 

 In accordance with Hashemi et al. (2013), the generalization is one of the 
fundamental activities in learning mathematics, which needs to be further explored 
by individuals who teach and study mathematics. For Mason (1996), generalization 
is the heartbeat of mathematics. Davydov (1990) argues that the development of 
student generalization capacity is one of the main goals of mathematics, while 
Sriraman (2004) considers that the generalization begins with the construction of 
examples, within which plausible patterns are detected and lead to the formulation 
of theorems. 

However, generalizing in mathematics, particularly in geometry (ALLEN, 
1950; PARK; KIM, 2017), is generally not a trivial process. From the sum of the 
internal angles of a triangle (180°)  to the sum of the internal angles of an n-sided 
convex polygon (180°(𝑛𝑛 − 2)), the generalization occurs by a partition of the 𝑛𝑛-
sided convex polygon into 𝑛𝑛 − 2 triangles; from the Pythagorean theorem (𝑥𝑥2 +
𝑦𝑦2 = 𝑧𝑧2) to the Fermat theorem (𝑥𝑥𝑛𝑛 + 𝑦𝑦𝑛𝑛 = 𝑧𝑧𝑛𝑛), the generalization-required 
centuries of study and the creation of new areas in mathematics (SINGH, 2002). 

In this way, we illustrate in this work the generalization process in geometry 
using the concepts of Sriraman (2004). In this process, we replaced the construction 
of examples by selecting three geometrical challenging problems from the book 
Challenging problems in geometry by Posamentier and Salkind (1996): the measure 
of the midsegment of a triangle, the section of the hypotenuse, and the section of an 
internal angle of a triangle. These three geometrical challenging problems are then 
transformed into theorems, which can be complemented with proofs without words 
(NELSEN, 1993; LAGO; NÓS, 2020; NÓS; FERNANDES, 2018, 2019) in the 
dynamic geometry software GeoGebra (2021) and can be approached in 
mathematics teacher training courses. The first of the three problems can be 
presented in high school math classes. 
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1. Midsegment of a triangle 

Problem 1 (Challenging problem 3-7, page 12) If the measures of two sides and 
the included angle of a triangle are 7, √50, and 135°, respectively, find the measure 
of the segment joining the midpoints of the two given sides. 

We can solve Problem 1 utilizing distinct strategies. Posamentier and Salkind 
(1996) propose using the Pythagorean theorem (theorem 55, page 243) and the 
triangle midsegment theorem (theorem 26, page 241). 

Solution 1 Consider the triangle 𝐴𝐴𝐴𝐴𝐴𝐴, with sides 𝐴𝐴𝐴𝐴 = 𝑐𝑐 = 7, 𝐴𝐴𝐴𝐴 = 𝑏𝑏 = √50 and 
𝐴𝐴𝐴𝐴 = 𝑎𝑎, angle 𝐴𝐴�̂�𝐴𝐴𝐴 = 135°, E, and F midpoints on sides 𝐴𝐴𝐴𝐴���� and 𝐴𝐴𝐴𝐴����, respectively, 
and point D, orthogonal projection of the vertex 𝐴𝐴 of the triangle 𝐴𝐴𝐴𝐴𝐴𝐴 on the 
extension of side 𝐴𝐴𝐴𝐴����, as shown in Figure 1. 

 

 
 

 

 

 

 
FIGURE 1: Challenging problem 1: the midpoint segment 𝐸𝐸𝐸𝐸 of the triangle 𝐴𝐴𝐴𝐴𝐴𝐴 
SOURCE: Authors with GeoGebra 

Applying the Pythagorean theorem (LOOMIS, 1968) in the isosceles right 
triangle 𝐴𝐴𝐴𝐴𝐴𝐴, with measurement sides 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴 = 𝑥𝑥, we obtain that. 

2𝑥𝑥2 = 50 ⟹ 𝑥𝑥 = 5.                                                                                                            (1) 

Using (1) and the Pythagorean theorem in right  triangle 𝐴𝐴𝐴𝐴𝐴𝐴 - Figure 1,  we 
have that 

𝑎𝑎2 = 𝑥𝑥2 + (7 + 𝑥𝑥)2 ⟹ 𝑎𝑎2 = 25 + 144 ⟹ 𝑎𝑎 = 13, 

where 𝑎𝑎 is the measure of the hypotenuse of the right triangle 𝐴𝐴𝐴𝐴𝐴𝐴. 

Since 𝐸𝐸𝐸𝐸���� is a midsegment of the triangle 𝐴𝐴𝐴𝐴𝐴𝐴, applying the triangle 
midsegmente theorem, we conclude that 

𝐸𝐸𝐸𝐸 =
𝑎𝑎
2 =

13
2 . 

⁂ 

By fixing the measurements of the two sides of a triangle, as in Problem 1, and 
varying the measurement of the angle determined by those sides, we can visually 
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check or make a proof without words of the triangle midsegment theorem using a 
dynamic geometry software. We built an animation in GeoGebra, which can be done 
in mathematics classroom, and we make it available at the following address: 

https://www.GeoGebra.org/m/hamgfbgj. 

This animation makes it easier to devise the generalization of Problem 1. 

Theorem 1 (Generalization of Problem 1) If 𝑏𝑏 and 𝑐𝑐 are the measures of two sides 
of a triangle and 𝜃𝜃 is the angle determined by these two sides, then the measure of 
the segment whose ends are the midpoints of the sides with measures 𝑏𝑏 and 𝑐𝑐 is equal 
to 

√𝑏𝑏2 + 𝑐𝑐2 − 2𝑏𝑏𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃
2 . 

 
Proof  Considers in the triangle 𝐴𝐴𝐴𝐴𝐴𝐴, with sides 𝐴𝐴𝐴𝐴 = 𝑐𝑐, 𝐴𝐴𝐴𝐴 = 𝑏𝑏, and 𝐴𝐴𝐴𝐴 = 𝑎𝑎: the 
angle 𝐴𝐴�̂�𝐴𝐴𝐴 = 𝜃𝜃, 90° < 𝜃𝜃 < 180°; points E and F, respectively, midpoints of the 
sides 𝐴𝐴𝐴𝐴���� and 𝐴𝐴𝐴𝐴����, and point 𝐴𝐴, orthogonal projection of the vertex 𝐴𝐴 of the triangle 
𝐴𝐴𝐴𝐴𝐴𝐴 on the extension of side 𝐴𝐴𝐴𝐴����, as shown in Figure 2. 

 

 

 

 

 

 

 

 
FIGURE 2: Generalization of challenging problem 1: the law of cosines 
SOURCE: Authors with GeoGebra 

Calculating trigonometric ratios in the right triangle 𝐴𝐴𝐴𝐴𝐴𝐴, where 𝐴𝐴𝐴𝐴 = 𝑥𝑥 and 
𝐴𝐴𝐴𝐴 = 𝑦𝑦, and determining trigonometric transformations (HILL, 2019), we have 

𝑐𝑐𝑐𝑐𝑐𝑐(180° − 𝜃𝜃) =
𝑥𝑥
𝑏𝑏 ⟹ 𝑥𝑥 = −𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃,                                                                            (2) 

𝑐𝑐𝑠𝑠𝑛𝑛(180° − 𝜃𝜃) =
𝑦𝑦
𝑏𝑏
⟹ 𝑦𝑦 = 𝑏𝑏 𝑐𝑐𝑠𝑠𝑛𝑛𝜃𝜃.                                                                              (3) 

Applying the Pythagorean theorem in the right triangle 𝐴𝐴𝐴𝐴𝐴𝐴 - Figure 2,  and 
using (2), and (3), and  a   trigonometric  identity  (HILL, 2019), we  conclude  that 

https://www.geogebra.org/m/hamgfbgj
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𝑎𝑎2 = 𝑦𝑦2 + (𝑥𝑥 + 𝑐𝑐)2 ⟹ 𝑎𝑎2 = (𝑏𝑏 𝑐𝑐𝑠𝑠𝑛𝑛𝜃𝜃)2 + (−𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 + 𝑐𝑐)2, 

𝑎𝑎2 = 𝑏𝑏2(𝑐𝑐𝑠𝑠𝑛𝑛2𝜃𝜃 + 𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃) + 𝑐𝑐2 − 2𝑏𝑏𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃, 

𝑎𝑎2 = 𝑏𝑏2 + 𝑐𝑐2 − 2𝑏𝑏𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃,                                                                                                 (4) 

𝑎𝑎 = �𝑏𝑏2 + 𝑐𝑐2 − 2𝑏𝑏𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃, 

where 𝑎𝑎 is the measure of the hypotenuse of the right triangle 𝐴𝐴𝐴𝐴𝐴𝐴. 

Since is 𝐸𝐸𝐸𝐸���� a midsegment of the triangle 𝐴𝐴𝐴𝐴𝐴𝐴, we have by the triangle 
midsegment theorem that 

𝐸𝐸𝐸𝐸 =
𝑎𝑎
2 =

√𝑏𝑏2 + 𝑐𝑐2 − 2𝑏𝑏𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃
2 .                                                                                   (5) 

We can show that relations (4) and (5) remain true if  0° < 𝜃𝜃 ≤ 90°. 

□ 
The relation (4) is the law of cosines (HILL, 2019), and it can be applied 

directly to the triangle 𝐴𝐴𝐸𝐸𝐸𝐸 - Figure 1, to solve Problem 1. However, we choose to 
deduce it through the generalization of Problem 1, thus showing that generalization 
processes can be used in mathematics classes as demonstration activities. 

Using in relation (5) standard values of the first and second quadrants for the 
angle 𝜃𝜃, we have 

𝜃𝜃 = 30° ⟹ 𝐸𝐸𝐸𝐸 =
�𝑏𝑏2 + 𝑐𝑐2 − 𝑏𝑏𝑐𝑐√3

2 , 

𝜃𝜃 = 45° ⟹ 𝐸𝐸𝐸𝐸 =
�𝑏𝑏2 + 𝑐𝑐2 − 𝑏𝑏𝑐𝑐√2

2 , 

𝜃𝜃 = 60° ⟹ 𝐸𝐸𝐸𝐸 =
�𝑏𝑏2 + 𝑐𝑐2 − 𝑏𝑏𝑐𝑐√1

2 , 

𝜃𝜃 = 90° ⟹ 𝐸𝐸𝐸𝐸 =
�𝑏𝑏2 + 𝑐𝑐2 − 𝑏𝑏𝑐𝑐√0

2 , 

𝜃𝜃 = 120° ⟹ 𝐸𝐸𝐸𝐸 =
�𝑏𝑏2 + 𝑐𝑐2 + 𝑏𝑏𝑐𝑐√1

2 , 

𝜃𝜃 = 150° ⟹ 𝐸𝐸𝐸𝐸 =
�𝑏𝑏2 + 𝑐𝑐2 + 𝑏𝑏𝑐𝑐√2

2 , 

𝜃𝜃 = 150° ⟹ 𝐸𝐸𝐸𝐸 =
�𝑏𝑏2 + 𝑐𝑐2 + 𝑏𝑏𝑐𝑐√3

2 . 

In relation with 𝜃𝜃 = 30°, 45°, 135°, 150°, we have nested radicals, which 
allow us to discuss in the classroom the rules for denesting radicals (GKIOULEKAS, 
2017; NÓS; SAITO; SANTOS, 2017). 
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2. Section of the hypotenuse  
Problem 2 (Challenging problem 10-4, page 46) Prove that the sum of the squares 
of the distances from the vertex of the right angle, in a right triangle, to the trisection 
points along the hypotenuse, is equal to 5 9⁄  the square of the measure of the 
hypotenuse. 

Posamentier and Salkind (1996) propose using Stewart's theorem (page 45) to 
solve challenging problem 2. They also propose in challenge 2 of problem 10-4 to 
predict the value of the sum of the squares for a quadrisection of the hypotenuse 
(NÓS; SAITO; OLIVEIRA, 2016). 

Solution 2 Consider the right triangle 𝐴𝐴𝐴𝐴𝐴𝐴, with cathetus 𝐴𝐴𝐴𝐴 = 𝑏𝑏 and 𝐴𝐴𝐴𝐴 = 𝑐𝑐, and 
the cevians5 𝑑𝑑1 and 𝑑𝑑2, which trisect, respectively, the hypotenuse 𝐴𝐴𝐴𝐴 = 𝑎𝑎 at points 
𝑇𝑇1 and 𝑇𝑇2, as shown in Figure 3. 

 

 

 

 

 

 

 
 
FIGURE 3: Challenging problem 2: the section of the hypotenuse in three congruent segments 
SOURCE: Authors with GeoGebra 

Applying Stewart's theorem to cevians 𝑑𝑑1 and 𝑑𝑑2, we obtain, respectively, that 

𝑏𝑏2

3 +
2𝑐𝑐2

3 − 𝑑𝑑1
2 =

2𝑎𝑎2

9 ,                                                                                                      (6) 

2𝑏𝑏2

3 +
𝑐𝑐2

3 − 𝑑𝑑2
2 =

2𝑎𝑎2

9 .                                                                                                      (7) 

Adding equations (6) and (7), and using the result from the application of the 
Pythagorean theorem in the triangle 𝐴𝐴𝐴𝐴𝐴𝐴, i.e. 𝑏𝑏2 + 𝑐𝑐2 = 𝑎𝑎2, we conclude that 

𝑏𝑏2 + 𝑐𝑐2 − 𝑑𝑑1
2 − 𝑑𝑑2

2 =
4
9𝑎𝑎

2 ⟹ 𝑑𝑑1
2 + 𝑑𝑑2

2 = 𝑎𝑎2 −
4
9𝑎𝑎

2 =
5
9𝑎𝑎

2. 

⁂ 

 
5 Cevian is a line segment that joins a vertex of a triangle with a point on the opposite side (or 
its extension). 
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In this way of thinking, calculating the sum of the squares of the measures of 
the cevians that section the hypotenuse in congruent 𝑐𝑐 (𝑐𝑐 = 2,3,4, … ) segments, we 
will find, respectively, the following fractions of the square of the measure of the 
hypotenuse: 

�
1
4 ,

5
9 ,

7
8 , … � .                                                                                                                         (8) 

So, the question to be answered is whether we can establish the nth term of the 
sequence (8). 

Theorem 2 (Generalization of Problem 2) If 𝑑𝑑𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑛𝑛, are the 
measurements of the cevians with an end at the vertex of the right angle of a right 
triangle and which divide the hypotenuse in congruent 𝑛𝑛 + 1 segments, then 

�𝑑𝑑𝑖𝑖
2

𝑛𝑛

𝑖𝑖=1

=  
𝑛𝑛(2𝑛𝑛 + 1)
6(𝑛𝑛 + 1) 𝑎𝑎2 ,                                                                                                         (9) 

where 𝑎𝑎 is the measure of the hypotenuse of the right triangle. 

Proof  Let us consider the right triangle 𝐴𝐴𝐴𝐴𝐴𝐴, with cathetus 𝐴𝐴𝐴𝐴 = 𝑏𝑏 and 𝐴𝐴𝐴𝐴 = 𝑐𝑐, and 
cevians of measures 𝑑𝑑𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑛𝑛, which section, respectively, the hypotenuse 𝐴𝐴𝐴𝐴 = 𝑎𝑎 
at points 𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛, as shown in Figure 4. 

 

 

 

 

 

  

 
FIGURE 4: Generalization of challenging problem 2: the section of the hypotenuse in congruent 
𝑛𝑛 + 1 segments 
SOURCE: Authors with GeoGebra 

In right triangle 𝐴𝐴𝐴𝐴𝐴𝐴, applying Stewart's theorem for cevian 𝑑𝑑𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑛𝑛,   
we have 

𝑏𝑏2
𝑎𝑎

𝑛𝑛 + 1 𝑖𝑖 + 𝑐𝑐2
𝑎𝑎

𝑛𝑛 + 1
(𝑛𝑛 + 1 − 𝑖𝑖) − 𝑑𝑑𝑖𝑖

2𝑎𝑎 = 𝑎𝑎
𝑎𝑎

𝑛𝑛 + 1 𝑖𝑖
𝑎𝑎

𝑛𝑛 + 1
(𝑛𝑛 + 1 − 𝑖𝑖),  

𝑖𝑖
𝑛𝑛 + 1 𝑏𝑏

2 +
𝑛𝑛 + 1 − 𝑖𝑖
𝑛𝑛 + 1 𝑐𝑐2 − 𝑑𝑑𝑖𝑖

2 =
𝑖𝑖(𝑛𝑛 + 1 − 𝑖𝑖)

(𝑛𝑛 + 1)2 𝑎𝑎2.                                                    (10) 
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Adding equation (10) in 𝑖𝑖 and using discrete sum properties, we get 

𝑏𝑏2

𝑛𝑛 + 1
�𝑖𝑖
𝑛𝑛

𝑖𝑖=1

+ 𝑐𝑐2��1 −
𝑖𝑖

𝑛𝑛 + 1
�

𝑛𝑛

𝑖𝑖=1

−�𝑑𝑑𝑖𝑖
2

𝑛𝑛

𝑖𝑖=1

= 𝑎𝑎2��
𝑖𝑖

𝑛𝑛 + 1
−

𝑖𝑖2

(𝑛𝑛 + 1)2�
𝑛𝑛

𝑖𝑖=1

, 

 

𝑏𝑏2

𝑛𝑛 + 1
�𝑖𝑖
𝑛𝑛

𝑖𝑖=1

+ 𝑐𝑐2 �𝑛𝑛 −
1

𝑛𝑛 + 1
��𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−�𝑑𝑑𝑖𝑖
2

𝑛𝑛

𝑖𝑖=1

= 𝑎𝑎2 �
1

𝑛𝑛 + 1
�𝑖𝑖
𝑛𝑛

𝑖𝑖=1

−
1

(𝑛𝑛 + 1)2�𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

� .              (11) 

From the sum of powers (WEISSTEIN, 2020), we know that 

�𝑖𝑖
𝑛𝑛

𝑖𝑖=1

=  
𝑛𝑛(𝑛𝑛 + 1)

2
,                                                                                                                    (12) 

�𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

=  
𝑛𝑛(𝑛𝑛 + 1)(2𝑛𝑛 + 1)

6
.                                                                                                 (13) 

Thus, replacing (12) and (13) in (11), we obtain 

�𝑑𝑑𝑖𝑖
2

𝑛𝑛

𝑖𝑖=1

=  
𝑛𝑛
2
𝑏𝑏2 +  

𝑛𝑛
2
𝑐𝑐2 − 𝑎𝑎2 �

𝑛𝑛
2
−
𝑛𝑛(2𝑛𝑛 + 1)
6(𝑛𝑛 + 1) �,  

�𝑑𝑑𝑖𝑖
2

𝑛𝑛

𝑖𝑖=1

=  
𝑛𝑛
2

(𝑏𝑏2 + 𝑐𝑐2)− 𝑎𝑎2 �
𝑛𝑛
2
−
𝑛𝑛(2𝑛𝑛 + 1)
6(𝑛𝑛 + 1) � .                                                                (14) 

Using the Pythagorean theorem in (14) since the triangle 𝐴𝐴𝐴𝐴𝐴𝐴 has a right angle 
at 𝐴𝐴, we conclude that 

�𝑑𝑑𝑖𝑖
2

𝑛𝑛

𝑖𝑖=1

=  
𝑛𝑛
2
𝑎𝑎2 − 𝑎𝑎2 �

𝑛𝑛
2
−
𝑛𝑛(2𝑛𝑛 + 1)
6(𝑛𝑛 + 1) �, 

�𝑑𝑑𝑖𝑖
2

𝑛𝑛

𝑖𝑖=1

=  
𝑛𝑛(2𝑛𝑛 + 1)
6(𝑛𝑛 + 1) 𝑎𝑎2. 

□ 
Equation (9) can be explored in GeoGebra. We build an animation for 𝑛𝑛 =

1,2,3, and we make it available at  

https://www.GeoGebra.org/m/tdd2hs8v. 
 
 
 

https://www.geogebra.org/m/tdd2hs8v
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3. Section of an internal angle of a triangle 

Problem 3 (Challenging problem 10-6, page 46) Prove that in any triangle the 
square of the measure of the internal bisector of any angle is equal to the product of 
the measures of the sides forming the bisected angle decreased by the product of the 
measures of the segments of the side to which this bisector is drawn. 

Posamentier and Salkind (1996) propose two strategies to solve challenging 
problem 3: use Stewart's theorem (page 45) and, subsequently, the internal bisector 
theorem (theorem 47, page 242); or use properties of the inscribed quadrilateral 
(theorems 36a and 37, page 242) to establish similar triangles and, soon after, the 
intersecting chords theorem (theorem 52, page 243). The second strategy minimizes 
algebraic work in the generalization of challenging problem 3. 

Solution 3 Considers: the triangle 𝐴𝐴𝐴𝐴𝐴𝐴, with sides 𝐴𝐴𝐴𝐴 = 𝑐𝑐, 𝐴𝐴𝐴𝐴 = 𝑏𝑏, and 𝐴𝐴𝐴𝐴 = 𝑎𝑎; 
the segment 𝐴𝐴𝐴𝐴���� with 𝐴𝐴 ∈ 𝐴𝐴𝐴𝐴���� of measure 𝑑𝑑1, which divides the angle 𝐴𝐴�̂�𝐴𝐴𝐴 in two 
congruent angles of measure 𝛼𝛼, and divides the side 𝐴𝐴𝐴𝐴���� in the segments 𝐴𝐴𝐴𝐴 = 𝜅𝜅1 
and 𝐴𝐴𝐴𝐴 = 𝜅𝜅2; the point 𝐴𝐴1, belonging to the extension of the segment 𝐴𝐴𝐴𝐴���� and the 
circumference that circumscribes the triangle 𝐴𝐴𝐴𝐴𝐴𝐴, as shown in Figure 5. 

 

 

 

 

 

 

 

 

 

FIGURE 5: Challenging problem 3: the bisector of the internal angle �̂�𝐴 of the triangle 𝐴𝐴𝐴𝐴𝐴𝐴 
SOURCE: Authors with GeoGebra 

Due to the properties of the inscribed quadrilateral, we have 𝐴𝐴𝐴𝐴1�𝐴𝐴 ≡ 𝐴𝐴�̂�𝐴𝐴𝐴 =
𝜃𝜃. So, by the case AA (angle-angle), the triangles 𝐴𝐴𝐴𝐴𝐴𝐴1 and 𝐴𝐴𝐴𝐴𝐴𝐴 are similar. Thus 

∆𝐴𝐴𝐴𝐴𝐴𝐴1~∆𝐴𝐴𝐴𝐴𝐴𝐴 ⟹
𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴 =

𝐴𝐴𝐴𝐴1
𝐴𝐴𝐴𝐴 , 

𝐴𝐴𝐴𝐴(𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴1) = 𝐴𝐴𝐴𝐴.𝐴𝐴𝐴𝐴 ⟹ 𝐴𝐴𝐴𝐴2 = 𝐴𝐴𝐴𝐴.𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴.𝐴𝐴𝐴𝐴1.                                    (15) 

Applying the intersection chords theorem, we obtain 
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𝐴𝐴𝐴𝐴.𝐴𝐴𝐴𝐴1 = 𝐴𝐴𝐴𝐴.𝐴𝐴𝐴𝐴.                                                                                                          (16) 

Replacing (16) in (15), we conclude that 

𝐴𝐴𝐴𝐴2 = 𝐴𝐴𝐴𝐴.𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴.𝐴𝐴𝐴𝐴, 

𝑑𝑑1
2 = 𝑏𝑏𝑐𝑐 − 𝜅𝜅1𝜅𝜅2. 

⁂ 

To generalize challenging problem 3 we should detect patterns (SRIRAMAN, 
2004). Let us begin by analyzing two particular cases: the square of the measure of 
the segments that divide an internal angle of a triangle in three and four congruent 
angles. 

For the cevians 𝑑𝑑1 and 𝑑𝑑2 that divide the angle in three congruent angles, as 
illustrated in Figure 6(a), we conclude, using the same strategy, that 

𝑑𝑑1
2 = 𝑏𝑏𝑐𝑐

𝑑𝑑1
𝑑𝑑2

− 𝜅𝜅1(𝜅𝜅2 + 𝜅𝜅3),                                                                                            (17) 

𝑑𝑑2
2 = 𝑏𝑏𝑐𝑐

𝑑𝑑2
𝑑𝑑1
− 𝜅𝜅3(𝜅𝜅1 + 𝜅𝜅2).                                                                                           (18) 

 

 

 
 
 
 
 
 
                                                          

(a)                                                                          (b) 
FIGURE 6: Generalization of challenging problem 3: (a) cevians that divide angle �̂�𝐴 in three 
congruent angles; (b) cevians that divide angle �̂�𝐴 in four congruent angles 
SOURCE: Authors with GeoGebra 

Now, for the cevians 𝑑𝑑1, 𝑑𝑑2 and 𝑑𝑑3 that divide the angle in four congruent 
angles, as shown in Figure 6(b), we find that 

𝑑𝑑1
2 = 𝑏𝑏𝑐𝑐

𝑑𝑑1
𝑑𝑑3
− 𝜅𝜅1(𝜅𝜅2 + 𝜅𝜅3 + 𝜅𝜅4),                                                                                  (19) 
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𝑑𝑑2
2 = 𝑏𝑏𝑐𝑐

𝑑𝑑2
𝑑𝑑2
− (𝜅𝜅1 + 𝜅𝜅2)(𝜅𝜅3 + 𝜅𝜅4),                                                                              (20) 

𝑑𝑑3
2 = 𝑏𝑏𝑐𝑐

𝑑𝑑3
𝑑𝑑1
− 𝜅𝜅4(𝜅𝜅1 + 𝜅𝜅2 + 𝜅𝜅3).                                                                                  (21) 

After/before proposing the generalization of Problem 3, we can observe the 
partition of an internal angle of a triangle in GeoGebra. We build an animation for 
two cases: bisection and trisection of the angle 𝐴𝐴�̂�𝐴𝐴𝐴, and we make it available at 

 https://www.GeoGebra.org/m/fhhgsfja.  

Equations (17)-(21) show that, in the generalization of challenging problem 3, 
the square of the measure of the cevians 𝑑𝑑𝑖𝑖 cannot be expressed, except in particular 
cases as in equation (20), depending only on the measurements of the sides that 
determine the sectioned angle and of the segments determined by the cevians on the 
side opposite to the sectioned angle. When calculating the measures 𝑑𝑑𝑖𝑖, 𝑖𝑖 =
1,2, … ,𝑛𝑛, it is necessary to solve a system of non-linear equations for 𝑖𝑖 ≥ 2. 

Theorem 3 (Generalization of Problem 3) If 𝑑𝑑𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑛𝑛,  are the measures of 
the cevians that divide an internal angle of a triangle in congruent 𝑛𝑛 + 1 angles, then 

𝑑𝑑𝑖𝑖
2 = 𝑏𝑏𝑐𝑐

𝑑𝑑𝑖𝑖
𝑑𝑑𝑛𝑛+1−𝑖𝑖

− (𝜅𝜅1 + 𝜅𝜅2 + ⋯+ 𝜅𝜅𝑖𝑖)(𝜅𝜅𝑖𝑖+1 + … + 𝜅𝜅𝑛𝑛+1), 

where 𝑏𝑏 and 𝑐𝑐 are the measurements of the sides that determine the sectioned angle, 
and 𝜅𝜅1,𝜅𝜅2, … , 𝜅𝜅𝑛𝑛+1 are the measurements of the segments determined by the cevians 
on the side opposite to the sectioned angle. 

Proof  Consider triangle 𝐴𝐴𝐴𝐴𝐴𝐴, with sides 𝐴𝐴𝐴𝐴 = 𝑐𝑐, 𝐴𝐴𝐴𝐴 = 𝑏𝑏, and 𝐴𝐴𝐴𝐴 = 𝑎𝑎; the cevians 
𝐴𝐴𝐴𝐴𝚤𝚤�����, 𝑖𝑖 = 1,2, … ,𝑛𝑛, of measure 𝑑𝑑𝑖𝑖 which divide the angle 𝐴𝐴�̂�𝐴𝐴𝐴 in 𝑛𝑛 + 1 congruent 
angles of measure 𝛼𝛼, and divide the segment 𝐴𝐴𝐴𝐴���� in 𝑛𝑛 + 1 segments of measure 
𝐴𝐴𝐴𝐴1 = 𝜅𝜅1,𝐴𝐴1𝐴𝐴2 = 𝜅𝜅2, … ,𝐴𝐴𝑛𝑛−1𝐴𝐴𝑛𝑛 = 𝜅𝜅𝑛𝑛,𝐴𝐴𝑛𝑛𝐴𝐴 = 𝜅𝜅𝑛𝑛+1; points 𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑛𝑛, 
respectively belonging to the extensions of the cevians  𝐴𝐴𝐴𝐴1�����,𝐴𝐴𝐴𝐴2�����, … ,𝐴𝐴𝐴𝐴𝑛𝑛������ and the 
circumference that circumscribes triangle 𝐴𝐴𝐴𝐴𝐴𝐴, as illustrated in Figure 7(a). 

For any 𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑛𝑛, we have by the property of the inscribed quadrilateral 
that 𝐴𝐴𝐴𝐴𝚤𝚤� 𝐴𝐴 ≡ 𝐴𝐴�̂�𝐴𝐴𝐴 = 𝜃𝜃, as shown in Figure 7(b). Therefore, by the case 𝐴𝐴𝐴𝐴 (angle-
angle), the triangles 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 and 𝐴𝐴𝐴𝐴𝑛𝑛+1−𝑖𝑖𝐴𝐴, , 𝑖𝑖 = 1,2, … ,𝑛𝑛, are similar regardless of 
the possible positions of 𝐴𝐴𝑖𝑖 and 𝐴𝐴𝑛𝑛+1−𝑖𝑖, as shown in Figure 86. Thus 

∆𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖~∆𝐴𝐴𝐴𝐴𝑛𝑛+1−𝑖𝑖𝐴𝐴 ⟹
𝐴𝐴𝐴𝐴

𝐴𝐴𝐴𝐴𝑛𝑛+1−𝑖𝑖
=
𝐴𝐴𝐴𝐴𝑖𝑖
𝐴𝐴𝐴𝐴 , 𝑖𝑖 = 1,2, … ,𝑛𝑛, 

 
6 In Figure 8, Case II is obtained only if 𝑖𝑖 = 𝑛𝑛+1

2
 and 𝑛𝑛 is odd. 

https://www.geogebra.org/m/fhhgsfja
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(a)                                                                     (b) 
FIGURE 7: Generalization of challenging problem 3: (a) cevians of measure 𝑑𝑑𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑛𝑛, 
that divide angle 𝐴𝐴�̂�𝐴𝐴𝐴 in 𝑛𝑛 + 1 congruent angles; (b) congruent angles 𝐴𝐴𝐴𝐴𝚤𝚤� 𝐴𝐴 and 𝐴𝐴�̂�𝐴𝐴𝐴 
SOURCE: Authors with GeoGebra 

                                                              

                           
 
 
 
 
 
 
FIGURE 8: Possible triangles 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 and 𝐴𝐴𝐴𝐴𝑛𝑛+1−𝑖𝑖𝐴𝐴 in the generalization of challenging problem 
3 
SOURCE: Authors with GeoGebra 

𝐴𝐴𝐴𝐴𝑛𝑛+1−𝑖𝑖(𝐴𝐴𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖) = 𝐴𝐴𝐴𝐴.𝐴𝐴𝐴𝐴.                                                                                  (22) 

Using the intersecting chords theorem, we obtain 

𝐴𝐴𝐴𝐴𝑖𝑖 .𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖 = 𝐴𝐴𝐴𝐴𝑖𝑖 .𝐴𝐴𝑖𝑖𝐴𝐴, 𝑖𝑖 = 1,2, … ,𝑛𝑛, 

𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖 =
𝐴𝐴𝐴𝐴𝑖𝑖 .𝐴𝐴𝑖𝑖𝐴𝐴
𝐴𝐴𝐴𝐴𝑖𝑖

.                                                                                                              (23) 

Replacing (23) in (22), we conclude that 
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𝐴𝐴𝐴𝐴𝑖𝑖2 = 𝐴𝐴𝐴𝐴.𝐴𝐴𝐴𝐴.
𝐴𝐴𝐴𝐴𝑖𝑖

𝐴𝐴𝐴𝐴𝑛𝑛+1−𝑖𝑖
− 𝐴𝐴𝐴𝐴𝑖𝑖 .𝐴𝐴𝑖𝑖𝐴𝐴,         𝑖𝑖 = 1,2, … ,𝑛𝑛, 

𝑑𝑑𝑖𝑖
2 = 𝑏𝑏𝑐𝑐

𝑑𝑑𝑖𝑖
𝑑𝑑𝑛𝑛+1−𝑖𝑖

− (𝜅𝜅1 + 𝜅𝜅2 + ⋯+ 𝜅𝜅𝑖𝑖)(𝜅𝜅𝑖𝑖+1 + … + 𝜅𝜅𝑛𝑛+1). 

□ 
In the generalization of challenging problem 3, we found that, given the 

measures of the sides 𝐴𝐴𝐴𝐴 = 𝑐𝑐 and 𝐴𝐴𝐴𝐴 = 𝑏𝑏, which determine the sectioned angle of 
the triangle 𝐴𝐴𝐴𝐴𝐴𝐴, and the measures 𝜅𝜅1,𝜅𝜅2, … , 𝜅𝜅𝑛𝑛,𝜅𝜅𝑛𝑛+1 of the segments determined 
by the cevians on the opposite side 𝐴𝐴𝐴𝐴���� to the sectioned angle, it is possible to 
calculate the measurements 𝑑𝑑𝑖𝑖 of cevians by solving the following system of non-
linear equations: 

𝑑𝑑𝑖𝑖
2 = 𝑏𝑏𝑐𝑐

𝑑𝑑𝑖𝑖
𝑑𝑑𝑛𝑛+1−𝑖𝑖

− (𝜅𝜅1 + 𝜅𝜅2 + ⋯+ 𝜅𝜅𝑖𝑖)(𝜅𝜅𝑖𝑖+1 + … + 𝜅𝜅𝑛𝑛+1),     𝑖𝑖 = 1,2, … ,𝑛𝑛.      (24) 

The system of non-linear equations (24) is a decoupled system with two 
equations, because if is 𝑛𝑛 odd, we get 

𝑑𝑑𝑛𝑛+1
2

2 = 𝑏𝑏𝑐𝑐 − �𝜅𝜅1 + 𝜅𝜅2 + ⋯+ 𝜅𝜅𝑛𝑛+1
2
� �𝜅𝜅𝑛𝑛+1

2 +1
+ … + 𝜅𝜅𝑛𝑛+1�. 

Additionally, then we have an even number of equations. Thus, to solve the 
system (24), it is sufficient to solve a system of non-linear equations with two 
equations and two unknowns, i.e. fixing 𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑛𝑛, solve the following non-
linear equation system: 

⎩
⎨

⎧ 𝑑𝑑𝑖𝑖
2 = 𝑏𝑏𝑐𝑐

𝑑𝑑𝑖𝑖
𝑑𝑑𝑛𝑛+1−𝑖𝑖

− (𝜅𝜅1 + 𝜅𝜅2 + ⋯+ 𝜅𝜅𝑖𝑖)(𝜅𝜅𝑖𝑖+1 + … + 𝜅𝜅𝑛𝑛+1)

𝑑𝑑𝑛𝑛+1−𝑖𝑖
2 = 𝑏𝑏𝑐𝑐

𝑑𝑑𝑛𝑛+1−𝑖𝑖
𝑑𝑑𝑖𝑖

− (𝜅𝜅1 + 𝜅𝜅2 + ⋯+ 𝜅𝜅𝑛𝑛+1−𝑖𝑖)(𝜅𝜅𝑛𝑛+1−𝑖𝑖+1 + … + 𝜅𝜅𝑛𝑛+1)
. (25) 

In Proposition 1, we prove that the system of non-linear equations (25) has a 
solution. 

Proposition 1 The system of non-linear equations (25) has a solution. 

Proof  Let 𝑥𝑥 = 𝑑𝑑𝑖𝑖 and 𝑦𝑦 = 𝑑𝑑𝑛𝑛+1−𝑖𝑖. Replacing 𝑥𝑥 and 𝑦𝑦 in the system (25) we obtain 

�
𝑥𝑥2 = 𝑏𝑏𝑐𝑐

𝑥𝑥
𝑦𝑦 −

(𝜅𝜅1 + 𝜅𝜅2 + ⋯+ 𝜅𝜅𝑖𝑖)(𝜅𝜅𝑖𝑖+1 + … + 𝜅𝜅𝑛𝑛+1)

𝑦𝑦2 = 𝑏𝑏𝑐𝑐
𝑦𝑦
𝑥𝑥 −

(𝜅𝜅1 + 𝜅𝜅2 + ⋯+ 𝜅𝜅𝑛𝑛+1−𝑖𝑖)(𝜅𝜅𝑛𝑛+1−𝑖𝑖+1 + … + 𝜅𝜅𝑛𝑛+1)
.                   (26) 

Considering  
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𝛼𝛼 = 𝜅𝜅1 + 𝜅𝜅2 + ⋯+ 𝜅𝜅𝑖𝑖 , 𝛽𝛽 = 𝜅𝜅𝑖𝑖+1 + … + 𝜅𝜅𝑛𝑛+1,   

𝛾𝛾 = 𝜅𝜅1 + 𝜅𝜅2 + ⋯+ 𝜅𝜅𝑛𝑛+1−𝑖𝑖,𝜌𝜌 = 𝜅𝜅𝑛𝑛+1−𝑖𝑖+1 + … + 𝜅𝜅𝑛𝑛+1, 

we can rewrite system (26) as 

�
𝑥𝑥2 = 𝑏𝑏𝑐𝑐

𝑥𝑥
𝑦𝑦 − 𝛼𝛼𝛽𝛽

𝑦𝑦2 = 𝑏𝑏𝑐𝑐
𝑦𝑦
𝑥𝑥 − 𝛾𝛾𝜌𝜌

.                                                                                                     (27) 

Multiplying the first equation of the system (27) by 𝑦𝑦2 and the second equation 
by −𝑥𝑥2, we obtain 

� 𝑥𝑥
2𝑦𝑦2 = 𝑏𝑏𝑐𝑐𝑥𝑥𝑦𝑦 − 𝛼𝛼𝛽𝛽𝑦𝑦2

−𝑥𝑥2𝑦𝑦2 = −𝑏𝑏𝑐𝑐𝑥𝑥𝑦𝑦 − 𝛾𝛾𝜌𝜌𝑥𝑥2
.                                                                                     (28) 

The addition of the two equations of the system (28) results in 0 = −𝛼𝛼𝛽𝛽𝑦𝑦2 +
𝛾𝛾𝜌𝜌𝑥𝑥2. 

Therefore, 𝑦𝑦2 = 𝛾𝛾𝛾𝛾
𝛼𝛼𝛼𝛼
𝑥𝑥2 ⟹ 𝑦𝑦 = ±�

𝛾𝛾𝛾𝛾
𝛼𝛼𝛼𝛼
𝑥𝑥. 

Since 𝑥𝑥 and 𝑦𝑦 are positive numbers, we conclude that  

𝑦𝑦 = �
𝛾𝛾𝜌𝜌
𝛼𝛼𝛽𝛽 𝑥𝑥.                                                                                                                        (29) 

Finally, replacing (29) in the second equation of the system (27), we obtain 

𝑥𝑥2 = 𝑏𝑏𝑐𝑐�
𝛼𝛼𝛽𝛽
𝛾𝛾𝜌𝜌 − 𝛼𝛼𝛽𝛽. 

Thus showing that the system (25) has a solution since 𝑏𝑏𝑐𝑐 > �𝛼𝛼𝛽𝛽𝛾𝛾𝜌𝜌. 

□ 
Concluding remarks 

In this work we present the generalization of three geometrical challenging 
problems proposed in Challenging problems in geometry by Posamentier and 
Salkind (1996). In generalization procedures, we establish a link between some areas 
of mathematics, such as geometry and arithmetic, we involve some theorems of plane 
geometry, and we use the software GeoGebra to construct figures and animation. 

It is important to emphasize that, as challenging problem 3 shows, the 
generalization process can lead to changes in the configuration of the expected result, 
that is, the theorem thesis proposed in cited case. 
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Following Hashemi et al. (2013), we hope that this work will motivate the 
main agents involved in the mathematics teaching-learning process, i.e. students and 
teachers, to establish generalization processes in the classroom in the 
analysis/investigation of mathematical properties, particularly in geometry, thus 
contributing to consolidation and expansion of mathematical knowledge. 
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