
Bolet́ın de Matemáticas 26(2) 87–99 (2019) 87

2-absorbing powerful ideals and related results

Ideales poderosos 2-absorbentes y resultados relacionados

H. Ansari-Toroghy1,a, F. Farshadifar2,b, S. Maleki-Roudposhti1,c

Abstract. Let R be an integral domain. In this paper, we will introduce the
concepts of 2-absorbing powerful (resp. 2-absorbing powerful primary) ideals
of R and obtain some related results. Also, we investigate a submodule N of
an R-module M such that AnnR(N) and (N :R M) are 2-absorbing powerful
(resp. 2-absorbing powerful primary) ideals of R.

Keywords: Powerful ideal, 2-absorbing powerful ideal, 2-absorbing powerful
submodule, 2-absorbing powerful primary ideal, 2-absorbing powerful primary
submodule.

Resumen. Sea R un dominio de integridad. En este art́ıculo introduci-
mos los conceptos de ideales poderosos 2-absorbentes (resp. ideales primarios
poderosos 2-absorbentes) de R y obtenemos algunos resultados relacionados.
Además, investigamos un submódulo N de un R-módulo M tal que AnnR(N)
y (N :R M) son ideales poderosos 2-absorbentes (resp. ideales primarios
poderosos 2-absorbentes) de R.
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poderoso 2-absorbente, ideal primario poderoso 2-absorbente, submódulo pri-
mario poderoso 2-absorbente.
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1. Introduction

Throughout this paper, R will denote an integral domain with quotient field
K. Further, Z, Q, and N will denote respectively the ring of integers, the field
of rational numbers, and the set of natural numbers.

The concept of powerful ideals was introduced in [4]. A non-zero ideal I of
R is said to be powerful if, whenever xy ∈ I for elements x, y ∈ K, then x ∈ R
or y ∈ R.
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A proper ideal I of R is said to be strongly prime if, whenever xy ∈ I for
elements x, y ∈ K, then x ∈ I or y ∈ I [8].

The concept of 2-absorbing ideals was introduced in [3]. A proper ideal I
of R is a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I
or ac ∈ I or bc ∈ I.

A 2-absorbing ideal I of R is said to be a strongly 2-absorbing ideal if,
whenever xyz ∈ I for elements x, y, z ∈ K, then we have either xy ∈ I or
yz ∈ I or xz ∈ I [2].

The purpose of this paper, is to introduce the concepts of 2-absorbing pow-
erful (resp. 2-absorbing powerful primary) ideals of R and study some their
basic properties. Moreover, we introduce and investigate the concepts of 2-
absorbing powerful (resp. 2-absorbing copowerful) and 2-absorbing powerful
primary (resp. 2-absorbing copowerful primary) submodules of an R-modules
M .

2. 2-absorbing powerful ideals and submodules

Definition 2.1. We say that a non-zero ideal I of R is a 2-absorbing powerful
ideal if, whenever xyz ∈ I for elements x, y, z ∈ K, we have either xy ∈ R or
yz ∈ R or xz ∈ R.

Proposition 2.2. If P is a strongly 2-absorbing ideal of R, then P is a 2-
absorbing powerful ideal of R.

Proof. This is clear.

Question 2.3. If I is a 2-absorbing powerful ideal of R, is then I a strongly
2-absorbing ideal of R?

Proposition 2.4. Let I be a powerful ideal of R. Then I is a 2-absorbing
powerful ideal of R.

Proof. Let xyz ∈ I for some x, y, z ∈ K. Then by assumption, either xy ∈ R
or z ∈ R. If xy ∈ R, then we are done. If z ∈ R, then zxyz ∈ I. Thus again
by assumption, either zx ∈ R or yz ∈ R as desired.

Question 2.5. If I is a 2-absorbing powerful ideal of R, is then I a powerful
ideal of R?

Theorem 2.6. Let I be an ideal of R. Then the following statements are
equivalent.

(a) I is a 2-absorbing powerful ideal of R.

(b) For each x, y ∈ K with xy 6∈ R we have either x−1I ⊆ R or y−1I ⊆ R.

Bolet́ın de Matemáticas 26(2) 87-99 (2019)



2-absorbing powerful ideals and related results 89

Proof. (a) ⇒ (b) Assume on the contrary that x, y ∈ K with xy 6∈ R and
neither x−1I 6⊆ R nor y−1I 6⊆ R. Then there exist a, b ∈ I such that x−1a 6∈
R and y−1b 6∈ R. Now as I is a 2-absorbing powerful ideal of R, we have
(x)(y)(x−1y−1a) = a ∈ I implies that y−1a ∈ R. In a similar way we have
x−1b ∈ R. On the other hand,

a+ b = (x)(y)(x−1y−1(a+ b)) ∈ I

implies that either xy ∈ R or x−1(a + b) ∈ R or y−1(a + b) ∈ R. Therefore,
either xy ∈ R or x−1a ∈ R or y−1b ∈ R, this is a contradiction.

(b)⇒ (a) Let xyz ∈ I for some x, y, z ∈ K and xy 6∈ R. Then by part (b),
either x−1I ⊆ R or y−1I ⊆ R. If x−1I ⊆ R, then yz = yzxx−1 = (yzx)x−1 ∈
x−1I ⊆ R. Similarly, if y−1I ⊆ R, then we have xz ∈ R, as needed.

Example 2.7. Consider an integral domain Z, then K = Q. Let n be a non-
zero positive integer number, p1, p2, q1, q2 are distinct prime numbers such that
p1, p2 6 |n. Then (p1/q1)(p2/q2) 6∈ Z, (q1/p1)(nZ) 6⊆ Z, and (q2/p2)(nZ) 6⊆ Z
implies that nZ is not a 2-absorbing powerful ideal of Z by Theorem 2.7.

Proposition 2.8. Let I be a 2-absorbing powerful ideal of R and Q be a prime
ideal of R which is properly contained in I. Then I/Q is a 2-absorbing powerful
ideal of R/Q.

Proof. Let φ : R → R/Q denote the canonical homomorphism. Suppose
that x1 = φ(y1)/φ(z1) and x2 = φ(y2)/φ(z2) are elements of the quotient
field of R/Q with x1 6∈ R/Q and x2 6∈ R/Q such that x1x2 6∈ R/Q. Then
(y1/z1)(y2/z2) 6∈ R. Hence if a ∈ I, we have (z1/y1)a ∈ R or (z2/y2)a ∈ R
by using Theorem 2.7. We can assume that (z1/y1)a ∈ R. It follows that
(φ(z1)/φ(y1))φ(a) ∈ R/Q. Thus x−1

1 (I/Q) ⊆ R/Q, as needed.

Proposition 2.9. If 0 6= J ⊆ I are ideals of R with I 2-absorbing powerful,
then J is also 2-absorbing powerful.

Proof. This is clear.

Theorem 2.10. Let I be a 2-absorbing powerful ideal of R. Then we have the
following.

(a) If J and H are ideals of R, then JH ⊆ I or I2 ⊆ J ∪H.

(b) If J and I are prime ideals of R, then J and I are comparable.

Proof. (a) Suppose J and H are ideals of R such that JH 6⊆ I. Then
there exist a ∈ J and b ∈ H such that ab ∈ JH \ I. Let x, y ∈ I. Then
(xy/ab)(a/x)(b/1) ∈ I implies that either (a/x)(b/1) ∈ R or (xy/ab)(a/x) ∈ R
or (xy/ab)(b/1) ∈ R. Thus either x(ab/x) ∈ xR ⊆ I or b(y/b) ∈ bR ⊆ H or
a(xy/a) ∈ aR ⊆ J . Hence, either ab ∈ I or y ∈ H or xy ∈ J . Since ab 6∈ I,
we have either y ∈ H or xy ∈ J . Therefore, xy ∈ J ∪ H. This implies that
I2 ⊆ J ∪H, as desired.

(b) The result follows from the fact that J2 ⊆ I or I2 ⊆ J by part (a).
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Corollary 2.11. Let m be a maximal 2-absorbing powerful ideal of R. Then
R is a local ring with maximal ideal m.

Proof. It follows from Theorem 2.11 (b).

Example 2.12. If K is a field, then the maximal ideal (X2, X3) in K[[X2, X3]]
the ring of formal power series in the indeterminates X2 and X3 over K is a
2-absorbing powerful ideal that is not strongly prime by [6, Chap. 26, Example
2.1].

Proposition 2.13. Let I be a 2-absorbing powerful ideal of R. If x, y, z ∈
K and xyz ∈ Rad(I), then there exists a positive integer m such that either
xmym ∈ I or xmzm ∈ I or ymzm ∈ I. In particular, if I is a 2-absorbing
powerful ideal of R, then Rad(I) is a 2-absorbing ideal of R.

Proof. xyz ∈ Rad(I) implies that (xyz)n ∈ I for some positive integer n.
Thus

(x3n/ynzn)(y3n/xnzn)(z3n/xnyn) = (xyz)n ∈ I.

Now since I is a 2-absorbing powerful ideal ofR, either (x3n/ynzn)(y3n/xnzn) ∈
R or (x3n/ynzn)(z3n/xnyn) ∈ R or (y3n/xnzn)(z3n/xnyn) ∈ R. Thus ei-
ther x2ny2nz2n(x2ny2n/z2n) ∈ x2ny2nz2nR ⊆ I or x2ny2nz2n(x2nz2n/y2n) ∈
x2ny2nz2nR ⊆ I or x2ny2nz2n(z2ny2n/x2n) ∈ x2ny2nz2nR ⊆ I. Therefore,
either x4ny4n ∈ I or x4nz4n ∈ I or z4ny4n ∈ I as needed.

Proposition 2.14. Let {Iλ}λ∈Λ be a chain of 2-absorbing powerful ideals of
R. Then

∑
λ∈Λ Iλ is a 2-absorbing powerful ideal of R.

Proof. Suppose that x, y ∈ K with xy 6∈ R and we have x−1
∑
λ∈Λ Iλ 6⊆ R

and y−1
∑
λ∈Λ Iλ 6⊆ R. Then there exist α, β ∈ Λ such that x−1Iα 6⊆ R and

y−1Iβ 6⊆ R. Thus y−1Iα ⊆ R and x−1Iβ ⊆ R. By assumption, Iα ⊆ Iβ or
Iβ ⊆ Iα. This implies that x−1Iα ⊆ x−1Iβ ⊆ R or y−1Iβ ⊆ y−1Iα ⊆ R. This
is a contradiction.

Recall that a chained ring is any ring whose set of ideals is totally ordered
by inclusion.

Corollary 2.15. If R is a chained ring and contains a 2-absorbing powerful
ideal, then R contains a unique largest 2-absorbing powerful ideal.

Proof. This follows from Proposition 2.15.

An R-module M is said to be a multiplication module if for every submodule
N of M there exists an ideal I of R such that N = IM [5].

Definition 2.16. We say that a non-zero submodule N of an R-module M is
a 2-absorbing powerful submodule of M if, (N :R M) is a 2-absorbing powerful
ideal of R.

Bolet́ın de Matemáticas 26(2) 87-99 (2019)



2-absorbing powerful ideals and related results 91

Proposition 2.17. Let R be a chained ring and M be a faithful finitely gen-
erated multiplication R-module. If {Ni}i∈I is a family of 2-absorbing powerful
submodules of M , then

∑
i∈I Ni is a 2-absorbing powerful submodule of M .

Proof. This follows from Corollary 2.16 and the fact that

(
∑
i∈I

(Ni :R M)M :R M) =
∑
i∈I

(Ni :R M)

by [7, Theorem 3.1].

Recall that if K is the field of fractions of R, then an intermediate ring in
the extension R ⊆ K is called an overring of R.

Proposition 2.18. Let I be a 2-absorbing powerful ideal of R, and let T be
an overring of R. Then IT is a 2-absorbing powerful ideal of T .

Proof. Let x, y ∈ K \ T and xy 6∈ T . Then x, y 6∈ R and xy 6∈ R. Thus by
Theorem 2.7, either x−1I ⊆ R or y−1I ⊆ R. Therefore, either x−1IT ⊆ T or
y−1IT ⊆ T . Hence IT is a 2-absorbing powerful ideal of T , again by Theorem
2.7.

Theorem 2.19. Let I be a 2-absorbing powerful ideal of R and let T 6= K be
an overring of R such that IT 6= T , then I2T is a common ideal, and I3T is
2-absorbing powerful in both rings.

Proof. Let x ∈ T . If (x−1)2 6∈ R, then xI2 ⊆ xI ⊆ R by Theorem 2.7. Now let
(x−1)2 ∈ R. If (x−1)2 ∈ I, then 1 = (x−1)2x2 ∈ IT . This implies that IT = T ,
a contradiction. Thus (x−1)2 6∈ I. It follows that I2 ⊆ x−1R ∪ x−1R = x−1R.
Hence, again, I2x ⊆ R. Therefore, I2T is an ideal of R. Since I3T ⊆ I, we
have I3T is a 2-absorbing powerful ideal of R by Proposition 2.10. Now I3T is
a 2-absorbing powerful ideal of T by Proposition 2.19.

Proposition 2.20. Suppose that T is an overring of R and that R and T
share the non-zero ideal J . If J is 2-absorbing powerful ideal of T , then J3 is
a 2-absorbing powerful ideal of R.

Proof. Let x ∈ K and x2 6∈ R. If x2 6∈ T , then x−1J ⊆ T . Thus x−1J3 ⊆
J2T ⊆ R. Now assume that x2 ∈ T . Since x2 6∈ J , we have J2 ⊆ xT by
Theorem 2.11. Hence x−1J3 ⊆ JT = J ⊆ R, and the proof is complete.

Proposition 2.21. Let N be a 2-absorbing powerful submodule of an R-module
M . Then we have the following.

(a) Every submodule H of N such that (H :R M) 6= 0 is a 2-absorbing
powerful submodule of M .

(b) If r ∈ K such that r−1 ∈ R and ((N :M r) :R M) 6= 0, then (N :M r) is
a 2-absorbing powerful submodule of M .
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(c) Let f : M → Ḿ b a monomorphism of R-modules. Then N is a 2-
absorbing powerful submodule of M if and only if f(N) is a 2-absorbing
powerful submodule of f(M).

Proof. (a) This follows from Proposition 2.10 and the fact that (H :R M) ⊆
(N :R M).

(b) Let xyz ∈ ((N :M r) :R M) for some x, y, z ∈ K. Then rxyz ∈ (N :R
M). Thus asN is a 2-absorbing powerful submodule, either rxy ∈ R or rxz ∈ R
or yz ∈ R. Hence either xy = r−1rxy ∈ r−1R ⊆ R or xz = r−1rxz ∈ r−1R ⊆ R
or yz ∈ R as needed.

(c) This follows from the fact that (N :R M) = (f(N) :R f(M)).

Definition 2.22. We say that a non-zero ideal I of R is a semi powerful ideal
if, whenever x2 ∈ I for element x ∈ K, we have x ∈ R.

Remark 2.23. Clearly every powerful ideal of R is a semi powerful ideal of R.
But as we see in the following example the converse is not true in general.

Example 2.24. Consider the integral domain Z. ThenK = Q and (4/3)(3/2) =
2 ∈ 2Z implies that 2Z is not a powerful ideal of Z. But 2Z is a semi powerful
ideal of Z.

Example 2.25. Let V = K + M be a rank one discrete valuation domain,
where K is a field and M = tV is the maximal ideal of V , and let R = K+M2.
Then M2 is not a semi powerful ideal of R since t2 ∈M2 but t 6∈ R.

Proposition 2.26. (a) If P is a semi powerful and 2-absorbing powerful
ideal of R, then P is a powerful ideal of R.

(b) If P1 and P2 are semi powerful ideals of R, then P1∩P2 is a semi powerful
ideal of R.

Proof. (a) Let P be a semi powerful and 2-absorbing powerful ideal of R and
let x ∈ K \R. Then x2 6∈ P . Since P is 2-absorbing powerful ideal x−1P ⊆ R
by Theorem 2.7. Hence P is a powerful ideal of R by [4, 1.1].

(b) This is clear.

Corollary 2.27. Let P be a prime semi powerful 2-absorbing powerful ideal of
R. Then P is a strongly 2-absorbing ideal of R.

Proof. This follows from Proposition 2.27 and [4, 1.3].

Remark 2.28. In view of Proposition 2.27 and Corollary 2.28, if R is root closed,
then the answers to questions 2.4 and 2.6 “Yes”.

Proposition 2.29. Let S be a multiplicatively closed subset of R. If I is a
2-absorbing powerful ideal of R such that S∩I = ∅, then S−1I is a 2-absorbing
powerful ideal of S−1R.
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Proof. Assume that a, b, c ∈ K such that abc ∈ S−1I. Then there exist
s, t ∈ S such that (sa)(tb)c = stabc ∈ I. Since I is a 2-absorbing powerful ideal
of R, this implies that either (sa)c ∈ R or (tb)c ∈ R or (sa)(tb) = stab ∈ R
for some n,m ≥ 1. Thus ac = (sa)c/s ∈ s−1R or bc = (tb)c/t ∈ s−1R or
ab = (sa)(tb)/st ∈ s−1R as needed.

Proposition 2.30. Let N1, N2 be two submodules of an R-module M with
(N1 :R M) and (N2 :R M) 2-absorbing powerful ideals of R. Then N1 ∩N2 is
a 2-absorbing powerful submodule of M .

Proof. Since (N1 ∩ N2 :R M) = (N1 :R M) ∩ (N2 :R M), the result follows
from Proposition 2.10.

Proposition 2.31. Let {Ki}i∈I be a chain of 2-absorbing powerful submodules
of an R-module M . Then ∩i∈IKi is a 2-absorbing powerful submodule of M .

Proof. Clearly, (∩i∈IKi :R M) 6= 0 since R is a domain. Let a, b, c ∈ K
and abc ∈ (∩i∈IKi :R M) = ∩i∈I(Ki :R M). Assume contrary that ab 6∈ R,
bc 6∈ R, and ac 6∈ R. Then ab 6∈ ∩i∈I(Ki :R M), bc 6∈ ∩i∈I(Ki :R M), and
ac 6∈ ∩i∈I(Ki :R M). Then there are m,n, t ∈ I where ab 6∈ (Kn :R M),
bc 6∈ (Km :R M), and ac 6∈ (Kt :R M). Since {Ki}i∈I is a chain, we can assume
that Km ⊆ Kn ⊆ Kt. Then

(Km :R M) ⊆ (Kn :R M) ⊆ (Kt :R M).

As abc ∈ (Km :R M), we have ab ∈ R or ac ∈ R or bc ∈ R. In any cases, we
have a contradiction.

Definition 2.32. We say that a 2-absorbing powerful submodule N of an R-
module M is a minimal 2-absorbing powerful submodule of a submodule H of
M , if H ⊆ N and there does not exist a 2-absorbing powerful submodule T of
M such that H ⊂ T ⊂ N .

It should be noted that a minimal 2-absorbing powerful submodule of M
means that a minimal 2-absorbing powerful submodule of the submodule 0 of
M .

Lemma 2.33. Let M be an R-module. Then every 2-absorbing powerful sub-
module of M contains a minimal 2-absorbing powerful submodule of M .

Proof. This is proved easily by using Zorn’s Lemma and Proposition 2.32.

Theorem 2.34. Let M be a Noetherian R-module. Then M contains a finite
number of minimal 2-absorbing powerful submodules.

Proof. Suppose that the result is false. Let Σ denote the collection of all
proper submodules N of M such that the module M/N has an infinite number
of minimal 2-absorbing powerful submodules. Since 0 ∈ Σ, we have Σ 6= ∅.
Therefore Σ has a maximal member T , since M is a Noetherian R-module.
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Clearly, T is not a 2-absorbing powerful submodule. Therefore, there exist
a, b, c ∈ K such that abc(M/T ) = 0 but ab 6∈ R, ac 6∈ R, and bc 6∈ R. Hence,
ab(M/T ) 6= 0, ac(M/T ) 6= 0, and bc(M/T ) 6= 0. The maximality of T im-
plies that M/(T + abM), M/(T + acM), and M/(T + bcM) have only finitely
many minimal 2-absorbing powerful submodules. Suppose P/T is a minimal
2-absorbing powerful submodule of M/T . So abcM ⊆ T ⊆ P , which implies
that abM ⊆ P or acM ⊆ P or bcM ⊆ P . Thus P/(T + abM) is a minimal
2-absorbing powerful submodule of M/(T +abM) or P/(T +bcM) is a minimal
2-absorbing powerful submodule of M/(T +bcM) or P/(T +acM) is a minimal
2-absorbing powerful submodule of M/(T +acM). Thus, there are only a finite
number of possibilities for the submodule P . This is a contradiction.

Proposition 2.35. Let N be a submodule of a finitely generated R-module M
and S be a multiplicatively closed subset of R. If N is a 2-absorbing powerful
submodule and (N :R M)∩S = ∅, then S−1N is a 2-absorbing powerful S−1R-
submodule of S−1M .

Proof. As M is finitely generated, (S−1N :S−1R S−1M) = S−1(N :R M) by
[9, 9.12]. Now the result follows from Proposition 2.30.

Definition 2.36. We say that an R-module M is a 2-absorbing copowerful if,
AnnR(M) is a 2-absorbing powerful ideal of R.

By a 2-absorbing copowerful submodule of a module we mean a submodule
which is a 2-absorbing copowerful module.

Proposition 2.37. Let N1, N2 be two 2-absorbing copowerful submodules of
an R-module M . Then N1 +N2 is a 2-absorbing powerful submodule of M .

Proof. Since AnnR(N1 + N2) = AnnR(N1) ∩ AnnR(N2), the result follows
from Proposition 2.10.

Proposition 2.38. Let M be an R-module. Then we have the following.

(a) If N is a 2-absorbing copowerful submodule of M and r ∈ K such that
r−1 ∈ R, rN ⊆ M , and AnnR(rN) 6= 0, then rN is a 2-absorbing
copowerful submodule of M .

(b) Let f : M → Ḿ be a monomorphism of R-modules. Then N is a 2-
absorbing copowerful submodule of M if and only if f(N) is a 2-absorbing
copowerful submodule of f(M).

(c) If N is a 2-absorbing copowerful submodule of M , then every submodule
H of M such that AnnR(H) 6= 0 and N ⊆ H is a 2-absorbing copowerful
submodule of M .

Proof. (a) Let xyz ∈ AnnR(rN) for some x, y, z ∈ K. Then rxyz ∈ AnnR(N).
Thus as N is a 2-absorbing copowerful submodule, either rxy ∈ AnnR(N) or
rxz ∈ AnnR(N) or yz ∈ AnnR(N). Hence either xy = r−1rxy ∈ r−1AnnR(N)
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⊆ AnnR(N) or xz = r−1rxz ∈ r−1AnnR(N) ⊆ AnnR(N) or yz ∈ AnnR(N)
as needed.

(b) This follows from the fact that AnnR(N) = AnnR(f(N)).
(c) This follows from Proposition 2.10 and the fact that AnnR(H) ⊆

AnnR(N).

Proposition 2.39. Let N be a finitely generated submodule of an R-module M
and S be a multiplicatively closed subset of R. If N is a 2-absorbing copowerful
submodule and AnnR(N) ∩ S = ∅, then S−1N is a 2-absorbing copowerful
S−1R-submodule of S−1M .

Proof. As N is finitely generated, AnnS−1R(S−1(N)) = S−1(AnnR(N)) by
[9, 9.12]. Now the result follows from Proposition 2.30.

Proposition 2.40. Let {Ki}i∈I be a chain of strongly 2-absorbing submodules
of an R-module M . Then ∪i∈IKi is a 2-absorbing copowerful submodule of M .

Proof. Clearly, AnnR(∪i∈IKi) 6= 0. Let a, b, c ∈ K and abc ∈ AnnR(∪i∈IKi)
= ∩i∈IAnnR(Ki). Assume contrary that ab 6∈ ∩i∈IAnnR(Ki), bc 6∈ ∩i∈I
AnnR(Ki) and ac 6∈ ∩i∈IAnnR(Ki). Then there are m,n, t ∈ I where ab 6∈
AnnR(Kn), bc 6∈ AnnR(Km), and ac 6∈ AnnR(Kt). Since {Ki}i∈I is a chain,
we can assume that Km ⊆ Kn ⊆ Kt. Then

AnnR(Kt) ⊆ AnnR(Kn) ⊆ AnnR(Km).

As abc ∈ AnnR(Kt), we have ab ∈ AnnR(Kt) or ac ∈ AnnR(Kt) or bc ∈
AnnR(Kt). In any case, we have a contradiction.

Definition 2.41. We say that a 2-absorbing copowerful submodule N of an
R-module M is a Maximal 2-absorbing copowerful submodule of a submodule H
of M , if N ⊆ H and there does not exist a 2-absorbing copowerful submodule
T of M such that N ⊂ T ⊂ H.

Lemma 2.42. Let M be an R-module. Then every 2-absorbing copowerful
submodule of M is contained in a maximal 2-absorbing copowerful submodule
of M .

Proof. This is proved easily by using Zorn’s Lemma and Proposition 2.41.

Theorem 2.43. Let M be an Artinian R-module. Then every non-zero sub-
module of M has only a finite number of maximal 2-absorbing copowerful sub-
modules.

Proof. Suppose that the result is false. Let Σ denote the collection of all non-
zero submodules N of M such that the module N has an infinite number of
maximal 2-absorbing copowerful submodules. Since M ∈ Σ, we have Σ 6= ∅.
Therefore Σ has a minimal member T , since M is a Artinian R-module. Clearly,
T is not a 2-absorbing copowerful submodule. Therefore, there exist a, b, c ∈ K
such that abc(T ) = 0 but ab(T ) 6= 0, ac(T ) 6= 0, and bc(T ) 6= 0. The minimality
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of T implies that T ∩ (0 :M ab), T ∩ (0 :M ac), and T ∩ (0 :M bc) have only
finitely many maximal 2-absorbing copowerful submodules. Suppose P is a
maximal 2-absorbing copowerful submodule of T . So P ⊆ T ⊆ (0 :M abc),
which implies that P ⊆ (0 :M ab) or P ⊆ (0 :M ac) or P ⊆ (0 :M bc). Thus
P is a maximal 2-absorbing copowerful submodule of T ∩ (0 :M ab) or P is a
maximal 2-absorbing copowerful submodule of T ∩ (0 :M bc) or P is a maximal
2-absorbing copowerful submodule of T ∩ (0 :M ac). Thus, there are only a
finite number of possibilities for the submodule T . This is a contradiction.

3. 2-absorbing powerful primary ideals and
submodules

Definition 3.1. We say that an ideal I of R is a 2-absorbing powerful primary
whenever xyz ∈ I for elements x, y, z ∈ K we have either xy ∈ R or (yz)n ∈ R
or (xz)m ∈ R for some n,m ∈ N.

R is said to be root closed if, whenever x ∈ K and xn ∈ R for some integer
n ≥ 1, then x ∈ R [1].

Proposition 3.2. Let I be a 2-absorbing powerful. Then I is a 2-absorbing
powerful primary ideal of R. The converse hold if R is root closed.

Proof. This is clear.

Proposition 3.3. Let I be a 2-absorbing powerful primary ideal of R. Then√
I is a 2-absorbing powerful primary ideal of R.

Proof. Let a, b, c ∈ K such that abc ∈
√
I, (bc)n 6∈ R, (ac)n 6∈ R for each n ∈ N.

Since abc ∈
√
I, there exists a positive integer n such that (abc)n = anbnbn ∈ I.

Since I is 2-absorbing powerful primary and (bc)n 6∈ R, (ac)n 6∈ R we conclude
that ab ∈ R thus

√
I is a 2-absorbing powerful ideal.

Theorem 3.4. Let I be a 2-absorbing powerful primary ideal of R. Then we
have the following.

(a) If J and H are radical ideals of R, then JH ⊆ I or I2 ⊆ J ∪H.

(b) If J and I are prime ideals of R, then J and I are comparable.

Proof. (a) Suppose that J and H are radical ideals of R such that JH 6⊆ I.
Then there exist a ∈ J and b ∈ H such that ab ∈ JH \ I. Let x, y ∈ I. Then
(xy/ab)(a/x)(b/1) ∈ I implies that either (a/x)(b/1) ∈ R or ((xy/ab)(a/x))n ∈
R or ((xy/ab)(b/1))m ∈ R for some n,m ≥ 1. Thus either x(ab/x) ∈ xR ⊆ I or
(b(y/b))n ∈ bnI ⊆ bnR ⊆ H or (a(xy/a))m ∈ amI ⊆ amR ⊆ J . Hence, either
ab ∈ I or yn ∈ H or (xy)m ∈ J . Since ab 6∈ I, we have either y ∈

√
H = H

or xy ∈
√
J = J . Therefore, xy ∈ J ∪ H. This implies that I2 ⊆ J ∪ H, as

desired.
(b) The result follows from the fact that J2 ⊆ I or I2 ⊆ J by part (a).
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Corollary 3.5. Let m be a maximal 2-absorbing powerful primary ideal of R.
Then R is a local ring with maximal ideal m.

Proof. It follows from Theorem 3.4.

Proposition 3.6. Let S be a multiplicatively closed subset of R. If I is a
2-absorbing powerful primary ideal of R such that S ∩ I = ∅, then S−1I is a
2-absorbing powerful primary ideal of S−1R.

Proof. Assume that a, b, c ∈ K such that abc ∈ S−1I. Then there exist
s, t ∈ S such that (sa)(tb)c = stabc ∈ I. Since I is a 2-absorbing powerful
primary ideal of R, this implies that either (sa)c ∈ R or ((tb)c)n ∈ R or
((sa)(tb))m = (stab)m ∈ R for some n,m ≥ 1. Thus ac = (sa)c/s ∈ s−1R or
(bc)n = ((tb)c/t)n ∈ s−1R or (ab)m = ((sa)(tb)/st)m ∈ s−1R as needed.

Proposition 3.7. If 0 6= J ⊆ I are ideals of R with I 2-absorbing powerful
primary, then J is also 2-absorbing powerful primary.

Proof. This is clear.

Definition 3.8. We say that a submodule N of an R-module M is a 2-
absorbing powerful primary if, (N :R M) is a 2-absorbing powerful primary
ideal of R.

Proposition 3.9. Let N1, N2 be two 2-absorbing powerful primary submodules
of an R-module M . Then N1∩N2 is a 2-absorbing powerful primary submodule
of M .

Proof. Since (N1 ∩ N2 :R M) = (N1 :R M) ∩ (N2 :R M), the result follows
from Proposition 3.7.

Proposition 3.10. Let N be a submodule of a finitely generated R-module
M and S a multiplicatively closed subset of R. If N is a 2-absorbing powerful
primary submodule and (N :R M)∩S = ∅, then S−1N is a 2-absorbing powerful
primary S−1R-submodule of S−1M .

Proof. As M is finitely generated, (S−1N :S−1R S−1M) = S−1(N :R M) by
[9, 9.12]. Now the result follows from Proposition 3.6.

Proposition 3.11. Let N be a 2-absorbing powerful primary submodule of an
R-module M . Then we have the following.

(a) Every submodule H of N such that (H :R M) 6= 0 is a 2-absorbing
powerful primary submodule of M .

(b) If r ∈ K such that r−1 ∈ R and ((N :M r) :R M) 6= 0, then (N :M r) is
a 2-absorbing powerful primary submodule of M .

(c) If f : M → Ḿ be a monomorphism of R-modules. Then N is a 2-
absorbing powerful primary submodule of M if and only if f(N) is a
2-absorbing powerful primary submodule of f(M).
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Proof. (a) This follows from Proposition 3.7 and the fact that (H :R M) ⊆
(N :R M).

(b) Let xyz ∈ ((N :M r) :R M) for some x, y, z ∈ K. Then rxyz ∈
(N :R M). Thus as N is a 2-absorbing powerful primary submodule, either
rxy ∈ R or (rxz)n ∈ R or (yz)m ∈ R for some n,m ≥ 1. Hence either
xy = r−1rxy ∈ r−1R ⊆ R or (xz)n = (r−1rxz)n ∈ r−1R ⊆ R or (yz)m ∈ R, as
needed.

(c) This follows from the fact that (N :R M) = (f(N) :R f(M)).

Definition 3.12. We say that an R-module M is a 2-absorbing copowerful
primary if, AnnR(M) is a 2-absorbing powerful primary ideal of R.

By a 2-absorbing copowerful primary submodule of a module we mean a
submodule which is a 2-absorbing copowerful primary module.

Proposition 3.13. Let N1, N2 be two 2-absorbing copowerful primary sub-
modules of an R-module M . Then N1 +N2 is a 2-absorbing powerful primary
submodule of M .

Proof. The proof is similar to that of Proposition 2.38.

Proposition 3.14. Let N be a finitely generated submodule of an R-module
M and S be a multiplicatively closed subset of R. If N is a 2-absorbing copow-
erful primary submodule and AnnR(N) ∩ S = ∅, then S−1N is a 2-absorbing
copowerful primary S−1R-submodule of S−1M .

Proof. The proof is similar to that of Proposition 3.10.

Proposition 3.15. Let M be an R-module. Then we have the following.

(a) If N is a 2-absorbing copowerful primary submodule of M and r ∈ K such
that r−1 ∈ R, rN ⊆ M , and AnnR(rN) 6= 0, then rN is a 2-absorbing
copowerful primary submodule of M .

(b) Let f : M → Ḿ be a monomorphism of R-modules. Then N is a 2-
absorbing copowerful primary submodule of M if and only if f(N) is a
2-absorbing copowerful primary submodule of f(M).

(c) If N is a 2-absorbing copowerful primary submodule of M , then every
submodule H of M such that AnnR(H) 6= 0 and N ⊆ H is a 2-absorbing
copowerful primary submodule of M .

Proof. The proof is similar to that of Proposition 2.39.
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