
Dyna, year 80, Nro. 182, pp. 25-30.  Medellin, December, 2013.  ISSN 0012-7353

MR-DTI RICIAN DENOISING 

ELIMINACIÓN DE RUIDO RICIAN EN MR-DTI 

ADRIAN MARTIN
M.Sc. Departamento de Matemática Aplicada, Universidad Rey Juan Carlos, Madrid, España, adrian.martin@urjc.es

JUAN F. GARAMENDI
Ph.D. INRIA-VisAGeS Research Team, Rennes, France, juan-francisco.garamendi_bragado@inria.fr 

EMANUELE SCHIAVI
Ph.D., Departamento de Matemática Aplicada, Universidad Rey Juan Carlos, Madrid, España, emanuele.schiavi@urjc.es

Received for review March 23 th, 2012, accepted May 15th, 2013, final version July, 21 th, 2013

ABSTRACT: In this work we tackle the problem of Magnetic Resonance Images (MRI) Rician denoising to enhance Diffusion 
Tensor Image (DTI) reconstruction. In a variational framework based on the Total Variation operator, the model of the Rician 
noise leads to the resolution of a highly nonlinear equation associated to the energy minimization problem. An iterative algorithm is 
proposed and validated on synthetic images. Finally the application to real Diffusion Weighted Images (DWI) is considered. 
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RESUMEN: En este trabajo se trata el problema de eliminación de ruido Rician en imagen de Resonancia Magnética para la mejora de la 
reconstrucción de las imágenes de DifusiónTensorial. El modelado del ruido Rician es enfocado desde un marco variacional basado en el operador de 
Variación Total, convirtiéndolo en un problema de minimización de energía que conduce a la resolución de ecuaciones severamente no lineales. La 
solución propuesta es un algoritmo iterativo validado con imágenes sintéticas, que finalmente es probado en imágenes ponderadas en difusión reales.

PALABRAS CLAVE: Resonancia Magnética, DWI, DTI. ruido Rician, variacional

1.  INTRODUCTION 

MRI denoising is a fundamental step in medical image 
processing that leads to the assumption that MR 
magnitude images are corrupted by Rician noise (which 
is a signal dependent noise) (see [1] and [2]). The bias 
with respect to the typical Gaussian noise assumption 
is particularly severe when low Signal-to-Noise Ratio 
(SNR) images are used. In this paper we present a 
denoising model for MR Rician noise contaminated 
images, recently presented in [3]. In a variational 
framework it combines the Total Variation operator 
with a data fitting term, which was previously suggested 
in [4] for DWI Rician denoising. When the resulting 
energy functional is considered for minimization, 
the variational approach leads to the resolution of 
a nonlinear degenerate elliptic Partial Differential 
Equation (PDE) which is  the associated Euler 
Lagrange equation for optimization. This has a number 
of theoretical problems when the Total Variation (TV) 
operator is considered as a prior, because the associated 
energy functional is not differentiable at the origin 

(i.e. 𝛁𝛁𝒖𝒖 = 𝟎𝟎� ) and approximating problems must be 
considered. We also embed the PDE in the general 
iterative regularization procedure presented in [5] 
which allows to recover high contrast images. The 
model is then validated using synthetic brain images 
and finally we apply this framework on a set of real 
DW brain Images. 

The denoising step is crucial for a good Diffusion 
Tensor reconstruction, which allows the study of white 
matter tissues in the brain. Rician denoising is also 
essential when anatomical MRI studies are done to 
characterize differences between healthy and diseased 
subjects [6].

This paper is organized as follows: in sections 2 and 3 
we characterize Rician noise and the equations which 
define the denoising process. These equations are then 
embedded in an iterative regularization procedure and 
solved numerically, in section 4. In section 5 we use 
synthetic images for model validation and finally in 
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section 6 we show the results for real images validating 
the proposed model.

2.  THE RICIAN DISTRIBUTION OF NOISE IN MRI

In MRI the original complex signal is measured in 
the frequency domain (called K-space). It is assumed 
that the noise in each channel (real and imaginary) 
follows a Gaussian distribution with zero mean 
and identical variance 𝜎𝜎2  Using the Inverse Fourier 
Transform the real and imaginary images are obtained 
from K-space data. Due to the fact that the Fourier 
Transform is a linear and orthogonal map, it preserves 
the characteristics of the noise and this noise can be 
assumed to be uncorrelated in each voxel. Nevertheless 
the final image typically used for subsequent analysis 
is the magnitude image, obtained by calculating the 
modulus from the real and imaginary images voxel by 
voxel. This nonlinear mapping transforms the Gaussian 
noise distribution into a Rician distribution [1]: 

𝑝𝑝(𝑓𝑓|𝑢𝑢) = 𝑓𝑓
𝜎𝜎2 e�−

𝑢𝑢2+𝑓𝑓2

2𝜎𝜎2 � 𝐼𝐼0 �
𝑢𝑢𝑓𝑓
𝜎𝜎2�    (1)

where 𝑢𝑢  denotes the (ideal) uncorrupted image 
intensity, 𝑓𝑓  the noisy data, 𝜎𝜎2  is the variance of 
the original Gaussian noise and 𝐼𝐼0  is the modified 
zeroth-order Bessel function of the first kind. 

In Figure 1 the behavior of the Rician probability 
density function is shown for different values of the 
SNR ( 𝑢𝑢/𝜎𝜎 ). It can be seen how the distribution is far 
from being Gaussian especially for small SNR values. 
When the original signal is zero ( 𝑢𝑢 ≡ 0 ) a special 
case of the Rician distribution (1) has to be considered:

𝑝𝑝(𝑓𝑓|𝑢𝑢) =
𝑓𝑓
𝜎𝜎2 exp �–

𝑓𝑓2

2𝜎𝜎2�   (2)  

which is called the Rayleigh distribution. The mean 
and the variance of this distribution can be calculated 
analytically.  This allows the parameter 𝜎𝜎2  in (1) and 
(2) to be estimated (see [2] for more details). 

3.  MODEL EQUATIONS

Following [3], the problem of Rician denoising can be 
modeled as follows: Given 𝑓𝑓 ∈ 𝐿𝐿∞(Ω) , representing 
the noisy image, find 𝑢𝑢 ∈ 𝐵𝐵𝐵𝐵(Ω) ∩ 𝐿𝐿∞(Ω),  the 
denoised image, minimizing the energy: 

  
Figure 1.  The Rician distribution 𝑝𝑝(𝑓𝑓│𝑢𝑢)  for fixed u 

and several SNR values ( 𝑢𝑢/𝜎𝜎 ) 

� |
Ω
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  (3)

where 
� |
Ω
𝐷𝐷𝑢𝑢| 

 is the Total Variation of the function 𝑢𝑢  
and 𝐵𝐵𝐵𝐵(Ω)  is the space of functions with bounded 
variation; furthermore 𝜎𝜎  is the standard deviation of 
the Rician noise of the data and 𝐼𝐼0  is as before, the 
modified zeroth-order Bessel function of the first kind. 
The scale parameter 𝜆𝜆  tunes the model by weighting 
the likelihood term derived from the Rician p.d.f. (1). 

This functional minimization can be accomplished by 
calculating the Euler-Lagrange equation of functional 
(2). Due to the fact that the Total Variation is not 
differentiable at the origin, a regularization of the 
resulting diffusion term div(𝛻𝛻𝑢𝑢/|𝛻𝛻𝑢𝑢|)  in the form 
o f  div(𝛻𝛻𝑢𝑢/|𝛻𝛻𝑢𝑢|𝜖𝜖) ,  |𝛻𝛻𝑢𝑢|𝜖𝜖 = �|𝛻𝛻𝑢𝑢|2 + 𝜖𝜖2  a n d 
0 < 𝜖𝜖 ≪ 1  is implemented to avoid degeneration 

of the equation where |𝛻𝛻𝑢𝑢| = 𝟎𝟎� .  Using this 
approximation it is possible to give a (weak) meaning 
to the following formulation: Given 𝑓𝑓 ∈ 𝐿𝐿∞(Ω)  find 
𝑢𝑢 ∈ 𝑊𝑊1,1(Ω) ∩ 𝐿𝐿∞(Ω)  solving:

−div�
𝛻𝛻𝑢𝑢

|𝛻𝛻𝑢𝑢|𝜖𝜖
� +

𝜆𝜆
𝜎𝜎2 �𝑢𝑢 −  

𝐼𝐼1 �
𝑢𝑢𝑓𝑓
𝜎𝜎2�

𝐼𝐼0 �
𝑢𝑢𝑓𝑓
𝜎𝜎2� 

𝑓𝑓� = 0   (4)

where 𝐼𝐼1  is the modified first-order Bessel function 
of the first kind. 

4.  ITERATIVE REGULARIZATION AND 
NUMERICAL RESOLUTION 

In this work we apply the iterative regularization 
method for total variation-based denoising, proposed 
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in [3], to the recovering of MRI images corrupted 
by Rician noise. It is well known that this iterative 
regularization process allows the original contrast 
present in the image [3,5] to be preserved. The general 
iterative procedure is as follows: Let 𝜆𝜆,  𝜎𝜎  be positive 
real parameters and set 𝑣𝑣0 = 0 .

1) Given 𝑓𝑓  and 𝑣𝑣𝑘𝑘   compute 𝑢𝑢𝑘𝑘+1  as the minimum 
of the energy: 
𝐸𝐸𝑘𝑘+1(𝑢𝑢) = ∫ |Ω 𝛻𝛻𝑢𝑢|𝜖𝜖𝑑𝑑𝑑𝑑 +  𝜆𝜆

2𝜎𝜎2 ∫ 𝑢𝑢2
Ω 𝑑𝑑𝑑𝑑 −

𝜆𝜆 ∫ log 𝐼𝐼0Ω �𝑢𝑢𝑓𝑓
𝜎𝜎2�𝑑𝑑𝑑𝑑 + ∫ 𝑢𝑢Ω 𝑣𝑣𝑘𝑘  𝑑𝑑𝑑𝑑   

  (5)

2) Define:

𝑣𝑣𝑘𝑘+1 = 𝑣𝑣𝑘𝑘 +
𝜆𝜆
𝜎𝜎2 �𝑢𝑢𝑘𝑘+1 − �

𝐼𝐼1 �
𝑢𝑢𝑘𝑘+1𝑓𝑓
𝜎𝜎2 �

𝐼𝐼0 �
𝑢𝑢𝑘𝑘+1𝑓𝑓
𝜎𝜎2 �

� 𝑓𝑓�   (6)

The procedure stops when the high frequencies 
introduced are clearly a product of the noise. So at each 
iteration we have to minimize the energy (5) solving 
the associated Euler-Lagrange equations; for notational 
simplicity we introduce the nonlinear function 

 𝑟𝑟(𝑢𝑢,𝑓𝑓) = 𝐼𝐼1(𝑢𝑢𝑓𝑓/𝜎𝜎2)/𝐼𝐼0(𝑢𝑢𝑓𝑓/𝜎𝜎2)  
and the analogous of equation (4) reads:

−div�
𝛻𝛻𝑢𝑢𝑘𝑘+1

|𝛻𝛻𝑢𝑢𝑘𝑘+1|𝜖𝜖
�+

𝜆𝜆
𝜎𝜎2 [𝑢𝑢𝑘𝑘+1 − 𝑟𝑟(𝑢𝑢𝑘𝑘+1,𝑓𝑓)𝑓𝑓]

+ 𝑣𝑣𝑘𝑘 = 0  (7)

These are nonlinear elliptic problems that we solve with 
a gradient descent scheme until the solution stabilizes to 
a solution of the elliptic problem. Using forward finite 
difference for the temporal derivative and a semi-implicit 
iterative scheme we deduce the (explicit) equation:  

�1 + Δ𝑡𝑡
𝜆𝜆
𝜎𝜎2�𝑢𝑢𝑘𝑘+1

𝑛𝑛+1 = 𝑢𝑢𝑘𝑘+1
𝑛𝑛 + 

Δ𝑡𝑡 �div�
𝛻𝛻𝑢𝑢𝑘𝑘+1

𝑛𝑛

|𝛻𝛻𝑢𝑢𝑘𝑘+1
𝑛𝑛 |𝜖𝜖

�+
𝜆𝜆
𝜎𝜎2 𝑟𝑟(𝑢𝑢𝑘𝑘+1

𝑛𝑛 ,𝑓𝑓)𝑓𝑓 − 𝑣𝑣𝑘𝑘�  (8)

where the spatial discretization for the TV-term is 
performed following [7] . 

5.  MODEL VALIDATION ON SYNTHETIC 
BRAIN IMAGES

In order to assess the performance of the proposed 
algorithm we tested it with synthetic brain images 
obtained from the BrainWeb Simulated Brain Database 
(http://www.bic.mni.mcgill.ca/brainweb) at the 
Montreal Neurological Institute. The original phantoms 
were contaminated artificially with Rician noise, the 
known amount and distribution of it providing a gold 
standard for our study. In this case we used the value 
𝜎𝜎 = 0.05   and 𝜆𝜆 = 𝜎𝜎/4  that assures that the result 
in the first iteration is a low frequency image and 
subsequent iterations recover details. In Figure 2 we 
present the sequence of images 𝑢𝑢1, . . . , 𝑢𝑢8 . 

 

Figure 2 Computation of the Inverse Scale Algorithm for ϵ=10-5, σ=0.05 and λ= σ/4 
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These images show the evolution of the inverse scaling 
procedure presented in (4), starting with a structural 
cartoon image and subsequently adding details (and 
noise) eventually approximating the original noisy 
data. Two metrics were considered to determine the 
best iteration in the inverse scaling procedure. The 
first is the Signal-to-Noise-Ratio (SNR) between the 
possible solution 𝑢𝑢𝑘𝑘   and the original (clean) image 
𝑢𝑢 . It is defined as

SNR(𝑢𝑢,𝑢𝑢𝑘𝑘) =
∑ 𝑢𝑢(𝑖𝑖, 𝑗𝑗)2
𝑖𝑖 ,𝑗𝑗

∑ [𝑢𝑢(𝑖𝑖, 𝑗𝑗) − 𝑢𝑢𝑘𝑘(𝑖𝑖, 𝑗𝑗)]2
𝑖𝑖 ,𝑗𝑗

 (9) 

The second metric is the Bregman Distance [5] between 𝑢𝑢𝑘𝑘   
and 𝑢𝑢 . It can be seen in Figure 2(g), how the maximum 
SNR value and the minimum value for the Bregman 
Distance are obtained at 𝑢𝑢5,  as shown in Figure 2(h). 

These results as well as visual inspection confirm that 
the images: 𝑢𝑢1,⋯ ,𝑢𝑢4  are over-smoothed versions 
of  with few details while the subsequent images, 
𝑢𝑢6,⋯ ,𝑢𝑢8 , become noisier. We also notice that, as we 
stated, the contrast of the image sequence measured as 
the standard deviation (SD) of the pixel intensity  is 
monotonically increasing, so providing a high contrast 
image suitable for tissue classification. 

6.  DIFFUSION TENSOR IMAGES APPLICATION

DTI is becoming one of the most popular methods 
for the analysis of the white matter (WM) structure 
of the brain, where some alterations can be found in 
early stages of some degenerative diseases. A complete 
review of this technique can be found in [8].

This technique measures the Brownian motion (random 
motion) of the water molecules in the brain. This motion 
is assumed to be isotropic when it is not restricted 
by surrounding structures, but the WM regions 
contain densely packed fiber bundles that cause  a n 
anisotropic diffusion of the water molecules along 
the perpendicular directions to the fiber bundles. At 
each voxel of a DTI the water diffusion is represented 
by a symmetric 3 × 3   tensor. The information of the 
preferred directions of the motion and the relevance 
of these directions is represented by the eigenvectors 
and the eigenvalues of the tensor. The information 
contained in a DTI is encoded by different scalar 
measurements; one of them is the Fractional Anistropy 
(FA) of the tissue, which is defined as 

FA = �3   ∑ �𝜆𝜆𝑖𝑖 −
𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆3

3 �
2

3
𝑖𝑖=1

2   ∑ 𝜆𝜆𝑖𝑖23
𝑖𝑖=1

 

with 𝜆𝜆𝑖𝑖   being the eigenvalues of the tensor. The FA values 
vary from 0 (when the motion in the voxel is completely 
isotropic) to 1 (totally anisotropic). For the reconstruction 
of the DTI a set of DWI has to be acquired, scanning the 
tissue in different directions of space. At least six DWI 
volumes are needed in order to be able to calculate the 
DTI but in clinical practice more than 15 DWI volumes 
are usually acquired. More DWI data imply better DTI 
reconstruction but longer scanning time. As a result of 
this bias (image quality vs. scanning time) the noise in the 
images is high. This shows the importance of the denoising 
step previous to the DTI reconstruction. 

For this preliminary study we have used a DW-MR 
brain volume provided by Fundación CIEN-Fundación 
Reina Sofía which was acquired with a 3 Tesla General 
Electric scanner equipped with an 8-channel coil. 
The DW images have been obtained with a single-
shot spin-eco EPI sequence (FOV=24cm, TR=9100, 
TE=88.9, slice thickness=3mm, spacing=0.3, matrix 
size=128x128, NEX=2). The DW-MRI data consists 
of a volume obtained with b=0/mm2 and 15 volumes 
with b=1000s/mm2 corresponding with the gradient 
directions specified in [9]. These DW-MR images, 
which represent diffusion measurements along 
multiple directions, are denoised with the proposed 
method previous to the Diffusion Tensorial Image 
reconstruction, which was done with the 3d Slicer 
tools (freely available at http://www.slicer.org). These 
data were acquired from a patient who suffers from a 
progressive supranuclear palsy (PSP), a degenerative 
disease which impairs movements and balance, so the 
scanner time must be as short as possible.   In Figure 3 
we show a slice of the original DWI data corresponding 
to the (1, 0, 0) gradient direction where the effect of 
noise is clearly visible. The complete DW-MRI data 
volume is denoised using the proposed method where 
the Rician noise magnitude (𝜎𝜎 = 0.0213 ) has been 
estimated following [2], while the 𝜆𝜆 = 0.0025  
value used has been assessed empirically as well as 
the selection of the fifth iteration of the Inverse Scaling 
procedure. A slice from the associated denoised volume 
is shown in Figure 4. It can be observed that the noise 
has been removed but the details and the edges have 
been fully preserved.
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The effect of this denoising process over the reconstructed 
tensor can be observed comparing the Fractional 
Anisotropy images (Figures 5 and 6), where the structures 
and details are enhanced when  the DWI data have 
been preprocessed. The denoising step is even more 
important when directional information (such as the 
main eigenvector of the tensor) is required (Figures 7 and 
8). The noise on the original DWI data causes artificial 
inhomogeneities in the eigenvectors field. The directional 
information provided by the eigenvectors field is crucial 
for subsequent postprocessing such as tractography, an 
emergent technique in recent neurological studies [10]. 

7.  CONCLUSIONS

In this paper we deal with the problem of accurate 
Rician denoising in DT-MRI. The proposed model 
successfully incorporates a Rician likelihood term 
which is regularized in a variational framework by 
means of the Total Variation operator. Staircasing 
artifacts in the solution are avoided through the inverse 
scaling procedure. The results obtained in real images 
are promising and open the way to the method’s use 
in clinical practice. 

  
Figure 3.  Slice of the original DWI corresponding to 

the (1, 0, 0) gradient direction.

  
Figure 4.  Slice of the denoised DWI corresponding 

to the (1, 0, 0) gradient direction

  
Figure 5.  Slice of the original FA. Dark colour 
corresponds to isotropic regions and bright color 

corresponds to anisotropic regions.

  
Figure 6.  Slice of the denoised FA. Dark colour 
corresponds to isotropic regions and bright color 

corresponds to anisotropic regions
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Figure 7.  A detail of the first eigenvectors of the 

original DTI over the FA image.

  
Figure 8.  A detail of the first eigenvectors of the 

denoised DTI over the FA image. 

Further work should include advanced numerical 
techniques to avoid the approximation of the total 
variation operator.
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