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Stability of Equilibrium Solutions of,a
Nonlinear Reaction-Diffusion Equation

Estabilidad de Soluciones de Equilibrio de una Ecuacién de
Reaccion-Difusién no Lineal

César Adolfo Hernandez Melo!'?, Luiz Felipe Demetrio?:"

Abstract. In the present work, it is analyzed existenee and stability of equi-
librium solutions of the following nonlinear reaction=diffusion equation:

Ut = AUy + wu + k L’ ) 0!

Explicit formulas for a family of equilibriufh selutions to the former equation
which decay to zero at infinity are providediyThe instability of those solutions
is obtained by detailed spectral analysi§"ofighe linear operator which approxi-
mates the solutions of the equation ar@und the equilibrium solutions. A result
about the instability of any non-trivial equilibrium solution of the equation is
also established.
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Resumen. En el presenteptrabajo, se analiza la existencia y estabilidad de
soluciones de equilibrio€ la sigmniente ecuacién de reaccién-difusién no lineal:

up= Qg 4 wu + kn(u’)u.

Se proporcionan féfmulas/explicitas para una familia de soluciones de equilibrio
de la ecuacién anteriofique decaen a cero en infinito. La inestabilidad de esas
solucioneg, se ‘6bticrien” mediante el andlisis espectral detallado del operador
lineal que aproximaylas soluciones de la ecuacién alrededor de las soluciones
de equilibzio. “Fambién se establece un resultado sobre la inestabilidad de
cualduier solugién de equilibrio no trivial de la ecuacién.
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1. Introduction

Due to its diverse applications, the general reaction diffusion equation,
Up = QUgy + f(u), (z,t) € R x R (1)

has received considerable attention from the scientific community fmgthe last
decades. Here u(x,t) € R, a is a positive real parametergand Wf denotes a
real-valued function that, in most cases, satisfies some regularityyconditions.
If the reaction term f vanishes, then the equation representsta, pure diffusion
process. The corresponding equation is called Fick seeond®aw. The choice
f(u) = u(l —u) yields Fisher equation that was originally uged to describe the
spreading of biological populations [2], the Newell:Whitehead-Segel equation
with f(u) = u(1 — u?) to describe Rayleigh-Béhard @envection [[12],[13]], the
more general Zeldovich equation with f(u) =tw(l =Ww)(u —b) and 0 < b < 1
that arises in combustion theory [14], and its partigular degenerate case with
f(u) = u? — u? that is sometimes referred to @s the,Zeldovich equation as well.
From the mathematical point of view, problemis like the existence of solutions
for the Cauchy problem, the existence Ofiglobal solutions, the existence of
global attractor, the existence of particulafgolutions and its stability have been
widely studied, [[6],[3],[4],[5],[10],[9]]. 4ln, particular, the problem of existence
and stability of equilibrium solutions of th&equation (1) for specific functions
f have been also addressed, see fof"ingtance the recent work in [10], where the
case f(u) = wu + u® +u® was dealt. The latter work was partially generalized
in [11].

It is to be recalled that an equilibrium solution of the equation (1) is a
solution of the equation thétyis ndependent of the variable ¢. Thus, u(z,t) =
¢(x) is an equilibrium selfition‘ef the equation (1), if ¢ satisfies the following
second order ordinary differential equation

a¢” + f(¢) =0. (2)
Let X be a Hilbert or Banach space where the Cauchy problem

{ut = QU + f(u),

u(0) =up € X ®)

is well posed. An equilibrium solution ¢ € X is said to be stable in X =
(X, ]| - || x99 it f6r all € > 0, there exists § > 0 such that

. Juo— || <9, then |lu(t)—¢|| <e  forallt>0.

Hexe fu denotes the solution of the Cauchy problem in (3) with u(0) = uy € X.
Otherwise, the equilibrium solution ¢ is said to be unstable.

A classical method to study the stability /instability of an equilibrium solu-
tion is based on the analysis of the spectral properties of the following linear

operator
2

d
Lo=as+f(0) @
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which is defined on certain Hilbert or Banach space. Roughly speaking, if the
spectrum of the operator £, intercepts the set {z € C: 0 < Re(z)}, then the
equilibrium solution is unstable. On the other hand, if the spectrum of the
operator L4 is contained in the set {z € C : Re(z) < b} for somegb < 0, then
the equilibrium solution is stable. See theorems 5.1.1 and 5.1.3 ing{6] fomdetails.

In this work, it is studied the problem of existence and stability @fsequilib-
rium solutions of the equation (1) when f(u) = wu + k In(u?)a, that'is to say,
the semilinear parabolic equation

U = Uy +wu + kIn(u?)u, (5)

where @ > 0, w € R and k£ > 0.
Recently, equation (5) has been discussed ingl] when o= 1 and w = 0, i.e.,

Up = Ugy + K In(u” )il (6)

In there, the authors mainly establish the existénce of a class of initial condi-
tions such that its associated solutions eithér grewssuper exponentially or decay
to zero super exponentially, the problem of glebal well posedness of solutions is
also addressed. It is worth to note that by ‘doing some simple transformation,
the solutions of equation (5) can be obtained from the solutions of equation
(6) and vice versa. In fact, if u = u(x,t)Nis a solution of the equation (5)
then, h(z,t) = ezru(y/ax,t) is afsolagion of the equation (6). Conversely, if
u = u(z,t) is a solution ofjthe equation (6) then, g(z,t) = e u(z/\/a,t)
is a solution of the equationd(5)%, Thus, the dynamic of equation (5) is as
complicated as the dynamic ofythe equation (6).

As it has been noticed 1n%l], some technical difficulties appear due to the
logarithmic term in the @quation’ (5). For instance, since the function g(u) =
uln(u?), g(0) = 0 is not aVkipschitz function around zero, then the problem of
local well-posedness in meighborhoods of zero cannot be approached by using
classical techniquegswIn“addition, because of the undefined sign of the second
term of the formal.energy

E](t) = %/(oz(ugc)2 — wu?)(z,t)dx —|—/ gug(l — In(u?))(x, t)dx
R R
associated to, the equation (5), then obtaining global existence of solutions of
(5) via eneérgy method is a delicate issue.

Oi1f%he otller hand, the dynamic of the equation (5) is quite interesting in
comparison*with other similar equations. For instance, for o,k > 0, w € R and
€ 30{ the equation

Up = QUgy + wu + ku'Te (7)

has positive solutions that blow up in finite time when the initial data satisfy
a certain general condition. In contrast, proposition 1.2 in [1] guarantee the
existence of global solutions for equation (5) when the initial data satisfy a
specific, but general condition. Therefore, it does not matter if € is small
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enough, the phenomenon of blow up always occurs for equation (7), but not
for equation (5). Roughly speaking, the reason for the latter is that

* 1 *© 1
/ — du < and / du =
2 U1+E 2 uln(u)
I

see [3] for details. As it was mentioned above, another interesti @e of the
dynamic of the equation (5) is that there exists a class of sdlut hat decay

to zero super exponentially and another one that grows8upe onentially. Of
tw

course, that kind of behavior reveals certain instability o associated to
the equation (5). Understanding how exactly this insfa appens around
the equilibrium solution ¢ with

L 4

lim ¢(x) :\S
|z] =00
is the main goal of this manuscript. It will 0, obtained the instability of
any nontrivial equilibrium solution of the 5).
As mentioned above, solutions of equa% share some local similarities
with the solutions of other reaction diffuSién,eqiations. However, it is not clear

whether this equation models globallfaso specific problem in some area of
natural sciences. This is also noticed in

Next, it will be described the prifieipal results of this manuscript. Regarding
the existence of equilibrium solutions, it will be proven that the family of
functions “‘

k—w —k(z+d)?

S 2k ¢ Za (8)

are solutions of the equati \

LA we + kn(¢)é = 0. (9)
In other words, t wf functions given in (8) are equilibrium solutions

of the equation (5), tha®)tend to zero at infinity. As it was noted above, the

key point tQyco ability or instability of the equilibrium solutions given

in (8) is the s al“@malysis of the closure £ of the symmetric linear operator
2

L: C’é’o% given by
d? Kz,
_a o 1
Q Lg=a-59+3kg - —ag, (10)
y @ s obtained from

2

d 2

by replacing the function ¢ given in (8) into the formula (11). Regarding this
issue, it will be shown the following result on the spectrum of the self-adjoint
operator L.
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Stability of Equilibrium Solutions of a Nonlinear Reaction-Diffusion Equation 5

Theorem 1.1. The spectrum of the self-adjoint operator L is formed by the
sequence of eigenvalues A, = —2(n — 1)k, n=0,1,2, ..., that is

)\0 = 2]€, )\1 = 07 )\2 = —2]6, )\3 = —4k,-~- ,)\n = —2(n— 1)]€, (12)

each eigenvalue is simple and its corresponding eigenfunction gs givenvby the
formula (27).

Since k is a positive real number, then the former theorem™implies that
operator £ has a unique positive eigenvalue \g = 2k. Then frem the theorem
5.1.3 in [6], the following theorem holds.

Theorem 1.2. The equilibrium solution ¢ given inf(8his unstable. Further-
more, the unstable manifold associated to this equiltbgium Solution has dimen-
ston one.

Remark 1.3. It is to be noticed that the solutions offghe equation in (5) around
the equilibrium point ¢ can be approximated}atdeast formally, by the solutions
of the linear equation v; = Lv when v is_€loseatefzero. In fact, by replacing
u(z,t) = ¢(z) + v(z,t) into the equation (§), we obtain that v satisfies the
partial differential equation

v =F(¢) + F'(¢)v + 2kG(0@) = Lv + 2kG(v, ¢),

where F(u) = iz, + wu + kIn(2?)u, @ad the function G is given by

n

— S0 n(l+v/e)=1), if |o(z,1)] < ().

o~ (D)™ v
G(v,9) 2222 =T
Remark 1.4. As pointediout above, to prove the instability of an equilibrium
solution ¢ by linearizationymethod, it is enough to show that the linear op-
erator L4 has an spectraljwalue with positive real part. In some cases, this
condition can be yerified indirectly, neither knowing any explicit formula for
the equilibrium solution$)nor knowing the spectrum of the operator completely,
see [8] for more“details” Therefore, the equation discussed in this manuscript
is quite particular, anvexplicit formula to the equilibriums solutions can be cal-
culated (seef(8)), and even, the spectrum of the operator £ can be computed
completelip(see (12)).

In seétion 2git will be shown the existence of two different classes of periodic
solutious of the equation (9). However, obtaining simple formulas to represent
théséwsolutiens, or even obtaining explicit calculations of the spectrum of the
linear/operators associated with these solutions are extremely difficult tasks.

In"$he following section, it will be verified that periodic equilibrium solutions
of the equation (5) do exist. Regarding these solutions, the following result will
be proven.

Theorem 1.5. Any nontrivial equilibrium solution of the equation (5) is un-
stable.
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6 César Adolfo Herndndez Melo & Luiz Felipe Demetrio

This work is divided as follows. In section 2, the properties of the solu-
tions of the equation in (9) will be discussed, in particular, it will be shown
how to obtain the solutions given in (8). In section 3, based on two different
approaches, a proof of the theorem 1.1 will be presented. In secti% proof

of theorem 1.5 will be furnished. q

2. Equilibrium solutions Q
4
In this section, it is discussed some qualitative propertie e equilibrium

solution of the equation in (5). That is, solutions non-linear second
order differential equation
ag” + we + kIn(? ':x (13)
Multiplying the previous equation by ¢ and int ing, it is obtained that ¢
satisfies the following first order differential ion
[0')2 + (r — 8)¢? + s8> In =c, (14)

where r = wa, s = ka and ¢ is a const tegration. Then, the behavior
of the solutions of the equation in (1 e analyzed from the level sets of
the Hamiltonian function ¥ : R? — R defifled by

(o, ¢") = [¢'I+ 5)¢% + 597 In(¢?).
The following figure contain§®e 1 sets of the function ¥ fora =1,k =1

and w = —1, ? 4

1

Gl ﬂO
N

Here, the,ho al axis describes values of the variable ¢ and the vertical axis
describes values of the variable ¢'. The previous figure represents three types
t

of, the equation (13), namely,

or ¢ < 0 fixed, the two closed simple curves that look like ellipses repre-
t positive and negative periodic solutions.

2. For ¢ = 0, the curve that looks like the infinity symbol represents two
solutions, a positive non-periodic solution that decays to zero at infinity
(this solution can be computed explicitly, see the formula (16) below),
and a negative non-periodic solution that decays to zero at infinity.
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Stability of Equilibrium Solutions of a Nonlinear Reaction-Diffusion Equation 7

3. For ¢ > 0 fixed, the external closed simple curve represents a periodic
solution that takes both positive and negative values.

Now, it is deduced from the equation in (14) that, to obtain explié¢it formulas
of the solutions represented in the figure above, it is necessary to%solve the
integral in the following equation:

do .
/ Vet (s —r)d? —s¢?In(¢?) & (1)

which is a difficult task for all values of the constant cf Heweveér, by assuming
that ¢ and ¢’ decay to zero at infinity, then from (14)fityis possible to conclude
that the constant ¢ must be zero. Then by replacifig,c by into the equation
(15) and integrating, it follows that

k—w —k(ztd)?
200

ola) = ¢'Fe

(16)

are equilibrium solutions of the equationg(b) thiat tend to zero as z tends to
infinity. The constant d appearing in (16),is @constant of integration.

Remark 2.1. Other solutions of the eqaation (5) that can be calculated without
technical difficulties are solutions that only#depend on the variable ¢. In fact, by
replacing u(z,t) = g(t) in (5), it is"ebtained that g satisfies the following first
order ordinary differential equatien g’ =%wg + kIn(g?)g, whose general solution
is given by ¢g(t) = e~ srese” Similarlyy by assuming that u(x,t) = h(t)¢(x), is
a solution to the equation given in (§) where ¢ is an equilibrium solution, then
it is easy to check that h sdtisfiessthe following first order ordinary differential
equation h'(t) = 2kIn(W@®))h(#)y whose general solution is given by h(t) =

ese™. Then, another explicit solution of the equation (5) is given by

k(s 2
2kt Se?kt kE—w k(x+d)

ww, th=le’® o(x) =e’ e e 22 . (17)
These solutions@willprovide us another way to prove the instability of the
equilibrium selution¥ given in (16).
3. Spectral properties of L

In this®ection, by using two different approaches, the spectral properties of the
limear operator L are established. By defining p = § > 0 and

d2
H(p)=-—73 +p*a?, (18)
then, £ can be rewritten in terms of the operator H(p) as follows

L = —aH(p) + 3k, (19)
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8 César Adolfo Herndndez Melo & Luiz Felipe Demetrio

so from (19), it follows that
o (L) =—ao (H(p)) + 3k,
where o (L), o (H(p)) denote the spectrum of the operator £ a& re-

spectively. Now, the spectral properties of the operator H := dealt
First of all, it is to be noticed that the operator H is an esse adJ01nt
operator from D(H) = C§°(R) to L?(R), that is, the closur o symmetric
operator H is self-adjoint. As a consequence of this

o(H) CR.

Moreover, the spectrum of H is purely discrete, all the“eigenvalues are posi-

tive, and infinity is the only possible accumula 10n inthef eigenvalues, namely,
Ao <A < Xy < A3

see the theorem 10.7 and section 11.2 in %aﬂs Next, we proceed to

calculate the eigenvalues of the operator llcltly

3.1. Algebraic approach

In this subsection we show that )p € o(H), for every n > 0. In
fact, considering I the 1dent1ty A and A* the operators given by
AY = —— —|—p:z:, (22)
Q A A* H
0 0 0
0 2pl 2pA
-2pl 0 -2pA*
-2pA 2pA* 0

[C,D]=CoD—-DoC.

) @ ance the Lie bracket of the operators A and A* is computed as follows

[ A*]— i_|_ o _i+ — _14_ o i_|_
’ g T dz Pt P de Pt

= d2++zd+2x2 & +xd+2x2
 da? pp dx p dx? pp dx p
= 2pl.

Boletin de Matemadticas 27(1) 1-14 (2020)



Stability of Equilibrium Solutions of a Nonlinear Reaction-Diffusion Equation 9

Now, we claim that if A is an eigenvalue of H, namely Hg = A\g, then A+ 2p is
an eigenvalue of H with eigenfunction A*g. In fact,

HA*g=[H,A"|g+ A*Hyg
=2pA*g+ A*Xg (23)
= (A +2p)A%g (b
Since A = p is an eigenvalue of H with eigenfunction g #e‘Qhen we obtain
that the sequence \

>\1:pa)‘2:3p,)‘3:5p7"‘ 7)‘77,:

are eigenvalures of the operator H, with ¢

U1 :g,’UQ:A*g7U3:A*A*g,"’\*”‘A*g,"'

as its associated sequence of eigenfunction; rth to note that the alge-

braic method described above does not let r if there is any other eigenvalue
in the spectrum of the operator H, it say anything about the mul-
tiplicity of each eigenvalue. Those imf
next subsection by applying a classical method for solving ordinary differential

equations. Q
3.2. Analytic approa‘D
r H are computed by analyzing the power

Now, the eigenvalues of t%l
series of the solutions o Xren‘cial equation (24) below. Recall that an
&
e

eigenvalue of the operat a complex number A such that there exists a

non-trivial solution y, dinary differential equation

< : ’ﬁ —y" +pPaty = Ay, (24)
4
that satisfi \

\ lim y(z) = 0.

Regardin tions of the equation (24), we have the following result,

The solutions of the ordinary differential equation (24) satisfy

ower series solutions. The general solution of the equation (24) can
written as y = y3 + yi, where the solutions yY, yi are real analytic
functions given by

o2 . 2 2 )
W) =e 7> euNa®,  yi@) =7 Y eapa(Na
=0 =0
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and the coefficients ca;(N\) = ca; and cai11(N\) = coi41 are given by

o= P=NEP =N —A)---((4i=3)p—A)
21 — (21)' Co

Bp=N)(Tp=N)(A1lp—A)---((4i = 1)p
C2i41 = (21 + 1) % (26)
fori=1,2,---. O\Q

2. Bounded solutions. If A= (2n+ 1)p, n=0,1

vp () = {y/\(a:) (@)e L’

yi(z) (z) \ s odd.
where H, denotes the well known H -degree polynomial. In

particular, we have that E%

lim y)\ 7"] =0,1. (28)
|z|— 00
3. Unbounded solutions. =0,1,2,---, then

'\
\ @i(ww (29)
IfN#4n—1, n =4, Q

yx ()%= oo, lim _y3(z) = —cc. (30)

Proof. 1f y(z) =
differential equati ati

@ satisfies (24), then h must satisfy the ordinary
"+ 2pzh’ = (XA —p)h, (31)

x is a solution of (31), then the coefficients ¢; must satisfy
rrence relation

so, if h(z) =
the followi

Qﬁ

ing the recurrence relation (32), we obtain the formulas given in (25) and
(26). Now, (27) and (28) follow from (32) and the definition of the solutions 49,
yi given above. To prove the item 3, we first suppose A # 4m—+1, m =0,1,2,---.
From the recurrence relation (32), we obtain that

(2i+1)p—A

SN e

for i=0,1,2,---. (32)

(4i+1)p—A

S/ A i =0,1,2,- - -. 33
(2’L+2)(2’L+1)62“ ? s Ly 4y ( )

C2i42 =

Boletin de Matemadticas 27(1) 1-14 (2020)
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So, taking co # 0, we deduce that cp; # 0 for all ¢ = 1,2, ---, therefore, if ¢ — oo
then Zic2ix2 _ o Thus, for 1 < v < 2, there exists s € N such that

pc2q
Q2 IP 0, for all 4 > s. \ (34)
C2; 21

In addition, choosing ¢y conveniently, we can consider cg; > % i > s.
Now, from (34), it follows that

C2542 S E . C25+44 yp L. C254+2n g P
Cas 25 coeq2 2542 " Costa(n—1) —1)

by multiplying the previous n > 1 inequalities, we
inequalities

Caston (ﬁ)" 11 '

Cos 2

S (7p>n 1 1 1
2/) s+1s s+n’
for all n > 1. Now, multiplying (35) by mzﬂ 0), we get that

2n—+2s ’Yp>n
C x > (—
2s54+2n 2 s

for all n > 1, then

1 1 1 2n+2s
s+1s+2 S+n025$

N ) e &
(b_; (j_p) Pl () v

Hence, by usiiig t@er serie representation of the exponential function, it
is deduced \\
00 s s 2\ J
2 2 1
222 > oy sl <—) Y (W’x ) .37
— yp = 7! 2
The IQH‘W implies that
o] s s 2\ J s
. 2 22 1 X .
22 Co; 2 > Cog8! <—) el — 5 (ﬁﬂ) ) + Zcmxzz.
i=0 TP =0 2 i=0

Finally,

w
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12 César Adolfo Herndndez Melo & Luiz Felipe Demetrio
. S
. J .
where B(j,s) = ng*M% (%) and M = cg4s! (%) . Hence, since v > 1, then

from the previous inequality, it is obtained that ‘ l‘im 3 () = oo, which proves
Tr|—0o0

(29). Similar arguments prove (30). This finishes the proof of ourdlemma. [

Now, since the operator H is self-adjoint, then the algebraic approeach de-
veloped in section 3.1 and the lemma 3.1 allow us to conclude,that

U(H(p)) :{p73p75p7"' 7(2n+1)pa"'}7

for n > 0. Hence, from the formula (20) with p = k/af wésebtain that
O-(‘C’) = {2k707 _Qka _4k7 Tty _2(n T 1)k7 s }a

wich proves the theorem 1.1.

Remark 3.2. Let ¥ be a real valued functiog”cfyreal’variable and 6 > 0. By
defining U ()¢ (x) = 01/ (), then U is a tmitary representation of the mul-
tiplicative group (R*,.). In particular, U{f)~'"= U(6~!). Furthermore, for
p > 0 the operators U(p~'/?) and H (p)msatisty, the following interesting rela-
tion

Up~ ') H(p)U (p~ "8 = pH(1)v.

In other words, the operator H(p) is8umilar to the operator H(1). Therefore,

o)) = po(H(1)).

In addition, if r is an eigefivaluémef the operator H(1) with eigenfunction 1,
then rp is an eigenvalueg®f theeperator H(p) with associated eigenfunction

Up'/?)p(x) = p'/*p(p'Rg).

4. Instability of*any non trivial equilibrium

In this section, we,give a simple proof on the instability of any nontrivial
equilibrium solutien to the equation (5). Although this proof does not make use
of any spectraldmformation of the linear operator £ given in (4), it also does not
give any infermagion about the nature of the instability of the equilibrium: for
instance, We cannot say anything about the dimension of the unstable manifold
nor th&dimension of the stable manifold.

If"¢ is"&m equilibrium solution of the equation given in (5), i.e., ¢ satisfies
thefollowing ordinary differential equation

ad” +wo + kn(¢?)¢ = 0,
then it is not difficult to check that

2kt

u(z,t) =e*¢ ¢(z), seR (38)

Boletin de Matemadticas 27(1) 1-14 (2020)



Stability of Equilibrium Solutions of a Nonlinear Reaction-Diffusion Equation 13
is a solution of the Cauchy problem

{ut = Qg + wu + kIn(u?)u,

u(z,0) = *6(z) \ 39
In addition, %

2kt 2kt
le** & —¢l| = e 1¢862’“+8264kt/2+'5\@“¢ (40)

for all s > 0. Hence, considering

1 1
un(0) =emd,  tn > - In(n/||gl)),  and

being the solution of the Cauchy problem iw initial data w,(0) =
1 .
en¢ € X, it follows that %
lim ||Un(0)% )

n—oo
and
[t (tn) — 1.
It implies that any non trivial equilibfium solution of the equation (5) is unsta-

ble on any Banach or Hilbent space,where the Cauchy problem be well posed.

In particular, all the equilib& selutions described in section 2 are unstable.

It proves the theorem 14b. % it is worth to notice that the solutions

given in (38) satisfy the fo\ properties: for s > 0 fixed, u grows super
fixe

exponentially and for s 7 u decays to zero super exponentially. Those
properties are investigatedyin detail in [1].
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