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Stability of Equilibrium Solutions of a
Nonlinear Reaction-Diffusion Equation

Estabilidad de Soluciones de Equilibrio de una Ecuación de
Reacción-Difusión no Lineal

César Adolfo Hernández Melo1,a, Luiz Felipe Demetrio2,b

Abstract. In the present work, it is analyzed existence and stability of equi-
librium solutions of the following nonlinear reaction-diffusion equation:

ut = αuxx + wu+ k ln(u2)u.

Explicit formulas for a family of equilibrium solutions to the former equation
which decay to zero at infinity are provided. The instability of those solutions
is obtained by detailed spectral analysis of the linear operator which approxi-
mates the solutions of the equation around the equilibrium solutions. A result
about the instability of any non-trivial equilibrium solution of the equation is
also established.
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Resumen. En el presente trabajo, se analiza la existencia y estabilidad de
soluciones de equilibrio de la siguiente ecuación de reacción-difusión no lineal:

ut = αuxx + wu+ k ln(u2)u.

Se proporcionan fórmulas expĺıcitas para una famı́lia de soluciones de equilibrio
de la ecuación anterior que decaen a cero en infinito. La inestabilidad de esas
soluciones se obtienen mediante el análisis espectral detallado del operador
lineal que aproxima las soluciones de la ecuación alrededor de las soluciones
de equilibrio. También se establece un resultado sobre la inestabilidad de
cualquier solución de equilibrio no trivial de la ecuación.
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1. Introduction

Due to its diverse applications, the general reaction diffusion equation,

ut = αuxx + f(u), (x, t) ∈ R× R+ (1)

has received considerable attention from the scientific community in the last
decades. Here u(x, t) ∈ R, α is a positive real parameter and f denotes a
real-valued function that, in most cases, satisfies some regularity conditions.
If the reaction term f vanishes, then the equation represents a pure diffusion
process. The corresponding equation is called Fick second law. The choice
f(u) = u(1− u) yields Fisher equation that was originally used to describe the
spreading of biological populations [2], the Newell-Whitehead-Segel equation
with f(u) = u(1 − u2) to describe Rayleigh-Bénard convection [[12],[13]], the
more general Zeldovich equation with f(u) = u(1 − u)(u − b) and 0 < b < 1
that arises in combustion theory [14], and its particular degenerate case with
f(u) = u2−u3 that is sometimes referred to as the Zeldovich equation as well.
From the mathematical point of view, problems like the existence of solutions
for the Cauchy problem, the existence of global solutions, the existence of
global attractor, the existence of particular solutions and its stability have been
widely studied, [[6],[3],[4],[5],[10],[9]]. In particular, the problem of existence
and stability of equilibrium solutions of the equation (1) for specific functions
f have been also addressed, see for instance the recent work in [10], where the
case f(u) = wu+ u3 + u5 was dealt. The latter work was partially generalized
in [11].

It is to be recalled that an equilibrium solution of the equation (1) is a
solution of the equation that is independent of the variable t. Thus, u(x, t) =
φ(x) is an equilibrium solution of the equation (1), if φ satisfies the following
second order ordinary differential equation

αφ′′ + f(φ) = 0. (2)

Let X be a Hilbert or Banach space where the Cauchy problem{
ut = αuxx + f(u),

u(0) = u0 ∈ X
(3)

is well posed. An equilibrium solution φ ∈ X is said to be stable in X =
(X, || · ||X), if for all ε > 0, there exists δ > 0 such that

If ||u0 − φ|| < δ, then ||u(t)− φ|| < ε, for all t > 0.

Here, u denotes the solution of the Cauchy problem in (3) with u(0) = u0 ∈ X.
Otherwise, the equilibrium solution φ is said to be unstable.

A classical method to study the stability/instability of an equilibrium solu-
tion is based on the analysis of the spectral properties of the following linear
operator

Lφ = α
d2

dx2
+ f ′(φ) (4)
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Stability of Equilibrium Solutions of a Nonlinear Reaction-Diffusion Equation 3

which is defined on certain Hilbert or Banach space. Roughly speaking, if the
spectrum of the operator Lφ intercepts the set {z ∈ C : 0 < Re(z)}, then the
equilibrium solution is unstable. On the other hand, if the spectrum of the
operator Lφ is contained in the set {z ∈ C : Re(z) ≤ b} for some b < 0, then
the equilibrium solution is stable. See theorems 5.1.1 and 5.1.3 in [6] for details.

In this work, it is studied the problem of existence and stability of equilib-
rium solutions of the equation (1) when f(u) = wu+ k ln(u2)u, that is to say,
the semilinear parabolic equation

ut = αuxx + wu+ k ln(u2)u, (5)

where α > 0, w ∈ R and k > 0.
Recently, equation (5) has been discussed in [1] when α = 1 and w = 0, i.e.,

ut = uxx + k ln(u2)u. (6)

In there, the authors mainly establish the existence of a class of initial condi-
tions such that its associated solutions either grow super exponentially or decay
to zero super exponentially, the problem of global well posedness of solutions is
also addressed. It is worth to note that by doing some simple transformation,
the solutions of equation (5) can be obtained from the solutions of equation
(6) and vice versa. In fact, if u = u(x, t) is a solution of the equation (5)
then, h(x, t) = e

w
2k u(
√
αx, t) is a solution of the equation (6). Conversely, if

u = u(x, t) is a solution of the equation (6) then, g(x, t) = e
−w
2k u(x/

√
α, t)

is a solution of the equation (5). Thus, the dynamic of equation (5) is as
complicated as the dynamic of the equation (6).

As it has been noticed in [1], some technical difficulties appear due to the
logarithmic term in the equation (5). For instance, since the function g(u) =
u ln(u2), g(0) = 0 is not a Lipschitz function around zero, then the problem of
local well-posedness in neighborhoods of zero cannot be approached by using
classical techniques. In addition, because of the undefined sign of the second
term of the formal energy

E [u](t) =
1

2

∫
R

(α(ux)2 − wu2)(x, t)dx+

∫
R

k

2
u2(1− ln(u2))(x, t)dx

associated to the equation (5), then obtaining global existence of solutions of
(5) via energy method is a delicate issue.

On the other hand, the dynamic of the equation (5) is quite interesting in
comparison with other similar equations. For instance, for α, k > 0, w ∈ R and
ε > 0, the equation

ut = αuxx + wu+ ku1+ε (7)

has positive solutions that blow up in finite time when the initial data satisfy
a certain general condition. In contrast, proposition 1.2 in [1] guarantee the
existence of global solutions for equation (5) when the initial data satisfy a
specific, but general condition. Therefore, it does not matter if ε is small
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4 César Adolfo Hernández Melo & Luiz Felipe Demetrio

enough, the phenomenon of blow up always occurs for equation (7), but not
for equation (5). Roughly speaking, the reason for the latter is that∫ ∞

2

1

u1+ε
du <∞ and

∫ ∞
2

1

u ln(u)
du =∞,

see [3] for details. As it was mentioned above, another interesting feature of the
dynamic of the equation (5) is that there exists a class of solutions that decay
to zero super exponentially and another one that grows super exponentially. Of
course, that kind of behavior reveals certain instability of the flow associated to
the equation (5). Understanding how exactly this instability happens around
the equilibrium solution φ with

lim
|x|→∞

φ(x) = 0

is the main goal of this manuscript. It will be also obtained the instability of
any nontrivial equilibrium solution of the equation (5).

As mentioned above, solutions of equation (5) share some local similarities
with the solutions of other reaction diffusion equations. However, it is not clear
whether this equation models globally some specific problem in some area of
natural sciences. This is also noticed in [1].

Next, it will be described the principal results of this manuscript. Regarding
the existence of equilibrium solutions, it will be proven that the family of
functions

φ(x) = e
k−w
2k e

−k(x+d)2
2α (8)

are solutions of the equation

αφ′′ + wφ+ k ln(φ2)φ = 0. (9)

In other words, the family of functions given in (8) are equilibrium solutions
of the equation (5) that tend to zero at infinity. As it was noted above, the
key point to conclude stability or instability of the equilibrium solutions given
in (8) is the spectral analysis of the closure L of the symmetric linear operator
L : C∞0 (R)→ L2(R) given by

Lg = α
d2

dx2
g + 3kg − k2

α
x2g, (10)

which is obtained from

Lφ = α
d2

dx2
+ w + 2k + k ln(φ2), (11)

by replacing the function φ given in (8) into the formula (11). Regarding this
issue, it will be shown the following result on the spectrum of the self-adjoint
operator L.

Bolet́ın de Matemáticas 27(1) 1-14 (2020)

Pu
bl

ica
ció

n 
pr

el
im

in
ar



Stability of Equilibrium Solutions of a Nonlinear Reaction-Diffusion Equation 5

Theorem 1.1. The spectrum of the self-adjoint operator L is formed by the
sequence of eigenvalues λn = −2(n− 1)k, n = 0, 1, 2, ..., that is

λ0 = 2k, λ1 = 0, λ2 = −2k, λ3 = −4k, · · · , λn = −2(n− 1)k, · · · (12)

each eigenvalue is simple and its corresponding eigenfunction is given by the
formula (27).

Since k is a positive real number, then the former theorem implies that
operator L has a unique positive eigenvalue λ0 = 2k. Then from the theorem
5.1.3 in [6], the following theorem holds.

Theorem 1.2. The equilibrium solution φ given in (8) is unstable. Further-
more, the unstable manifold associated to this equilibrium solution has dimen-
sion one.

Remark 1.3. It is to be noticed that the solutions of the equation in (5) around
the equilibrium point φ can be approximated, at least formally, by the solutions
of the linear equation vt = Lv when v is close to zero. In fact, by replacing
u(x, t) = φ(x) + v(x, t) into the equation (5), we obtain that v satisfies the
partial differential equation

vt = F (φ) + F ′(φ)v + 2kG(v, φ) = Lv + 2kG(v, φ),

where F (u) = αuxx + wu+ k ln(u2)u, and the function G is given by

G(v, φ) =
∞∑
n=2

(−1)n

n(n− 1)

vn

φn−1
= (φ+ v)(ln(1 + v/φ)− 1), if |v(x, t)| ≤ φ(x).

Remark 1.4. As pointed out above, to prove the instability of an equilibrium
solution φ by linearization method, it is enough to show that the linear op-
erator Lφ has an spectral value with positive real part. In some cases, this
condition can be verified indirectly, neither knowing any explicit formula for
the equilibrium solutions nor knowing the spectrum of the operator completely,
see [8] for more details. Therefore, the equation discussed in this manuscript
is quite particular, an explicit formula to the equilibriums solutions can be cal-
culated (see (8)), and even, the spectrum of the operator L can be computed
completely (see (12)).

In section 2, it will be shown the existence of two different classes of periodic
solutions of the equation (9). However, obtaining simple formulas to represent
these solutions, or even obtaining explicit calculations of the spectrum of the
linear operators associated with these solutions are extremely difficult tasks.

In the following section, it will be verified that periodic equilibrium solutions
of the equation (5) do exist. Regarding these solutions, the following result will
be proven.

Theorem 1.5. Any nontrivial equilibrium solution of the equation (5) is un-
stable.
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6 César Adolfo Hernández Melo & Luiz Felipe Demetrio

This work is divided as follows. In section 2, the properties of the solu-
tions of the equation in (9) will be discussed, in particular, it will be shown
how to obtain the solutions given in (8). In section 3, based on two different
approaches, a proof of the theorem 1.1 will be presented. In section 4, a proof
of theorem 1.5 will be furnished.

2. Equilibrium solutions

In this section, it is discussed some qualitative properties of the equilibrium
solution of the equation in (5). That is, solutions of the non-linear second
order differential equation

αφ′′ + wφ+ k ln(φ2)φ = 0. (13)

Multiplying the previous equation by φ and integrating, it is obtained that φ
satisfies the following first order differential equation

[φ′]2 + (r − s)φ2 + sφ2 ln(φ2) = c, (14)

where r = wα, s = kα and c is a constant of integration. Then, the behavior
of the solutions of the equation in (13) can be analyzed from the level sets of
the Hamiltonian function Ψ : R2 → R defined by

Ψ(φ, φ′) = [φ′]2 + (r − s)φ2 + sφ2 ln(φ2).

The following figure contains three level sets of the function Ψ for α = 1, k = 1
and w = −1,

Here, the horizontal axis describes values of the variable φ and the vertical axis
describes values of the variable φ′. The previous figure represents three types
of solutions of the equation (13), namely,

1. For c < 0 fixed, the two closed simple curves that look like ellipses repre-
sent positive and negative periodic solutions.

2. For c = 0, the curve that looks like the infinity symbol represents two
solutions, a positive non-periodic solution that decays to zero at infinity
(this solution can be computed explicitly, see the formula (16) below),
and a negative non-periodic solution that decays to zero at infinity.
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Stability of Equilibrium Solutions of a Nonlinear Reaction-Diffusion Equation 7

3. For c > 0 fixed, the external closed simple curve represents a periodic
solution that takes both positive and negative values.

Now, it is deduced from the equation in (14) that, to obtain explicit formulas
of the solutions represented in the figure above, it is necessary to solve the
integral in the following equation:∫

dφ√
c+ (s− r)φ2 − sφ2 ln(φ2)

= x, (15)

which is a difficult task for all values of the constant c. However, by assuming
that φ and φ′ decay to zero at infinity, then from (14), it is possible to conclude
that the constant c must be zero. Then by replacing c by 0 into the equation
(15) and integrating, it follows that

φ(x) = e
k−w
2k e

−k(x+d)2
2α (16)

are equilibrium solutions of the equation (5) that tend to zero as x tends to
infinity. The constant d appearing in (16) is a constant of integration.

Remark 2.1. Other solutions of the equation (5) that can be calculated without
technical difficulties are solutions that only depend on the variable t. In fact, by
replacing u(x, t) = g(t) in (5), it is obtained that g satisfies the following first
order ordinary differential equation g′ = wg+k ln(g2)g, whose general solution

is given by g(t) = e−
ω
2k ese

2kt

. Similarly, by assuming that u(x, t) = h(t)φ(x), is
a solution to the equation given in (5) where φ is an equilibrium solution, then
it is easy to check that h satisfies the following first order ordinary differential
equation h′(t) = 2k ln(h(t))h(t), whose general solution is given by h(t) =

ese
2kt

. Then, another explicit solution of the equation (5) is given by

u(x, t) = ese
2kt

φ(x) = ese
2kt

e
k−w
2k e

−k(x+d)2
2α . (17)

These solutions will provide us another way to prove the instability of the
equilibrium solution φ given in (16).

3. Spectral properties of L
In this section, by using two different approaches, the spectral properties of the
linear operator L are established. By defining p = k

α > 0 and

H(p) = − d2

dx2
+ p2x2, (18)

then, L can be rewritten in terms of the operator H(p) as follows

L = −αH(p) + 3k, (19)
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8 César Adolfo Hernández Melo & Luiz Felipe Demetrio

so from (19), it follows that

σ (L) = −ασ (H(p)) + 3k, (20)

where σ (L), σ (H(p)) denote the spectrum of the operator L and H(p) re-
spectively. Now, the spectral properties of the operator H := H(p) are dealt.
First of all, it is to be noticed that the operator H is an essentially self-adjoint
operator from D(H) = C∞0 (R) to L2(R), that is, the closure of the symmetric
operator H is self-adjoint. As a consequence of this

σ(H) ⊆ R. (21)

Moreover, the spectrum of H is purely discrete, all of the eigenvalues are posi-
tive, and infinity is the only possible accumulation point of eigenvalues, namely,

λ0 < λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ · · ·

see the theorem 10.7 and section 11.2 in [7] for details. Next, we proceed to
calculate the eigenvalues of the operator L explicitly.

3.1. Algebraic approach

In this subsection we show that λn = (2n − 1)p ∈ σ(H), for every n > 0. In
fact, considering I the identity operator, A and A∗ the operators given by

A :=
d

dx
+ px, A∗ := − d

dx
+ px, (22)

the following table

[ , ] I A A* H
I 0 0 0 0
A 0 0 2pI 2pA
A* 0 -2pI 0 -2pA*
H 0 -2pA 2pA* 0

defines a Lie algebra of dimension four over the field R. Here, the Lie bracket
[C,D] of any linear operators C and D is given by the usual commutator

[C,D] = C ◦D −D ◦ C.

For instance the Lie bracket of the operators A and A∗ is computed as follows

[A,A∗] =

(
d

dx
+ px

)
◦
(
− d

dx
+ px

)
−
(
− d

dx
+ px

)
◦
(
d

dx
+ px

)
= − d2

dx2
+ p+ px

d

dx
+ p2x2 −

(
− d2

dx2
− p+ px

d

dx
+ p2x2

)
= 2pI.
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Stability of Equilibrium Solutions of a Nonlinear Reaction-Diffusion Equation 9

Now, we claim that if λ is an eigenvalue of H, namely Hg = λg, then λ+ 2p is
an eigenvalue of H with eigenfunction A∗g. In fact,

HA∗g = [H,A∗]g +A∗Hg

= 2pA∗g +A∗λg

= (λ+ 2p)A∗g

(23)

Since λ = p is an eigenvalue of H with eigenfunction g = e−p
x2

2 , then we obtain
that the sequence

λ1 = p, λ2 = 3p, λ3 = 5p, · · · , λn = (2n− 1)p, · · ·

are eigenvalures of the operator H, with

v1 = g, v2 = A∗g, v3 = A∗A∗g, · · · , vn = A∗ · · ·A∗g, · · ·

as its associated sequence of eigenfunctions. It is worth to note that the alge-
braic method described above does not let clear if there is any other eigenvalue
in the spectrum of the operator H, it does not say anything about the mul-
tiplicity of each eigenvalue. Those important issues will be approached in the
next subsection by applying a classical method for solving ordinary differential
equations.

3.2. Analytic approach

Now, the eigenvalues of the operator H are computed by analyzing the power
series of the solutions of the differential equation (24) below. Recall that an
eigenvalue of the operator H is a complex number λ such that there exists a
non-trivial solution y of the ordinary differential equation

−y′′ + p2x2y = λy, (24)

that satisfies
lim

x→|∞|
y(x) = 0.

Regarding the solutions of the equation (24), we have the following result,

Lemma 3.1. The solutions of the ordinary differential equation (24) satisfy
the following properties,

1. Power series solutions. The general solution of the equation (24) can
be written as y = y0λ + y1λ, where the solutions y0λ, y1λ are real analytic
functions given by

y0λ(x) = e−
px2

2

∞∑
i=0

c2i(λ)x2i, y1λ(x) = e−
px2

2

∞∑
i=0

c2i+1(λ)x2i+1,
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10 César Adolfo Hernández Melo & Luiz Felipe Demetrio

and the coefficients c2i(λ) = c2i and c2i+1(λ) = c2i+1 are given by

c2i =
(p− λ)(5p− λ)(9p− λ) · · · ((4i− 3)p− λ)

(2i)!
c0, (25)

c2i+1 =
(3p− λ)(7p− λ)(11p− λ) · · · ((4i− 1)p− λ)

(2i+ 1)!
c1, (26)

for i = 1, 2, · · · .

2. Bounded solutions. If λ = (2n+ 1)p, n = 0, 1, 2, · · ·, then

vn(x) :=

{
y0λ(x) = Hn(x)e−

px2

2 , if n is even,

y1λ(x) = Hn(x)e−
px2

2 , if n is odd.
(27)

where Hn denotes the well known Hermite nth-degree polynomial. In
particular, we have that

lim
|x|→∞

yjλ(x) = 0, for j = 0, 1. (28)

3. Unbounded solutions. If λ 6= 4n+ 1, n = 0, 1, 2, · · ·, then

lim
|x|→∞

y0λ(x) =∞. (29)

If λ 6= 4n− 1, n = 1, 2, · · ·, then

lim
x→∞

y1λ(x) =∞, lim
x→−∞

y1λ(x) = −∞. (30)

Proof. If y(x) = e−p
x2

2 h(x) satisfies (24), then h must satisfy the ordinary
differential equation

−h′′ + 2pxh′ = (λ− p)h, (31)

so, if h(x) =
∑∞
i=0 cix

i is a solution of (31), then the coefficients ci must satisfy
the following recurrence relation

ci+2(λ) =
(2i+ 1)p− λ
(i+ 2)(i+ 1)

ci, for i = 0, 1, 2, · · · . (32)

By solving the recurrence relation (32), we obtain the formulas given in (25) and
(26). Now, (27) and (28) follow from (32) and the definition of the solutions y0λ,
y1λ given above. To prove the item 3, we first suppose λ 6= 4m+1, m = 0, 1, 2, ···.
From the recurrence relation (32), we obtain that

c2i+2 =
(4i+ 1)p− λ

(2i+ 2)(2i+ 1)
c2i, i = 0, 1, 2, · · ·. (33)
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Stability of Equilibrium Solutions of a Nonlinear Reaction-Diffusion Equation 11

So, taking c0 6= 0, we deduce that c2i 6= 0 for all i = 1, 2, · · ·, therefore, if i→∞
then 2ic2i+2

pc2i
→ 2. Thus, for 1 < γ < 2, there exists s ∈ N such that

c2i+2

c2i
>
γp

2i
> 0, for all i ≥ s. (34)

In addition, choosing c0 conveniently, we can consider c2i > 0 for all i ≥ s.
Now, from (34), it follows that

c2s+2

c2s
>
γp

2s
;
c2s+4

c2s+2
>

γp

2s+ 2
; · · · ;

c2s+2n

c2s+2(n−1)
>

γp

2s+ 2(n− 1)

by multiplying the previous n ≥ 1 inequalities, we obtain the following two
inequalities

c2s+2n

c2s
>
(γp

2

)n 1

s

1

s+ 1
· · · 1

s+ n− 1

>
(γp

2

)n 1

s+ 1

1

s+ 2
· · · 1

s+ n
,

(35)

for all n ≥ 1. Now, multiplying (35) by x2n+2s (x 6= 0), we get that

c2s+2nx
2n+2s >

(γp
2

)n 1

s+ 1

1

s+ 2
· · · 1

s+ n
c2sx

2n+2s

for all n ≥ 1, then

∞∑
n=1

c2n+2sx
2n+2s >

∞∑
n=1

(γp
2

)n 1

s+ 1

1

s+ 2
· · · 1

s+ n
c2sx

2n+2s

= c2ss!
∞∑
n=1

(γp
2

)n 1

(s+ n)!
x2(n+s)

= c2ss!

(
2

γp

)s ∞∑
j=s+1

(γp
2

)j 1

j!
x2j .

(36)

Hence, by using the power serie representation of the exponential function, it
is deduced that

∞∑
n=1

c2n+2sx
2n+2s > c2ss!

(
2

γp

)s e γpx22 −
s∑
j=0

1

j!

(
γpx2

2

)j . (37)

The last inequality implies that

∞∑
i=0

c2ix
2i > c2ss!

(
2

γp

)s e γpx22 −
s∑
j=0

1

j!

(
γpx2

2

)j+
s∑
i=0

c2ix
2i.

Finally,

y0λ(x) > Me
(γ−1)px2

2 +
s∑
j=0

B(j, s)x2je−
px2

2 ,
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12 César Adolfo Hernández Melo & Luiz Felipe Demetrio

where B(j, s) = c2j−M 1
j!

(
γp
2

)j
and M = c2ss!

(
2
γp

)s
. Hence, since γ > 1, then

from the previous inequality, it is obtained that lim
|x|→∞

y0λ(x) =∞, which proves

(29). Similar arguments prove (30). This finishes the proof of our lemma.

Now, since the operator H is self-adjoint, then the algebraic approach de-
veloped in section 3.1 and the lemma 3.1 allow us to conclude that

σ(H(p)) = {p, 3p, 5p, · · · , (2n+ 1)p, · · · },

for n ≥ 0. Hence, from the formula (20) with p = k/α, we obtain that

σ(L) = {2k, 0,−2k,−4k, · · · ,−2(n− 1)k, · · · },

wich proves the theorem 1.1.

Remark 3.2. Let ψ be a real valued function of real variable and θ > 0. By
defining U(θ)ψ(x) = θ1/2ψ(θx), then U is a unitary representation of the mul-
tiplicative group (R+, ·). In particular, U(θ)−1 = U(θ−1). Furthermore, for
p > 0 the operators U(p−1/2) and H(p) satisfy the following interesting rela-
tion

U(p−1/2)H(p)U(p−1/2)−1ψ = pH(1)ψ.

In other words, the operator H(p) is similar to the operator H(1). Therefore,

σ(H(p)) = pσ(H(1)).

In addition, if r is an eigenvalue of the operator H(1) with eigenfunction ψ,
then rp is an eigenvalue of the operator H(p) with associated eigenfunction
U(p1/2)ψ(x) = p1/4ψ(p1/2x).

4. Instability of any non trivial equilibrium

In this section, we give a simple proof on the instability of any nontrivial
equilibrium solution to the equation (5). Although this proof does not make use
of any spectral information of the linear operator L given in (4), it also does not
give any information about the nature of the instability of the equilibrium: for
instance, we cannot say anything about the dimension of the unstable manifold
nor the dimension of the stable manifold.

If φ is an equilibrium solution of the equation given in (5), i.e., φ satisfies
the following ordinary differential equation

αφ′′ + wφ+ k ln(φ2)φ = 0,

then it is not difficult to check that

u(x, t) = ese
2kt

φ(x), s ∈ R (38)
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is a solution of the Cauchy problem{
ut = αuxx + wu+ k ln(u2)u,

u(x, 0) = esφ(x)
(39)

In addition,

||ese
2kt

φ−φ|| = |ese
2kt

− 1|||φ|| = |se2kt + s2e4kt/2 + · · · |||φ|| > se2kt||φ|| (40)

for all s > 0. Hence, considering

un(0) = e
1
nφ, tn >

1

2k
ln(n/||φ||), and un(t) = e

1
n e

2kt

φ,

being the solution of the Cauchy problem in (39) with initial data un(0) =

e
1
nφ ∈ X, it follows that

lim
n→∞

||un(0)− φ|| = 0,

and

||un(tn)− φ|| > 1.

It implies that any non trivial equilibrium solution of the equation (5) is unsta-
ble on any Banach or Hilbert space where the Cauchy problem be well posed.
In particular, all the equilibrium solutions described in section 2 are unstable.
It proves the theorem 1.5. Finally, it is worth to notice that the solutions
given in (38) satisfy the following properties: for s > 0 fixed, u grows super
exponentially and for s < 0 fixed, u decays to zero super exponentially. Those
properties are investigated in detail in [1].
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