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A view of symplectic Lie algebras from
quadratic Poisson algebras

Una mirada a las álgebras de Lie simplecticas desde las álgebras de
Poisson cuadráticas

Andrés Riaño1,a, Armando Reyes1,b

Abstract. Using the concept of double extension, Benayadi [2] showed how to
construct a new quadratic algebra (g(A), T ) given a quadratic algebra (A, B).
With both algebras and an invertible skew-symmetric algebra D over A, he en-
dowed (A, B) with a simplectic structure through a bilinear form ω, obtaining
a simplectic algebra (g(A), T,Ω). Our purpose in this short communication is
to show the construction given by Benayadi and present the complete develop-
ment of each one of his assertions. We remark that this communication does
not have original results and it was made as a result of the undergraduated
work titled “Construcción de álgebras de Lie simplécticas desde álgebras de
Poisson cuadráticas”[5], which was awarded as the best mathematics under-
graduated thesis in the XXVI Contest at Universidad Nacional de Colombia,
Sede Bogotá. The work was written by the first author under the direction of
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1. Introduction

Historically, the importance of Lie algebras and Poisson algebras belongs to the
physical field, since they allow us to describe certain behaviors in the universe,
which might be related to classical mechanics and even quantum theory. One of
the classical examples may be observed in the energy conservation phenomenon.
This illustrates the possibility of formulating physical problems in a purely
algebraic way.

The beginning of Lie theory lies in Felix Klein’s thoughts, for whom the
space geometry is determined by its symmetry groups. Therefore, Euclid, Rie-
mann and Grothendieck’s notions of space and geometry were taken to the
supersymmetry world in physics and, by the hand of this geometry, the Lie
algebras have been taken to a more general notion such as the Lie superal-
gebras1. Besides, the bilinear form concept arises when the characterization
of semisimple algebras was made, since Killing’s bilinear form (also known as
Cartan-Killing’s), is non-degenerated if and only if the algebra is semisimple.
Before, it would be shown that starting from a semisimple Lie algebra, the alge-
bra turns out to be quadratic (behind this, over some structures induce a metric
or pseudo-metric according to the properties that are fulfilled). With all this
in mind, the main goal is to find bilinear forms that satisfy certain conditions
over the algebra, with the purpose of endowing with quadratic or also symplec-
tic structure. Concerning the Poisson algebras, this kind of structures appear
in the deformation idea of classical mechanics, quantum mechanics, based in
the quantum group notion. Just as Lie algebras, the Poisson algebras are a
tool in the solution of physical problems, which are a part of the Hamiltonian
approach of classical mechanics, and motivate the use of commutators in quan-
tum mechanics (see [4] for more details). In Example 2.16 we will remember
the Poisson brackets in the formulation of the Hamiltonian mechanics.

In this paper we present complete details of the construction of the sym-
plectic algebras from admissible Poisson algebras, following the treatment for-
mulated by Benayadi (also, following the ideas given in [1]). The crucial point
is to get a compatibility between the bilinear form already defined and some
operators named derivations. Given that the admissible Poisson structure gen-
erates two types of algebras A+ a symmetric commutative algebra and A−
a Lie algebra, using the double extension definition it is possible to endow a
higher dimension algebra with Lie simplectic quadratic structure, an idea that
is hidden behind this definition is the T ∗-extension notion. It should be pointed
out that during the development, in every case and example that is going to be
postulated, we will consider finite dimensional algebras over a field K. Besides,
given that the absence of symbols and letter makes impossible some definitions,
we will use similar notation for some products, as in the case of ◦. In these
cases we will give their relevant explanation.

1Wilhelm Killing and Elie Cartan did pioneering work on this matter. For example in 1894,
Cartan classified the simple Lie algebras which have an important role in the representation
theory of semisimple Lie algebras.
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2. Preliminary results

In this section we remind some facts about Lie algebras and Poisson algebras.

2.1. Lie algebras

Definition 2.1. Let g be a vector space. A Lie bracket over g is a bilinear
map [−,−] : g× g→ g, with the following properties:

(i) [x, y] = −[y, x], for x, y ∈ g

(ii) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, for x, y, z ∈ g (also called Jacobi
identity).

The pair (g, [−,−]) is called a Lie algebra.

One of the first examples of Lie algebras is determined by the cross for
vectors in the space. Thus, if [−,−] : R3×R3 → R3, where [x, y] = x×y (cross
product), then the pair (R3, [−,−]) is a Lie algebra. In fact, let {e1, e2, e3}
be the canonical basis of R3, due to the determinant is a 3 − lineal map and
besides when we interchange rows, we know that the determinant reverses
the sign, we have that [ei, ei] = ei × ei = 0 y [ei, ej ] = −[ej , ei], so [−,−]
satisfied the definition 2.1. As [e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e1, then
[e1, [e2, e3]]+[e2, [e3, e1]]+[e3, [e1, e2]] = [e1, e1]+[e2, e2]+[e3, e3] = 0. Thus, the
item (ii) of the definition 2.1 is satisfied. We conclude that the pair (R3, [−,−])
is a Lie algebra. Note that the previous development does not depend of the
choice of the basis of R3.

Definition 2.2. A vector space A with a bilinear map · : A×A → A is called
an associative algebra, if a.(b.c) = (a.b).c, for any a, b, c ∈ A. We define the
commutator as [a, b] = a.b− b.a, with a, b ∈ A.

Proposition 2.3. If A is an associative algebra and the binary map · : A×A →
A defined before, then AL := (A, [−,−]) is a Lie algebra.

Proof. Let’s see that the previous commutator defines a Lie algebra over A
(we consider x.y := xy for each x, y ∈ A). Let x, y, z ∈ A, then the first
property is achieved since [x, y] = xy− yx = −(yx−xy) = −[y, x]. The second
property holds since

[[x, y], z]+[[y, z], x] + [[z, x], y] = [xy − yx, z] + [yz − zy, x] + [zx− xz, y]

= (xy − yx)z − z(xy − yx) + (yz − zy)x− x(yz − zy)

+ (zx− xz)y − y(zx− xz)
= xyz − yxz − zxy + zyx+ yzx− zyx− xyz + xzy + zxy − xzy
− yzx+ yxz

= 0.

(1)

Therefore, the couple AL := (A, [·, ·]) is a Lie algebra.
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Definition 2.4. (i) Let g and h be two Lie algebras. A linear map α : g→ h
is called a homomorphism, if α([x, y]) = [α(x), α(y)], for all x, y ∈ g.

(ii) An isomorphism of Lie algebras is a homomorphism α for which there is
a homomorphism β : h→ g such that α ◦ β = idh.

(iii) A representation of a Lie algebra g over the vector space V is a homo-
morphism α : g→ gln(V ). We write (α, V ) the representation α of g over
V .

(iv) Let g be a Lie algebra and U, V subsets of g. We write [U, V ] :=
span{[u, v] | u ∈ U, v ∈ V } for the smallest subspace which contains
all brackets [u, v] with u ∈ U and v ∈ V .

(v) A subspace h of g is called a Lie subalgebra, if [h, h] ⊆ h. We write h < g.
If [g, h] ⊆ h, we call h an ideal of g and we write h E g.

(vi) A Lie algebra g is abelian if [g, g] = {0}, which means that all [x, y] = 0,
for all x, y ∈ g.

We can see that if g is a Lie algebra, its center Z(g) := {x ∈ g | [x, y] =
0, ∀y ∈ g}, is an ideal of g. Now, for every Lie algebra g, the subspace [g, g] is
an ideal called commutator algebra of g.

Definition 2.5. Let (A, .) be an algebra. A derivation of A is a K-linear
map δ : A → A such that δ(x.y) = δ(x).y + x.δ(y). Based on the above
facts, if g is a Lie algebra, a linear map δ : g → g is called a derivation
if δ([x, y]) = [δ(x), y] + [x, δ(y)], for all x, y ∈ g. We define der(g) as the
derivations set of g.

Definition 2.6. (i) Let g be a Lie algebra and x ∈ g. The map ad : g→ gl,
where adx : g → g, adx(y) := [x, y] is a derivation, and it is called
adjoint representation of g. This kind of derivations are called inner
derivations. The set of adjoint representations of g is denoted as ad(g) :=
{adx ∈ der(g) | x ∈ g}.

(ii) The map π : g → End(g∗), such that every x ∈ g, π(x) : g∗ → g∗

defined as follow π(x)(f)(y) = f(−adx(y)), for all f ∈ g∗, y ∈ g, is called
coadjoint representation of g.

In fact, we can show that for x ∈ g, adx is a derivation. Also we can show
that for every Lie algebra g, der(g) < gl(g), and ad(g) E der(g) is an ideal. In
particular, [D, adx] = adDx, D ∈ der(g), x ∈ g and ker(ad) = Z(g).

Proposition 2.7. If g is a Lie algebra and x, y ∈ g, then ad[x,y] = [adx, ady]

Proof. Let z ∈ g, the map ad[x,y] evaluated in z is given by the expres-
sions ad[x,y](z) = [[x, y], z] = −[z, [x, y]] = [y, [z, x]] + [x, [y, z]] = [x, [y, z]] −
[y, [x, z]] = adx([y, z]) − ady([x, z]) = adxady(z) − adyadx(z) = (adxady −
adyadx)(z) = [adx, ady](z).
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2.2. Poisson algebras

With the aim of defining Poissson algebras, it is necessary to consider a vector
space A with two different structures of algebra. One of them has a commuta-
tive and associative product, and the another product called Lie bracket. We
need a notion of compatibility between these two products.

Definition 2.8. Consider a K-vector space A equipped with two products
· : A×A → A and [−,−] : A×A → A, such that

(i) (A, ·) is a commutative associative algebra over K, with unit 1;

(ii) (A, [−,−]) is a Lie algebra over K;

(iii) The two products are compatible, in the sense that

[x · y, z] = x · [y, z] + [x, z] · y, (Leibniz’s rule) (2)

for all x, y, z ∈ A. If (2) is satisfied, the Lie bracket [−,−] is called a
Poisson bracket.

In this way, (A, ·, [·, ·]) is called a Poisson algebra.

Definition 2.9. A bilinear map δ : A × A → A is called a biderivation of
A, if it satisfies the following equalities δ(xy, z) = xδ(y, z) + yδ(x, z), and,
δ(z, xy) = xδ(z, y) + yδ(z, x), for all x, y, z ∈ A.

From the above definitions, we conclude that the Poisson bracket [−,−] is
an anticommutative biderivation.

Definition 2.10. Let (Ai, ·i, [·, ·]i) be two Poisson algebras over K, with i =
1, 2. A map φ : A1 → A2 which satisfies that for all x, y ∈ A1,

(i) φ(x ·1 y) = φ(x) ·2 φ(y),

(ii) φ([x, y]1) = [φ(x), φ(y)]2,

is called a homomorphism of Poisson algebras.

When we talk about a subalgebra or an ideal, we will take into account
that it is based on the associative multiplication. With the purpose to make a
difference between Poisson subalgebras and ideals, we define the following:

Definition 2.11. (i) Let A be a Poisson algebra and U, V subsets of A.
We write U · V := span{u · v : u ∈ U, v ∈ V } for the smallest subspace
which contains all products u · v with u ∈ U and v ∈ V .

(ii) A subspace B of A is called Poisson subalgebra, if (B, ·) is subalgebra and
(B, [·, ·]) is Lie subalgebra, that is B · B ⊂ B and [B,B] ⊂ B.

(iii) A subspace J of A is a Poisson ideal, if J · A ⊂ J and [J ,A] ⊂ J .
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Examples 2.12. (i) Every Lie algebra (A, [−,−]) is a Poisson algebra with
respect to the null product: x · y = 0. In fact, for (A, .) an associa-
tive algebra, also both products are compatible: [x.y, z] = [0, z] = 0 =
x.[y, z] + y.[x, z]. Therefore, (A, ., [−,−]) is a Lie algebra.

(ii) Every associative algebra (A, .) is a Poisson algebra with respect to the
null bracket: [x, y] = 0. This algebra is called a null Poisson algebra.
Due to the Lie bracket is zero for all products, it is easy to check (i) and
(ii) through the definition 2.1. Note that both products are compatible:
[x.y, z] = 0 = x.0 + y.0 = x.[y, z] + y.[x, z].

We remind that we can endow each associative algebra with structure of
Lie algebra, defining a suitable bracket. By the same way, we can endow an
associative algebra with structure of Poisson algebra.

Proposition 2.13. Let (A, ·) be a commutative associative algebra. It is
possible to endow A with structure of Poisson algebra defining the bracket
[x, y] = x.y − y.x. Then, (A, ·, [−,−]) is a Poisson algebra.

Proof. From Proposition 2.3 we know that (A, [−,−]) is a Lie algebra. Let
we observe the compatibility between · and [−,−], considering the product
x · y = xy. Given that [ab, c] = (ab)c− c(ab) = a(bc)− a(cb) + (ac)b− (ca)b =
a(bc− cb) + (ac− ca)b = a[b, c] + [a, c]b, we have that (A, ·, [−,−]) is a Poisson
algebra.

Based on the previously definition, and defining a new multiplication ◦, it
is possible to build another example, which is important to the development of
the present work because by means of ◦, we are going to define the Poisson-
admissible algebras.

Example 2.14. Let (A, .) be an associative algebra with unit 1A, defining the

products x◦y :=
1

2
(xy+yx), [x, y] = xy−yx, and additionally [z, x]y = y[z, x],

for all x, y, z ∈ A. The triple (A, ◦, [−,−]) results being a Poisson algebra
(see [2]). We note that (A, ◦) is commutative algebra, because the sum is
commutative. Also is associative, since [z, x]y = y[z, x], then (zx − xz)y +
y(xz− zx) = 0, that is zxy+yxz−yzx−xzy = 0 (from now on, if the product
is associative we omit the parentheses). Since

(x ◦ y) ◦ z − x ◦ (y ◦ z) =
1

4
(xyz + zxy + yxz + zyx− xyz − yzx− xzy − zyx)

=
1

4
(zxy + yxz − yzx− xzy) = 0,

then (x ◦ y) ◦ z = x ◦ (y ◦ z). In other words, the algebra is associative, whose

unit is 1A, because x ◦ 1A =
1

2
(x1A + 1Ax) =

1

2
(2x) = x, for all x ∈ A.

On the other hand, the pair (A, [−,−]) is a Lie algebra. The explanation
is similar to that made in the proposition 2.13. In such a way, we just need to
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see that both multiplications are compatible:

[x ◦ y, z] =

[
1

2
(xy − yx), z

]
=

1

2
([xy, z] + [yx, z])

=
1

2
(x[y, z] + [x, z]y + y[x, z] + [y, z]x)

=
1

2
(x[y, z] + [y, z]x) +

1

2
(y[x, z] + [x, z]y) = x ◦ [y, z] + [x, z] ◦ y.

As a consequence, (A, ◦, [−,−]) is a Poisson algebra.

Now, beginning with two Poisson algebras and defining two new multipli-
cations, it is possible to build a new Poisson algebra:

Example 2.15. If (A1, ·1, [−,−]1) y (A2, ·2, [−,−]2) are two Poisson algebras,
then (A1⊗A2, ·3, [−,−]3) also is a Poisson algebra, if we consider the products:

(a1 ⊗ a2) ·3 (b1 ⊗ b2) := a1 ·1 b1 ⊗ a2 ·2 b2,
[a1 ⊗ a2, b1 ⊗ b2]3 := [a1, b1]1 ⊗ a2 ·2 b2 + a1 ·1 b1 ⊗ [a2, b2]2.

From the previous fact, it is easy to see that (A1 ⊗ A2, ·3) is a commutative
associative algebra, and has as unit 1A1 ⊗ 1A2 , inasmuch as (A1, ·1) and (A2·2)
are commutative and associative algebras with unit. Let a1⊗a2, b1⊗b2, c1⊗c2
be in A1 ⊗A2. For this example we consider a1 ·1 b1 := a1b1 y a2 ·2 b2 := a2b2.
Then

−[b1 ⊗ b2, a1 ⊗ a2]3 = − ([b1, a1]1 ⊗ b2a2 + b1a1 ⊗ [b2, a2]2)

= [a1, b1]1 ⊗ a2b2 + a1b1 ⊗ [a2, b2]2 = [a1 ⊗ a2, b1 ⊗ b2]3.

Thus, [−,−]3 is skew-symmetric.

[a1 ⊗ a2, [b1 ⊗ b2, c1 ⊗ c2]3]3 = [a1 ⊗ a2, [b1, c1]1 ⊗ b2c2 + b1c1 ⊗ [b2, c2]2]3

= [a1, [b1, c1]]1 ⊗ a2b2c2 + a1[b1, c1]1 ⊗ [a2, b2c2]2

+ [a1, b1c1]1 ⊗ a2[b2, c2]2 + a1b1c1 ⊗ [a2, [b2, c2]]2

= [a1, [b1, c1]]1 ⊗ a2b2c2 + a1[b1, c1]1 ⊗ b2[a2, c2]2

+ a1[b1, c1]1 ⊗ [a2, b2]2c2 + b1[a1, c1]1 ⊗ a2[b2, c2]2

+ [a1, b1]1c1 ⊗ a2[b2, c2]2 + a1b1c1 ⊗ [a2, [b2, c2]]2,

[c1 ⊗ c2, [a1 ⊗ a2, b1 ⊗ b2]3]3 = [c1, [a1, b1]]1 ⊗ c2a2b2 + c1[a1, b1]1 ⊗ a2[c2, b2]2

+ c1[a1, b1]1 ⊗ [c2, a2]2b2 + a1[c1, b1]1 ⊗ c2[a2, b2]2

+ [c1, a1]1b1 ⊗ c2[a2, b2]2 + c1a1b1 ⊗ [c2, [a2, b2]]2,

[b1 ⊗ b2, [c1 ⊗ c2, a1 ⊗ a2]3]3 = [b1, [c1, a1]]1 ⊗ b2c2a2 + b1[c1, a1]1 ⊗ c2[b2, a2]2

+ b1[c1, a1]1 ⊗ [b2, c2]2a2 + c1[b1, a1]1 ⊗ b2[c2, a2]2

+ [b1, c1]1a1 ⊗ b2[c2, a2]2 + b1c1a1 ⊗ [b2, [c2, a2]]2.

Since [−,−]i is skew-symmetric and ·1, ·2 is a commutative product with
i ∈ 1, 2, we have

[a1⊗a2, [b1⊗b2, c1⊗c2]3]+[c1⊗c2, [a1⊗a2, b1⊗b2]3]3+[b1⊗b2, [c1⊗c2, a1⊗a2]3]3 = 0.
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In that way, (A, [−,−]3) is a Lie algebra. Now, we have the next equalities

[(a1 ⊗ a2) ·3 (b1 ⊗ b2), c1 ⊗ c2]3 = [a1b1 ⊗ a2b2, c1 ⊗ c2]3

= [a1b1, c1]1 ⊗ a2b2c2 + a1b1c1 ⊗ [a2b2, c2]2

(a1 ⊗ a2) ·3 [b1 ⊗ b2, c1 ⊗ c2]3 = (a1 ⊗ a2) ·3 ([b1, c1]⊗ b2c2 + b1c1 ⊗ [b2, c2])

= a1[b1, c1]1 ⊗ a2b2c2 + a1b1c1 ⊗ a2[b2, c2]2

[a1 ⊗ a2, b1 ⊗ b2] ·3 (c1 ⊗ c2) = ([a1, b1]1 ⊗ a2b2 + a1b1 ⊗ [a2, b2]) ·3 (c1 ⊗ c2)

= [[a1, b1]1, c1]⊗ a2b2c2 + a1b1c1 ⊗ [a2, b2]2c2,

and the tensor product satisfies that a1 ⊗ (a2 + a′2) = a1 ⊗ a2 + a1 ⊗ a′2. In
addition, the brackets [−,−]1, [−,−]2 satisfy the Leibniz’s rule (Definition 2),

[(a1 ⊗ a2) ·3 (b1 ⊗ b2), c1 ⊗ c2]3 = (a1 ⊗ a2) ·3 [b1 ⊗ b2, c1 ⊗ c2]3

+ [a1 ⊗ a2, c1 ⊗ c2] ·3 (b1 ⊗ b2)

Therefore, (A, ·3, [−,−]3) is a Poisson algebra.

In the case of Poisson algebras, the center with respect to the Poisson
bracket is called the Casimir set. More precisely, if A is a Poisson algebra, the
set Cas(A) := {x ∈ A|[x, a] = 0, ∀a ∈ A}, is called the Casimir space. We can
show that if A is a Poisson algebra, then Cas(A) is a Poisson subalgebra of A.

The Hamiltonian approach allows us to describe one of the more important
examples of this kind of algebras, which are very useful in physics and were
created to describe the Newton equation, and in general to understand the
phenomenon of energy conservation (see [4] for more details).

Example 2.16. Let f and g two smooth functions over R2n where (x,p) ∈ R2n

with x,p ∈ Rn, x = (x1, . . . , xn),p = (p1, . . . , pn). The space of all smooth
functions of R2n in R2n, with the product [−,−] : R2n × R2n → R2n, defined
by

[f, g](x,p) =

n∑
j=1

(
∂f

∂xj

∂g

∂pj
− ∂f

∂pj

∂g

∂xj

)
(x,p),

is a Poisson algebra. Let us show the details. Considering f, g and h smooth
functions over R2n. First, we take the product between functions as: fg(x) :=
f(x)g(x). Thereby, the algebra of smooth functions of R2n over R2n and the
previous product, make a commutative associative algebra, whose unit is the
identity function idR2n : R2n → R2n, idR2n(y) = y, y ∈ R2n. Since

[f, g] =

n∑
j=1

(
∂f

∂xj

∂g

∂pj
− ∂f

∂pj

∂g

∂xj

)
= −

n∑
j=1

(
∂f

∂pj

∂g

∂xj
− ∂f

∂xj

∂g

∂pj

)
= −[g, f ],
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thus, the property of skew-symmetry is satisfied. Now, note that

[f, [g, h]] =

[
f,

n∑
j=1

(
∂g

∂xj

∂h

∂pj
− ∂g

∂pj

∂h

∂xj

)]

=

n∑
j=1

[
∂f

∂xj

∂

∂pj

(
∂g

∂xj

∂h

∂pj
− ∂g

∂pj

∂h

∂xj

)
− ∂f

∂pj

∂

∂xj

(
∂g

∂xj

∂h

∂pj
− ∂g

∂pj

∂h

∂xj

)]

=

n∑
j=1

[
∂f

∂xj

∂2g

∂pj∂xj

∂h

∂pj
+

∂f

∂xj

∂g

∂xj

∂2h

∂p2j
− ∂f

∂xj

∂2g

∂p2j

∂h

∂xj
− ∂f

∂xj

∂g

∂pj

∂2h

∂pj∂xj

− ∂f

∂pj

∂2g

∂x2j

∂h

∂pj
− ∂f

∂pj

∂g

∂xj

∂2h

∂xj∂pj
+
∂f

∂pj

∂2g

∂xj∂pj

∂h

∂xj
+
∂f

∂pj

∂g

∂pj

∂2h

∂x2j

]
,

[h, [f, g]] =

n∑
j=1

[
∂h

∂xj

∂2f

∂pj∂xj

∂g

∂pj
+

∂h

∂xj

∂f

∂xj

∂2g

∂p2j
− ∂h

∂xj

∂2f

∂p2j

∂g

∂xj
− ∂h

∂xj

∂f

∂pj

∂2g

∂pj∂xj

− ∂h

∂pj

∂2f

∂x2j

∂g

∂pj
− ∂h

∂pj

∂f

∂xj

∂2g

∂xj∂pj
+
∂h

∂pj

∂2f

∂xj∂pj

∂g

∂xj
+
∂h

∂pj

∂f

∂pj

∂2g

∂x2j

]
,

[g, [h, f ]] =

n∑
j=1

[
∂g

∂xj

∂2h

∂pj∂xj

∂f

∂pj
+

∂g

∂xj

∂h

∂xj

∂2f

∂p2j
− ∂g

∂xj

∂2h

∂p2j

∂f

∂xj
− ∂g

∂xj

∂h

∂pj

∂2f

∂pj∂xj

− ∂g

∂pj

∂2h

∂x2j

∂f

∂pj
− ∂g

∂pj

∂h

∂xj

∂2f

∂xj∂pj
+

∂g

∂pj

∂2h

∂xj∂pj

∂f

∂xj
+

∂g

∂pj

∂h

∂pj

∂2f

∂x2j

]
,

and hence, we obtain the equality [f, [g, h]] + [h, [f, g]] + [g, [h, f ]] = 0. From
this fact we conclude that the bracket [−,−] generates a Lie algebra over the
set of smooth functions over Rn. Finally, we see that both multiplications are
compatible:

[f, gh] =

n∑
j=1

[
∂f

∂xj

∂gh

∂pj
− ∂f

∂pj

∂gh

∂xj

]

=

n∑
j=1

[
∂f

∂xj

(
∂g

∂pj
h+ g

∂h

∂pj

)
− ∂f

∂pj

(
∂g

∂xj
h+ g

∂h

∂xj

)]

=

n∑
j=1

[
∂f

∂xj

∂g

∂pj
− ∂f

∂pj

∂g

∂xj

]
h+ g

n∑
j=1

[
∂f

∂xj

∂h

∂pj
− g ∂f

∂pj

∂h

∂xj

]
=[f, g]h+ g[f, h].

As a result, we can conclude that the set of smooth functions over R2n with
the bracket [−,−], is a Poisson algebra.

3. Quadratic and symplectic algebras

In this section we are going to define some kinds of algebras, which allows us
to expose and develop the construction of symplectic Lie algebras. We need to
make a transition by means of quadratic Lie algebras. We are going to write a
pair of examples, which are very important to the key theorem. It is important
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10 A. Riaño & A. Reyes

to say that although the definitions have an algebraic approach, they also have
a geometric overview (see [3]).

Definition 3.1. Let (A, .) be an algebra. Over A we can define two multipli-
cations:

[x, y] := x.y − y.x; x ◦ y :=
1

2
(x.y + y.x), ∀x, y ∈ A.

The pair (A, .) is called a Poisson-admissible algebra, if (A, ◦, [−,−]) is a
Poisson algebra. From now on, we write A− := (A, [−,−]) and A+ := (A, ◦).

Definition 3.2. (i) Let (A, .) be an algebra and B : A×A → K a bilinear
form. We say that B is invariant (or associative), if B(x.y, z) = B(x, y.z),
for all x, y, z ∈ A.

(ii) Let B : A×A → K be a bilinear form. We say that B is nondegenerate, if
given x ∈ A the linear map fixing one component B(x,−) : A → K is an
isomorphism. If the algebra is finite dimensional, the previous definition
is equivalent to

B(x, y) = 0, ∀y ∈ A then x = 0 and B(x, y) = 0, ∀x ∈ A then y=0. ([3]).

(iii) Let (g, [−,−]) be a Lie algebra and B : g× g→ K a bilinear form. (g, B)
is called a quadratic Lie algebra, if B is symmetric, nondegenerate and
invariant. In this case, B is called an invariant scalar product on g.

(iv) Let (A, ◦) an associative algebra and B : g × g → K a bilinear form.
(A, B) is called a symmetric algebra, if B is symmetric, nondegenerate
and invariant. In this case, B is called an invariant scalar product on A.

(v) Let (A, .) be a Poisson-admissible algebra and B : g × g → K a bilinear
form. (A, B) is called a quadratic Poisson-admissible algebra, if B is
symmetric, nondegenerate and invariant. In this case, B is called an
invariant scalar product on A.

(vi) Let (A, ◦, [−,−]) a Poisson algebra and B : g × g → K a bilinear form.
(A, B) is called a quadractic Poisson algebra, if B is symmetric, nonde-
generate and satisfies:

B([x, y], z) = B(x, [y, z]) and B(x ◦ y, z) = B(x, y ◦ z), ∀a, b, c ∈ A.

Remark 3.3. From the previous definition we have that:

(i) Let (A, .) be a Poisson-admissible algebra and B : A×A → K a bilinear
form. The pair (A, B) is a quadratic algebra if and only if, (A−, B) is a
quadratic Lie algebra and (A+, B) is a symmetric algebra.

(ii) (A, ., B) is a quadratic Poisson-admissible algebra if and only if,
(A, ◦, [−,−], B) is a quadratic Poisson algebra (see the definition 3.1).

We are going to appreciate some examples of these algebras.
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Example 3.4 (Taken from [2]). Let (A, ◦, [−,−]) be a Poisson algebra and
A∗ the dual vector space A. (A⊕A∗, ?, [·, ·]) is a Poisson algebra with multi-
plications given by

(x+ f) ? (y+h) := x ◦ y+h ◦Lx + f ◦Ly, [x+ f, y+h] := [x, y]−h ◦ adx + f ◦ ady,

for all (x, f), (y, h) ∈ A × A∗ and Lx : A → A where Lx(a) := x ◦ a, with
a ∈ A (the product between functions written by ◦ is the composition of
functions). In addition, (A ⊕ A∗, B) is a quadratic Poisson algebra, if B :
(A⊕A∗)× (A⊕A∗)→ K is defined as B(x+ f, y + h) := f(y) + h(x), for all
(x, f), (y, h) ∈ A×A∗.

• So let us see that (A⊕A∗, ?) is a commutative and associative algebra:

[(x+ f) ? (y + h)] ? (z + g) = [x ◦ y + h ◦ Lx + f ◦ Ly] ? (z + g)

= (x ◦ y) ◦ z + g ◦ Lx◦y + h ◦ Lx ◦ Lz + f ◦ Ly ◦ Lz,
(3)

(x+ f) ? [(y + h) ? (z + g)] = (x+ f) ? [y ◦ z + g ◦ Ly + h ◦ Lz]
= x ◦ (y ◦ z) + g ◦ Ly ◦ Lx + h ◦ Lz ◦ Lx + f ◦ Ly◦z.

(4)

Let a be in A, due to x ◦ y =
1

2
(x.y + y.x) =

1

2
(y.x + x.y) = y ◦ x,

then Lx◦y(a) = x ◦ y ◦ a = y ◦ x ◦ a = Ly(x ◦ a) = Ly ◦ Lx(a), thus,
Lx◦y = Ly ◦ Lx = Lx ◦ Ly, for all x, y ∈ A. Therefore, (3) is equal to
(4). Note that the commutativity follows from the fact that (A, ◦) is a
commutative algebra:

(x+f)?(y+h) = x◦y+h◦Lx+f ◦Ly = f ◦Ly+h◦Lx+y◦x = (y+h)?(x+f).

The unit is 1A + 0A∗ ∈ A⊕A∗, where for all x ∈ A, 0A∗(x) = 0 ∈ K:

(x+ f) ? (1A + 0A∗) = x ◦ 1A + 0A∗ ◦ Lx + f ◦ L1A = x+ 0A∗ + f = x+ f.

• (A, [−,−]) is a Lie algebra:

Since −[y+h, x+f ] = −[y, x]+f ◦ady−h◦adx = [x, y]−h◦adx+f ◦ady =
[x+ f, y + h], the bracket is skew-symmetric.

So let us see that the bracket satisfies the Jacobi identity:

[x+ f, [y + h, z + g]] = [x+ f, [y, z]− g ◦ ady + h ◦ adz]

= [x, [y, z]] + g ◦ ady ◦ adx − h ◦ adz ◦ adx + f ◦ ad[y,z],

[z + g, [x+ f, y + h]] = [z, [x, y]] + h ◦ adx ◦ adz − f ◦ ady ◦ adz + g ◦ ad[x,y],

[y + h, [z + g, x+ f ]] = [y, [z, x]] + f ◦ adz ◦ ady − g ◦ adx ◦ ady + h ◦ ad[z,x].

Since A is a Poisson algebra, the Jacobi identity is satisfied. Hence,
Proposition 2.7 holds, that is to say [x + f, [y + h, z + g]] + [z + g, [x +
f, y + h]] + [y + h, [z + g, x+ f ]] = 0.
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• In order to see that ? and [−,−] are compatible, consider

[(x+ f) ? (y + h), z + g] = [x ◦ y + h ◦ Lx + f ◦ Ly, z + g]

= [x ◦ y, z]− g ◦ adx◦y + h ◦ Lx ◦ adz + f ◦ Ly ◦ adz,

(5)

and

(x+ f) ? [y + h, z + g] + [x+ f, z + g] ? (y + h) = (x+ f) ? [y + h, z + g]

+ [x+ f, z + g] ? (y + h)

= (x+f)?([y, z]−g ◦ ady+h ◦ adz)+([x, z]−g ◦ adx+f ◦ adz)?(y+h)

= x ◦ [y, z]− g ◦ ady ◦ Lx + h ◦ adz ◦ Lx + f ◦ L[y,z] + [x, z] ◦ y
+ h ◦ L[x,z] − g ◦ adx ◦ Ly + f ◦ adz ◦ Ly.

(6)

We have that (5) and (6) are equal, because adx◦y = ady ◦Lx+ adx ◦Ly,
Lx ◦ adz = adz ◦ Lx + L[x,z], Ly ◦ adz = L[y,z] + adz ◦ Ly, let a in A:

adx◦y(a) = [x ◦ y, a] =

[
1

2
(x.y + y.x), a

]
=

1

2
(x.y.a− a.x.y + y.x.a− a.y.x),

(ady ◦ Lx + adx ◦ Ly)(a) = ady(x ◦ a) + adx(y ◦ a)

=

[
y,

1

2
(x.a+ a.x)

]
+

[
x,

1

2
(y.a+ a.y)

]
=

1

2
(y.x.a− x.a.y + y.a.x− a.x.y)

+
1

2
(x.y.a− y.a.x+ x.a.y − a.y.x)

=
1

2
(y.x.a− a.x.y + x.y.a− a.y.x),

(Lx ◦ adz)(a) = Lx([z, a]) = x ◦ [z, a],

(adz ◦ Lx + L[x,z])(a) = adz(x ◦ a) + [x, z] ◦ a
= [z, x ◦ a] + [x, z] ◦ a
=x ◦ [z, a] + [z, x] ◦ a+ [x, z] ◦ a = x ◦ [z, a].

So, (A⊕A∗) is a Poisson algebra.

• Finally, we need to see that the bilinear form B is (i) symmetric, (ii)
invariant with respect to the multiplications ? as [−,−] and (iii) nonde-
generate:

(i) B(x+ f, y + h) = f(y) + h(x) = h(x) + f(y) = B(h+ y, f + x).

(ii) Since the Poisson algebra has two multiplications, we need to see
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that B is invariant with respect to ? and also with [−,−]:

B((x+ f) ? (y + h), z + g) = B(x ◦ y + h ◦ Lx + f ◦ Ly, z + g)

= (h ◦ Lx + f ◦ Ly)(z) + g(x ◦ y)

= h(x ◦ z) + f(y ◦ z) + g(x ◦ y),

B(x+ f, (y + h) ? (z + g)) = B(x+ f, y ◦ z + g ◦ Ly + h ◦ Lz)
= f(y ◦ z) + (g ◦ Ly + h ◦ Lz)(x)

= f(y ◦ z) + g(y ◦ x) + h(z ◦ x)

= h(x ◦ z) + f(y ◦ z) + g(x ◦ y).

(iii) Let (x, f) be in A × A∗. Suppose that for all (y, h) ∈ A × A∗,
B(x + f, y + h) = 0, thus, f(y) + h(x) = 0. Let a be in A, take
an element (a − x, f) ∈ A × A∗, then 0 = B(x + f, (a − x) + f) =
f(a − x) + f(x) = f(a), thus f = 0A∗ . In this way we have that
h(x) = 0 for all h ∈ A∗, then x = 0A. Therefore, the element
x+f = 0+0A∗ . Consequently, B is nondegenerated. As a conclusion,
(A×A∗, ?, [−,−], B) is a quadratic Poisson algebra.

Similarly, we can see that (A ⊕ A∗, ./, [·, ·], B) is a quadratic Poisson
algebra, where for all (x, f), (y, h) ∈ A×A∗, (x+ f ./ y+ h) = x.y+ h ◦
Rx + f ◦ Ly, defining Rx(a) := a ◦ x, with a ∈ A.

Example 3.5. Let (A, ., B) be a quadratic Poisson-admissible algebra, whose
associate Poisson algebra is (A, ·, [−,−], B) (see Definition 3.1) and (H, ?, ϕ) a
symmetric commutative algebra. Let a ⊗ x, b ⊗ y be in A⊗ H. If we consider
the product given by (a ⊗ x) • (b ⊗ y) := a.b ⊗ x ? y, then (A ⊗ H, •) is a
Poisson-admissible algebra. In the first place, we show that (A⊗ H,	, [·, ·]) is
a Poisson algebra:

(a⊗ x)	 (b⊗ y) :=
1

2
[(a⊗ x)•(b⊗ y)+(b⊗ y)•(a⊗ x)]=

1

2
[a.b⊗ x ? y+b.a⊗ y ? x],

[a⊗ x, b⊗ y] := (a⊗ x) • (b⊗ y)− (b⊗ y) • (a⊗ x) = a.b⊗ x ? y − b.a⊗ y ? x.

If B ⊗ ϕ : (A⊗ H)⊗ (A⊗ H)→ K, such that for all (a, x), (b, y) ∈ A× H:

B ⊗ ϕ(a⊗ x, b⊗ y) := B(a, b)ϕ(x, y),

then (A⊗ H, •) is a quadratic Poisson-admissible algebra.

• Let us see that (A⊗H,	) is a commutative and associative algebra with
unit:
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[(a⊗ x)	 (b⊗ y)]	 (c⊗ z) =

[
1

2
(a.b⊗ x ? y + b.a⊗ y ? x)

]
	 (x⊗ z)

=
1

2

[
1

2
[(a.b).c⊗ (x ? y) ? z + c.(a.b)⊗ z ? (x ? y)]

+
1

2
[(b.a).c⊗ (y ? x) ? z + c.(b.a)⊗ z ? (y ? x)]

]
=

1

4

[
a.b.c⊗ x ? y ? z + c.a.b⊗ z ? x ? y

+ b.a.c⊗ y ? x ? z + c.b.a⊗ z ? y ? x
]

=
1

2

[
1

2
((a.b).c+ c.(a.b))

+
1

2
((b.a).c+ c.(b.a))

]
⊗ x ? y ? z

=
1

2
[(a.b) · c+ (b.a) · c]⊗ x ? y ? z

=
1

2
[a.b+ b.a] · c⊗ x ? y ? z = a · b · c⊗ x ? y ? z,

(a⊗ x)	 [(b⊗ y)	 (c⊗ z)] = (a⊗ x)	
[

1

2
(b.c⊗ y ? z + c.b⊗ z ? y)

]
=

1

2

[
1

2
[a.(b.c)⊗ x ? (y ? z) + (b.c).a⊗ (y ? z) ? x]

+
1

2
[a.(c.b)⊗ x ? (z ? y) + (c.b).a⊗ (z ? y) ? x]

]
=

1

4
[a.b.c⊗ x ? y ? z + b.c.a⊗ y ? z ? x

+ a.c.b⊗ x ? z ? y + c.b.a⊗ z ? y ? x]

=
1

2

[
1

2
(a.(b.c) + (b.c).a)

+
1

2
(a.(c.b) + (c.b).a)

]
⊗ x ? y ? z

=
1

2
[a · (b.c) + a · (c.b)]⊗ x ? y ? z

= a · (1

2
[b.c+ c.b])⊗ x ? y ? z = a · b · c⊗ x ? y ? z.

The commutativity of 	 follows from the fact that the sum is commu-
tative. Thus:

(a⊗ x)	 (b⊗ y) =
1

2
(a.b⊗ x ? y + b.a⊗ y ? x)

=
1

2
(b.a⊗ y ? x+ a.b⊗ x ? y) = (b⊗ y)	 (a⊗ x).
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In addition, the unit is 1A ⊗ 1H, because

(a⊗ x)	 (1A ⊗ 1H) =
1

2
(a.1A ⊗ x ? 1H + 1A.a⊗ 1H ? x) =

1

2
2(a⊗ x) = a⊗ x.

• Secondly, we will see that (A ⊗ H,	, [·, ·]) is a Lie algebra. It is easy to
verify the skew-symmetric of the bracket. Note that

[a⊗ x, [b⊗ y, c⊗ z]] = [a⊗ x, b.c⊗ y ? z − c.b⊗ z ? y]

= a.(b.c)⊗ x ? (y ? z)− (b.c).a⊗ (y ? z) ? x

− a.(c.b)⊗ x ? (z ? y) + (c.b).a⊗ (z ? y) ? x

= [(a.(b.c)− (b.c).a+ (c.b).a− a.(c.b))]⊗ x ? y ? z
= [a.b.c− b.c.a+ c.b.a− a.c.b]⊗ x ? y ? z,

[c⊗ z, [a⊗ x, b⊗ y]] = [c.a.b− a.b.c+ b.a.c− c.b.a]⊗ x ? y ? z,
[b⊗ y, [c⊗ z, a⊗ x]] = [b.c.a− c.a.b+ a.c.b− b.a.c]⊗ x ? y ? z.

then, [a⊗x, [b⊗y, c⊗ z]] + [c⊗ z, [a⊗x, b⊗y]] + [b⊗y, [c⊗ z, a⊗x]] = 0.

• The products 	, [−,−] are compatible. We have

[(a⊗ x)	 (b⊗ y), c⊗ z] =

[
1

2
(a.b⊗ x ? y + b.a⊗ y ? x), c⊗ z

]
=

1

2
(a.b.c⊗ x ? y ? z − c.a.b⊗ z ? x ? y

+ b.a.c⊗ y ? x ? z
− c.b.a⊗ z ? y ? x),

and,

[(a⊗ x), (c⊗ z)]	 (b⊗ y) + (a⊗ x)	 [(b⊗ y), (c⊗ z)]
= (a.c⊗ x ? z − c.a⊗ z ? x)	 (b⊗ y)

+ (a⊗ x)	 (b.c⊗ y ? z − c.b⊗ z ? y)

=
1

2
(a.c.b⊗ x ? z ? y + b.a.c⊗ y ? x ? z

− c.a.b⊗ z ? x ? y − b.c.a⊗ y ? z ? x)

+
1

2
(a.b.c⊗ x ? y ? z + b.c.a⊗ y ? z ? x

− a.c.b⊗ x ? z ? y − c.b.a⊗ z ? y ? x)

=
1

2
(b.a.c⊗ y ? x ? z − c.a.b⊗ z ? x ? y

+ a.b.c⊗ x ? y ? z − c.b.a⊗ z ? y ? x).

The previous terms are equal due to ? is commutative.

• (A⊗H, •) is a quadratic Poisson-admissible algebra. We only need to see
that B ⊗ ϕ is (i) symmetric, (ii) invariant with respect to ? as a [−,−],
and (iii) nondegenerate:
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(i) Since the maps B and ϕ are symmetric:

B⊗ϕ(b⊗y, a⊗x) = B(b, a)ϕ(y, x) = B(a, b)ϕ(x, y) = B⊗ϕ(a⊗x, b⊗y).

(ii) B ⊗ ϕ is associative with respect to the multiplications 	, [−,−]:

B ⊗ ϕ((a⊗ x)	 (b⊗ y), c⊗ z)=B ⊗ ϕ(
1

2
(a.b⊗ x ? y+b.a⊗ y ? x), c⊗ z)

=
1

2
(B(a.b, c)ϕ(x ? y, z) +B(b.a, c)ϕ(y ? x, z)) ,

B ⊗ ϕ(a⊗ x, (b⊗ y)	 (c⊗ z))=B ⊗ ϕ(a⊗ x, 1

2
(b.c⊗ y ? z+c.b⊗ z ? y))

=
1

2
(B(a, b.c)ϕ(x, y ? z) +B(a, c.b)ϕ(x, z ? y))

=
1

2
(B(a.b, c)ϕ(x ? y, z) +B(a.c, b)ϕ(x ? y, z))

=
1

2
(B(a.b, c)ϕ(x ? y, z) +B(b, a.c)ϕ(x ? y, z)),

B ⊗ ϕ([a⊗ x, b⊗ y], c⊗ z) = B ⊗ ϕ(a.b⊗ x ? y − b.a⊗ y ? x, c⊗ z)
= B(a.b, c)ϕ(x ? y, z)−B(b.a, c)ϕ(y ? x, z),

B ⊗ ϕ(a⊗ x, [b⊗ y, c⊗ z]) = B ⊗ ϕ(a⊗ x, b.c⊗ y ? z − c.b⊗ z ? y)

= B(a, b.c)ϕ(x, y ? z)−B(a, c.b)ϕ(x, z ? y)

= B(a.b, c)ϕ(x ? y, z)−B(a.c, b)ϕ(x ? y, z).

Then, B(a.c, b) = B(b, a.c) = B(b.a, c) and ϕ(x, y?z) = ϕ(x?y, z) =
ϕ(y ? x, z), keeping in mind that ? is commutative.

(iii) B ⊗ ϕ is a nondegenerate map: Let a ⊗ x ∈ A ⊗ H. We need to
see that B ⊗ ϕ(a ⊗ x,−) : A ⊗ H → K is a linear map and an
isomorphism. Since a ⊗ x 6= 0, then a 6= 0 or x 6= 0 (the respective
zero of each algebra is taken, depending of the case).

– If B ⊗ ϕ(a ⊗ x, b ⊗ y) = B(a, b)ϕ(x, y) = 0. By hypothesis
, B(a,−) and ϕ(x,−) are isomorphism, then B(a, b) = 0 o
ϕ(x, y) = 0. If B(a, b) = 0, then b = 0, hence b ⊗ y is zero
of A ⊗ H. With a similar analysis, if ϕ(x, y) = 0, then b ⊗ y is
zero of A⊗ H. Hence B ⊗ ϕ(a⊗ x,−) is injective.

– Let k be in K, since B(a,−) and ϕ(y,−) are surjective, and also
we know that 1 ∈ K, then exists b ∈ A such that B(a, b) = k
and y ∈ H such that ϕ(x, y) = 1. So, k = k1 = B(a, b)ϕ(x, y) =
B ⊗ ϕ(a⊗ x, b⊗ y). Therefore B ⊗ ϕ(a⊗ x,−) is surjective.

From the previous fact (A ⊗ H,	, [−,−], B ⊗ ϕ) is a quadratic Poisson
algebra. Therefore, (A ⊗ H, •, B ⊗ ϕ) is a quadratic Poisson-admissible
algebra.

Definition 3.6. Let (A, .) be an algebra and ω : A×A → K a bilinear form.
We say that (A, ω) is a symplectic algebra (or that ω endow of symplectic
structure to (A, .)), if the following conditions hold:
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A view of symplectic Lie algebras from quadratic Poisson algebras 17

1. ω is skew-symmetric, if ω(x, y) = −ω(y, z), for all x, y ∈ A;

2. ω is nondegenerate;

3. ω(x.y, z) + ω(y.z, x) + ω(z.x, y) = 0, for all x, y, z ∈ A.

Definition 3.7. If (A, .) is an algebra, B a scalar product over A and ω endow
of symplectic structure to A. (A, B, ω) is called a quadratic symplectic
algebra. If (A, .) is an associative algebra also, we say that (A, B, ω) is a
quadratic symplectic algebra.

Proposition 3.8. If (A, B) is a quadratic algebra, ω is a symplectic structure
on A if and only if exists a unique skew-symmetric (with respect to B) invertible
derivation (A, ., B) such that:

ω(x, y) := B(D(x), y), for all x, y ∈ A. (7)

Proof. Given a quadratic algebra (A, B), suppose that there exists a unique
skew-symmetric (with respect to B) invertible derivation, such that ω(x, y) =
B(D(x), y), for all x, y ∈ A. Let us see that ω define a symplectic structure
over A:

• −ω(y, z) = −B(D(y), x) = −(−B(y,D(x))) = B(D(x), y) = ω(x, y).

• Let x ∈ A be a nonzero element and ω(x,−) : A → K defined as
ω(x,−)(y) = ω(x, y). We will see that ω(x,−) is an isomorphism:

– Let y, z in A, such that ω(x, y) = ω(x, z). Due to ω(x, y)
= B(D(x), y) = −B(x,D(y)) and ω(x, z) = −B(x,D(z)). Then
B(x,D(y)) = B(x,D(z)), because B(x,−) is an isomorphism, D(y)
= D(z). As D is invertible, y = z. We conclude that ω is injective.

– Let k be in K; due to B endow of quadratic structure to A, B is
a nondegenerate map and D(x) ∈ A, so there exists y ∈ A such
that B(D(x), y) = k. Thus, ω(x, y) = k. We conclude that ω is
surjective.

• Now, let us show that the condition 3 of Definition 3.6 is satisfied:

ω(x.y, z) + ω(z.x, y) + ω(y.z, x) = B(x.D(y), z) +B(D(x).y, z) +B(z.D(x), y)

+B(D(z).x, y) +B(y.D(z), x) +B(D(y).z, x)

=B(z.x,D(y)) +B(D(x), y.z) +B(z.D(x), y) +B(D(z).x, y)

+B(y.D(z), x) +B(D(y).z, x)

=−B(z.D(x), y)−B(D(z).x, y)−B(x, y.D(z))−B(x,D(y).z)

+B(z.D(x), y) +B(D(z).x, y) +B(y.D(z), x) +B(D(y).z, x) = 0.

Let us see conversely. Given the symplectic structure ω(x, y) := B(D(x), y),
where D is a skew-symmetric (with respect to B) invertible derivation. We need
to see that D is unique. Assume there are D,D′ invertible derivations, which

Bolet́ın de Matemáticas 26(1) 1-30 (2019)



18 A. Riaño & A. Reyes

satisfies expression (7). Then, B(D(x), y) = ω(x, y) = B(D′(x), y), because
B is symmetric B(y,D(x)) = B(y,D′(x)), as B is a nondegenerate form, we
have that B(y,−) is an isomorphism, then D(x) = D′(x). Therefore, D is
unique.

Proposition 3.9. Let (A, .) be a Poisson-admissible algebra. If D is a deriva-
tion on (A, .), then D is a derivation on (A, ◦, [−,−]), that is to say, a deriva-
tion based on ◦ and [−,−].

Proof. Let x, y be elements of A. We have the equalities:

D(x ◦ y) = D(
1

2
(xy + yx)) =

1

2
(D(x)y + xD(y) +D(y)x+ yD(x))

=
1

2
(D(x)y + yD(x) + xD(y) +D(y)x) = D(x) ◦ y + x ◦D(y)

D([x, y]) = D(xy − yx) = D(x)y + xD(y)−D(y)x− yD(x)

= D(x)y − yD(x) + xD(y)−D(y)x = [D(x), y] + [x,D(y)].

The aim of Proposition 3.8 was to construct a symplectic algebra having a
quadratic algebra. Next, we establish some examples which illustrate the
proposition given previously.

Example 3.10. Let (P, .) be a Poisson-admissible algebra, O := X/K[X]
the ideal of K[X] generated by X and R := O/XnO with n ∈ N∗ (where
N are the natural numbers without the zero). Since R is an associative and

commutative algebra is generated by the basis {X,X2, . . . , Xn} as K-module,

we can conclude that
∼
P := P ⊗R is endowed with a multiplication defined by

(x⊗ P ) • (y ⊗Q) := x.y ⊗ PQ, ∀x, y ∈ P, ∀P ,Q ∈ R. Thus, it is a nilpotent

Poisson-admissible algebra (see the example 3.5). And (
∼
P ⊕

∼
P∗, ./,B), whose

multiplication ./ and the map B are defined as

((x⊗Xi) + f) ./ ((y ⊗Xj) + h) :=(x⊗Xi) • (y ⊗Xj) + h ◦R
x⊗Xi + f ◦ L

y⊗Xj ,

B((x⊗Xi) + f, (y ⊗Xj) + h) :=f(y ⊗Xj) + h(x⊗Xi),

∀(x⊗Xi, f), (y⊗Xj , h) ∈
∼
P×

∼
P∗ make a quadratic Poisson-admissible algebra

(see Example 3.5). From now on, we consider A :=
∼
P ⊕

∼
P∗.

Having the endomorphism D of
∼
P defined by D(x⊗Xi) := ix⊗Xi, ∀x ∈

P, ∀i ∈ {1, . . . , n}, we obtain an invertible derivation of
∼
P. In fact, if x⊗Xi, y⊗

Xj ∈
∼
P, we have D((x⊗Xi) • (y ⊗Xj)) = D(xy ⊗Xi+j) = (i+ j)xy ⊗Xi+j ,

and

(x⊗Xi) •D(y ⊗Xj)+D(x⊗Xi) • (y ⊗Xj)

= (x⊗Xi) • (jy ⊗Xj) + (ix⊗Xi) • (y ⊗Xj)

= jxy ⊗Xi+j + ixy ⊗Xi+j = (i+ j)xy ⊗Xi+j
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A view of symplectic Lie algebras from quadratic Poisson algebras 19

Now, defining the endomorphism
∼
D of A as an invertible derivation of A,

∼
D((x⊗Xi) + f) := D(x⊗Xi)− f ◦D, ∀(x⊗Xi, f) ∈

∼
P ×

∼
P ∗,

which is skew-symmetric with respect to B, since
∼
D((x⊗Xi + f) ./ (y ⊗Xj + h)) =

∼
D((x⊗Xi) • (y ⊗Xj) + h ◦R

x⊗Xi + f ◦ L
y⊗Xj )

= D((x⊗Xi) • (y ⊗Xj))

− (h ◦R
x⊗Xi + f ◦ L

y⊗Xj ) ◦D

= D(x⊗Xi) • (y ⊗Xj) + (x⊗Xi) •D(y ⊗Xj)

− h ◦R
x⊗Xi ◦D − f ◦ Ly⊗Xj ◦D

= ixy ⊗XiXj + jxy ⊗XiXj − h ◦R
x⊗Xi ◦D

− f ◦ L
y⊗Xj ◦D,

and,

(x⊗Xi + f) ./
∼
D(y ⊗Xj + h) +

∼
D(x⊗Xi + f) ./ (y ⊗Xj + h)

= (x⊗Xi + f) ./ (jy ⊗Xj − h ◦D) + (ix⊗Xi − f ◦D) ./ (y ⊗Xj + h)

= jxy ⊗XiXj − h ◦D ◦R
x⊗Xi + f ◦ L

jy⊗Xj + ixy ⊗XiXj

+ h ◦R
ix⊗Xi − f ◦D ◦ Ly⊗Xj

= ixy ⊗XiXj + jxy ⊗XiXj + h ◦ (R
ix⊗Xi −D ◦Rx⊗Xi)

+ f ◦ (L
jy⊗Xj −D ◦ Ly⊗Xj )

Finally, we see that −R
x⊗Xi ◦D = R

ix⊗Xi −D ◦ Rx⊗Xi and −L
y⊗Xj ◦D =

L
jy⊗Xj −D ◦ Ly⊗Xj . If z ⊗Xk ∈

∼
P, then

−R
x⊗Xi ◦D(z ⊗Xk) = −D(z ⊗Xk) • (x⊗Xi)

(R
ix⊗Xi −D ◦Rx⊗Xi)(z ⊗Xk) = (z ⊗Xk) • (ix⊗Xi)

−D((z ⊗Xk) • (x⊗Xi))

= (z ⊗Xk) •D(x⊗Xi)

−D((z ⊗Xk) • (x⊗Xi))

−L
y⊗Xj ◦D(z ⊗Xk) = − (y ⊗Xi) •D(z ⊗Xk)

(L
jy⊗Xj −D ◦ Ly⊗Xj )(z ⊗Xk) = (jy ⊗Xj) • (z ⊗Xk)

−D((jy ⊗Xj) • (z ⊗Xk))

= D(y ⊗Xj) • (z ⊗Xk)

−D((jy ⊗Xj) • (z ⊗Xk))

The equality results follow from the fact that D is a derivation on
∼
P. Due to

the previously written, we can extend it to an arbitrary polynomial P (X) ∈ R
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since {X,X1, . . . , Xn} is a basis of R, whence
∼
D is a derivation on

∼
P ⊕

∼
P∗. In

conclusion, the bilinear form ω on A defined by:

ω(x+ f, y + h) := B(
∼
D(x+ f), y + h), ∀(x, f), (y, h) ∈

∼
P ×

∼
P ∗

generate a symplectic structure on A (see the Example 3.4). Consequently,
(A, B, ω) is a symplectic quadratic Poisson-admissible algebra.

4. Quadratic Lie algebras from Poisson–
admissibles algebras

One of the most important structures is the quadratic Lie algebra. In this way,
we know from Proposition 3.8 that for a quadratic algebra with an invertible
derivation, we can endow the algebra with symplectic structure. Based on this
proposition and starting with a quadratic Poisson algebra and an invertible
derivation, we will construct a symplectic Lie algebra.

Definition 4.1. Let g be a Lie algebra and f : g×g→ K such that f(x, x) = 0,
for all x ∈ g. We say that f is a 2-cocycle, if f satisfies:

f(x, [y, z]) + f(z, [x, y]) + f(y, [z, x]) = 0 ∀x, y, z ∈ g.

Proposition 4.2. Let g1, g2 be two Lie algebras, B the invariant scalar product
of g1, ϕ : g2 → dera(g1, B), where

dera(g1, B) := {f ∈ End(g1) : B(f(X1), Y1) = −B(X1, f(Y1)), X1, Y1 ∈ g1}.

Then ψ(X1, Y1)(X2) := B(ϕ(X2)(X1), Y1) for X1, Y1 ∈ g1 and X2 ∈ g2, is a
2-cocycle. Also, it endows with structure of g1-module to g2.

Proof. We just need to see the proof was made in the Proposition 3.8, due to
both are solved in a similar way; where the derivation given is D := ϕ(X2),
and [−,−] the multiplication on which B is invariant. Therefore, we obtain
that for all X1, Y1, Z1 ∈ g1:

ψ(X1, [Y1, Z1]) + ψ(Z1, [X1, Y1]) + ψ(Y1, [Z1, X1]) = 0,

so, ψ is a 2-cocycle.

Definition 4.3. Let g1, g2 be two Lie algebras over a commutative ring K.
Suppose there is an action f : g1 → g2. We define the semi-direct product
g1 nf g2 of g1 and g2 by means of K-module g1 ⊕ g2 with the bracket:

[(x1+x2), (y1+y2)] = [x1, y1]+([x2, y2]+f(x1)y2−f(y1)x2), x1, y1 ∈ g1 y x2, y2 ∈ g2.

Following the order, to construct the algebras we define a double extension
for the case of a quadratic Lie algebra.
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Definition 4.4. Let (g1, [−,−]1, B1) be a quadratic Lie algebra, (g2, [−,−]2)
a Lie algebra, a homomorphism of Lie algebras ϕ : g2 → dera(g1, B1) where
dera(g1, B1) is the set of skew-symmetric derivation of g1 with respect to B1.
The map ψ : g1×g1 → g∗2 defined by ψ(X1, Y1)(X2) := B1(ϕ(X2)(X1), Y1), for
all X1, Y1 ∈ g1 y X2 ∈ g2; ψ is a 2-cocycle and g2 has structure of g1-module.
In this way, the vector space g1 ⊕ g∗2 endow with the multiplication:

[X1 + f, Y1 + h]c := [X1, Y1]1 + ψ(X1, Y1), ∀X1, Y1 ∈ g1, f, h ∈ g
∗
2 ,

is a Lie algebra, which is called central extension of g1 by means of ψ.
Let π be the co-adjoint representation of g2. Given X2 ∈ g2, the endo-

morphism ϕ(X2) defined by ϕ(X2)(X1 + f) := ϕ(X2)(X1) + π(X2)(f),∀X1 ∈
g1, f ∈ g∗2, is a derivation of the Lie algebra (g1 ⊕ g∗2 , [−,−]c). In addition,
ϕ : g2 → der(g1⊕g∗2) is a homomorphism of Lie algebras. So g := g2nϕ(g1⊕g∗2)
is the semi-direct product of g1 ⊕ g∗2 by g2 by means of ϕ. We can consider
g = g2 ⊕ g1 ⊕ g∗2 and the bracket defined by (see Definition 4.3):

[X2 +X1 + f, Y2 + Y1 + h] =[X2, Y2]2 + ([X1, Y1]1 + ϕ(X2)(Y1)− ϕ(Y2)(X1))

+ (π(X2)(h)− π(Y2)(f) + ψ(X1, Y1)),

for all (X2, X1, f), (Y2, Y1, h) ∈ g2 × g1 × g∗2. Thus, the pair (g, [−,−]) is a Lie
algebra. Furthermore, if γ : g2× g2 → K is an invariant, symmetric bilinear on
g2, it is easy to see that the bilinear form Bγ : g× g→ K defined by:

Bγ(X2 +X1 + f, Y2 + Y1 + h) := γ(X2, Y2) +B1(X1, Y1) + f(Y2) + h(X2),

for all (X2, X1, f), (Y2, Y1, h) ∈ g2 × g1 × g∗2, is an invariant scalar product on
g, so (g, [−,−], Bγ) is a quadratic Lie algebra. The pair (g, B0) is called the
double extension of (g1, [−,−]1, B1) by g2 by means of ϕ.

Next, we see that the pair (g1 ⊕ g∗2, [−,−]c) define a Lie algebra: let
(X1, f), (Y1, h), (Z1, g) be in g1 × g∗2,

−ψ(Y1, X1)(X2) = −B1(ϕ(X2)(Y1), X1) = B1(Y1, ϕ(X2)(X1)) = ψ(X1, Y1)(X2),

for the previous fact, we use that B1 is skew-symmetric with respect to ϕ(X2),
and moreover B1 is symmetric.

Note that the multiplication [−,−]c is skew-symmetric:

−[Y1 + h,X1 + f ]c = − [Y1, X1]1 − ψ(Y1, X1)

= [X1, Y1]1 − ψ(Y1, X1) = [X1, Y1]1 + ψ(X1, Y1)

= [X1 + f, Y1 + h]c.

Since we have the equalities

[X1 + f, [Y1 + h, Z1 + g]c]c = [X1 + f, [Y1, Z1]1 + ψ(Y1, Z1)]c

= [X1, [Y1, Z1]1]1 + ψ(X1, [Y1, Z1]1),

[Z1 + f, [X1 + h, Y1 + g]c]c = [Z1, [X1, Y1]1]1 + ψ(Z1, [X1, Y1]1),

[Y1 + f, [Z1 + h,X1 + g]c]c = [Y1, [Z1, X1]1]1 + ψ(Y1, [Z1, X1]1),
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and moreover

ψ(X1, [Y1, Z1]1) + ψ(Z1, [X1, Y1]1) + ψ(Y1, [Z1, X1]1) = B1(ϕ(X2)(X1), [Y1, Z1]1)

+B1(ϕ(X2)(Z1), [X1, Y1]1) +B1(ϕ(X2)(Y1), [Z1, X1]1)

= −B1(X1, ϕ(X2)([Y1, Z1]1))−B1(Z1, ϕ(X2)([X1, Y1]1))

−B1(Y1, ϕ(X2)([Z1, X1]1))

= −B1(X1, [ϕ(X2)(Y1), Z1]1)−B1(X1, [Y1, ϕ(X2)(Z1)]1)

−B1(Z1, [ϕ(X2)(X1), Y1]1)

−B1(Z1, [X1, ϕ(X2)(Y1)]1)−B1(Y1, [ϕ(X2)(Z1), X1]1)

−B1(Y1, [Z1, ϕ(X2)(X1)]1)

= B1(Y1, [ϕ(X2)(Z1), X1]1) +B1(Y1, [Z1, ϕ(X2)(X1)]1)

−B1(X1, [Y1, ϕ(X2)(Z1)]1)

+B1(X1, [ϕ(X2)(Y1), Z1]1) +B1(X1, [Y1, ϕ(X2)(Z1)]1)

−B1(Z1, [X1, ϕ(X2)(X1)]1)

−B1(Y1, [ϕ(X2)(Z1), X1]1)−B1(Y1, [Z1, ϕ(X2)(X1)]1) = 0,

then [X1 + f, [Y1 + h, Z1 + g]c]c + [Z1 + f, [X1 + h, Y1 + g]c]c + [Y1 + f, [Z1 +
h,X1 + g]c]c = 0. In other words, the Jacobi equality is satisfied.

Also, we see that ϕ(X2) ∈ End(g1 ⊕ g∗2) is a derivation of Lie algebras: let
(X1, f), (Y1, h) be in g1 × g∗2; because ϕ(X2) and π(X2) are K-endomorphism,
by the form as it is defined ϕ(X2) is an endomorphism; on the other hand,

ϕ(X2)([X1 + f, Y1 + h]c) = ϕ(X2)([X1, Y1]1 + ψ(X1, Y1)) = ϕ(X2)([X1, Y1]1)

+ π(X2)(ψ(X1, Y1)),

and,

[x1 + f,ϕ(X2)(Y1 + h)]c + [ϕ(X2)(X1 + f), Y1 + h]c = [X1 + f, ϕ(X2)(Y1 + h)

+ π(X2)(h)]c + [ϕ(X2)(X1) + π(X2)(f), Y1 + h]c

=[X1, ϕ(X2)(Y1)]1+ψ(X1, ϕ(X2)(Y1))+[ϕ(X2)(X1), Y1]1+ψ(ϕ(X2)(X1), Y1).

Because ϕ(X2) ∈ dera(g1, B1), ϕ(X2)([X1, Y1]1) = [X1, ϕ(X2)(Y1)]1
+[ϕ(X2)(X1), (Y1)]1, let us see that π(X2)(ψ(X1, Y1)) = ψ(X1, ϕ(X2)(Y1)) +
ψ(ϕ(X2)(X1), Y1); due to π : g∗2 → End(g∗2) is the coadjoint representation, we
have that

π(X2)(ψ(X1, Y1))(Y2) = ψ(X1, Y1)(−[X2, Y2]2).

Since we have the equalities

ψ(X1, Y1)(−[X2, Y2]2) = B1(ϕ(−[X2, Y2]2)(X1), Y1)

= B1(−[ϕ(X2), ϕ(Y2)](X1), Y1)

= B1([ϕ(Y2), ϕ(X2)](X1), Y1)

= B1((ϕ(Y2) ◦ ϕ(X2)− ϕ(X2) ◦ ϕ(Y2))(X1), Y1)

= −B1(ϕ(X2)(ϕ(Y2)(X1)), Y1) +B1(ϕ(Y2)(ϕ(X2)(X1)), Y1)

= B1(ϕ(Y2)(X1), ϕ(X2)(Y1)) +B1(ϕ(Y2)(ϕ(X2)(X1)), Y1)

= (ψ(X1, ϕ(X2)(Y1)) + ψ(ϕ(X2)(X1), Y1))(Y2),
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it follows that π(X2)(ψ(X1, Y1)) = ψ(X1, ϕ(X2)(Y1))+ψ(ϕ(X2)(X1), Y1). Fur-
thermore, as ϕ([X2, Y2]2) = [ϕ(X2), ϕ(Y2)], due to

ϕ([X2, Y2]2)(X1 + f) = ϕ([X2, Y2]2)(X1) + π([X2, Y2]2)(f)

= [ϕ(X2), ϕ(Y2)](X1) + [π(X2), π(Y2)](f)

= (ϕ(X2) ◦ ϕ(Y2) − ϕ(Y2) ◦ ϕ(X2))(X1)

+ (π(X2) ◦ π(Y2) − π(X2) ◦ π(Y2))(f)

= (ϕ(X2) ◦ ϕ(Y2))(X1) + (π(X2) ◦ π(Y2))(f) − (ϕ(Y2) ◦ ϕ(X2))(X1)

− (π(Y2) ◦ π(X2))(f)

= ϕ(X2)(ϕ(Y2)(X1) + π(Y2)(f)) − ϕ(Y2)(ϕ(X2)(X1) + π(X2)(f))

= ϕ(X2)(ϕ(Y2)(X1 + f)) − ϕ(Y2)(ϕ(X2)(X1 + f))

= (ϕ(X2) ◦ ϕ(Y2) − ϕ(Y2) ◦ ϕ(X2))(X1 + f)

= [ϕ(X2), ϕ(Y2)](X1 + f),

i.e., ϕ is a homomorphism of Lie algebras.

Now, we will see that (g, [−,−]) is a Lie algebra. Let us see that the
properties are satisfied:

• The bracket is skew-symmetric: Let X2 +X1 + f, Y2 + Y1 + h be in g, we
remind that ψ(Y1, X1)(Z) = B1(ϕ(Z)(X1), Y1) = −B1(X1, ϕ(Z)(Y1)) =
−B1(ϕ(Z)(Y1), X1) = −ψ(Y1, X1)(Z), with Z ∈ g2, so:

[Y2 + Y1 + h,X2 +X1 + f ] = [Y2, X2]2 + ([Y1, X1]1 + ϕ(Y2)(X1)− ϕ(X2)(Y1))

+ (π(Y2)(g)− π(X2)(h) + ψ(Y1, X1))

=−([X2, Y2]+(([X1, Y1])+ϕ(X2)(Y1)− ϕ(Y2)(X1))

+ (π(X2)(h)− π(Y2)(g)− (−ψ(Y1, X1))))

= −[X2 +X1 + f, Y2 + Y1 + h].

• From the previous calculus, we can see without difficulty that [−,−] sa-
tisfies the Jacobi identity:
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[X2 +X1 + f, [Y2 + Y1 + h, Z2 + Z1 + g]] = [X2 +X1 + f, [Y2, Z2]2 + ([Y1, Z1]1

+ ϕ(Y2)(Z1) − ϕ(Z2)(Y1)) + (π(Y2)(g) − π(Z2)(h) + ϕ(Y1, Z1))]

= [X2, [Y2, Z2]2]2 + ([X1, [Y1, Z1]1]1 + [X1, ϕ(Y2)(Z1)]1 − [X1, ϕ(Z2)(Y1)]1

+ ϕ(X2)([Y1, Z1]) + ϕ(X2) ◦ ϕ(Y2)(Z1) − ϕ(X2) ◦ ϕ(Z2)(Y1)

− ϕ([Y2, Z2]2)(X1))

+ (π(X2) ◦ π(Y2)(g) − π(X2) ◦ π(Z2)(h) + π(X2)(ψ(Y1, Z1))

− π([Y2, Z2]2)(f)

+ ψ(X1, [Y1, Z1]1) + ψ(X1, ϕ(Y2)(Z1)) − ψ(X1, ϕ(Z2)(Y1)))

[Z2 + Z1 + g, [X2 +X1 + f, Y2 + Y1 + h]]

= [Z2, [X2, Y2]2]2 + ([Z1, [X1, Y1]1]1 + [Z1, ϕ(X2)(Y1)]1 − [Z1, ϕ(Y2)(X1)]1

+ϕ(Z2)([X1, Y1]) + ϕ(Z2) ◦ ϕ(X2)(Y1) − ϕ(Z2) ◦ ϕ(Y2)(X1)

− ϕ([X2, Y2]2)(Z1))

+ (π(Z2) ◦π(X2)(h)−π(Z2) ◦ π(Y2)(f)+π(Z2)(ψ(X1, Y1))−π([X2, Y2]2)(g)

+ ψ(Z1, [X1, Y1]1) + ψ(Z1, ϕ(X2)(Y1)) − ψ(Z1, ϕ(Y2)(X1)))

[Y2 + Y1 + h, [Z2 + Z1 + g, Z2 + Z1 + f ]]

= [Y2, [Z2, X2]2]2 + ([Y1, [Z1, X1]1]1 + [Y1, ϕ(Z2)(X1)]1 − [Y1, ϕ(X2)(Z1)]1

+ ϕ(Y2)([Z1, X1]) + ϕ(Y2) ◦ ϕ(Z2)(X1) − ϕ(Y2) ◦ ϕ(X2)(Z1)

− ϕ([Z2, X2]2)(Y1))

+ (π(Y2) ◦ π(Z2)(f)−π(Y2) ◦ π(X2)(g)+π(Y2)(ψ(Z1, X1))−π([Z2, X2]2)(h)

+ ψ(Y1, [Z1, X1]1) + ψ(Y1, ϕ(Z2)(X1)) − ψ(Y1, ϕ(X2)(Z1))).

The sum of the previous terms results by the following reasons: Jacobi
identity for the respective algebras; ϕ(X2) is a derivation with respect
to [−,−]1; ϕ is a Lie homomorphism; π is a homomorphism of Lie alge-
bras; ψ is a 2-cocycle, in other words ϕ(X1, [Y1, Z1]) + ϕ(Z1, [X1, Y1]) +
ϕ(Y1, [Z1, X1]) = 0; previously we show that π(X2)(ψ(Y1, Z1))
= ψ(Y1, ϕ(X2)(Z1)) +ψ(ϕ(X2)(Y1), Z1) = ψ(Y1, ϕ(X2)(Z1))
−ψ(Z1, ϕ(X2)(Y1) (we use that ϕ(X) ∈ dera(g1, B1)). As a consequence,
we show that (g, [−,−]) is a Lie algebra.

Finally, we need to see that Bγ is an invariant scalar product on g, so:

• Because each γ and B1 are symmetric bilinear forms, and moreover the
sum is commutative, Bγ(X2 +X1 +f, Y2 +Y1 +h) = Bγ(Y2 +Y1 +h,X2 +
X1 + f). In other words, Bγ is a symmetric bilinear form.

• Since we have the equalities
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Bγ([X2 +X1 + f, Y2 + Y1 + h], Z2 + Z1 + g)

= Bγ([X2, Y2]2 + ([X1, Y1]1 + ϕ(X2)(Y1)− ϕ(Y2)(X1))

+ (π(X2)(h)− π(Y2)(f) + ψ(X1, Y1)), Z2 + Z1 + g)

= γ([X2, Y2]2, Z2) +B1([X1, Y1]1 + ϕ(X2)(Y1)− ϕ(Y2)(X1), Z1)

+ (π(X2)(h)− π(Y2)(f) + ψ(X1, Y1))(Z2) + g([X2, Y2]2)

= γ(X2, [Y2, Z2]2) +B1([X1, Y1]1, Z1) +B1(ϕ(X2)(Y1), Z1)

−B1(ϕ(Y2)(X1), Z1) + (π(X2)(h)(Z2)− π(Y2)(f)(Z2)

+ ψ(X1, Y1)(Z2)) + g([X2, Y2]2)

= γ(X2, [Y2, Z2]2) +B1(X1, [Y1, Z1]1) + ψ(Y1, Z1)(X2)

+B1(X1, ϕ(Y2)(Z1))

−B1(X1, ϕ(Z2)(Y1)) + h(−[X2, Z2]2)− f(−[Y2, Z2]2)

+B1(ϕ(Z2)(X1), Y1) + g(−[Y2, X2]2)

= γ(X2, [Y2, Z2]2) +B1(X1, [Y1, Z1]1) + ψ(Y1, Z1)(X2)

+B1(X1, ϕ(Y2)(Z1))

−B1(X1, ϕ(Z2)(Y1))− π(Z2)(h)(X2) + f([Y2, Z2]2)

−B1(X1, ϕ(Z2)(Y1)) + π(Y2)(g)(X2)

= γ(X2, [Y2, Z2]2) +B1(X1, [Y1, Z1]1) +B1(X1, ϕ(Y2)(Z1))

−B1(X1, ϕ(Z2)(Y1))

+ f([Y2, Z2]2) + π(Y2)(g)(X2)− π(Z2)(h)(X2) + ψ(Y1, Z1)(X2)

= γ(X2, [Y2, Z2]2) +B1(X1, [Y1, Z1]1 + ϕ(Y2)(Z1)− ϕ(Z2)(Y1))

+ f([Y2, Z2]2)

+ (π(Y2)(g)− π(Z2)(h) + ψ(Y1, Z1))(X2)

= Bγ(X2 +X1 + f, [X2, Y2]2 + ([X1, Y1]1 + ϕ(X2)(Y1)− ϕ(Y2)(X1))

+ (π(X2)(h)− π(Y2)(f) + ψ(Y1, Z1))

= Bγ(X2 +X1 + f, [Y2 + Y1 + h, Z2 + Z1 + g]),

we conclude that the bilinear form Bγ is invariant with respect to [−,−].

• Suppose that for all Y2 + Y1 + h ∈ g, we have that Bγ(X2 +X1 + f, Y2 +
Y1 + h) = 0, so Bγ(X2 +X1 + f, Y2 + Y1 + h) = γ(X2, Y2) +B(X1, Y1) +
f(Y2) + h(X2) = 0. Now, taking an arbitrary element of g:

– If Y2 = 0 and h = 0 then γ(X2, 0) + B(X1, Y1) = 0, because
γ(X2, 0) = 0, then B(X1, Y1) = 0. Due to B1 is a nondegener-
ate bilinear form and for all Y1 ∈ g1, B(X1, Y1) = 0, we have that
X1 = 0.

– From the previous fact and now taking Y2 = 0, we have that γ(X2, 0)
+B(0, Y1) + f(0) + h(X2) = h(X2) = 0. Due to h is an arbitrary
map, as a result X2 = 0.
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– In this way γ(0, Y2)+B(0, Y1)+f(Y2)+h(0) = f(Y2) = 0, inasmuch
as Y2 ∈ g2 is arbitrary, we conclude that f = 0. Therefore, we have
that X2 +X1 + f is the zero of g.

In the following example we construct a quadratic Lie algebra from a
Poisson-admissible algebra by means the concept of double extension.

Example 4.5 (See [2]). Let (A, ., B) be a quadratic Poisson-admissible alge-
bra. Then (A−, [−,−], B) is a quadratic algebra and (A+, ◦, B) is a symmetric
commutative algebra. Let us consider the Lie algebra three-dimensional sl(2).
The vector space sl(2)⊗A+ with bracket [−,−]1 defined by

[x⊗ a, y ⊗ b] := [x, y]⊗ a ◦ b, ∀(x, a), (y, b) ∈ sl(2)×A,

is a Lie algebra. We consider the form B1 : (sl(2)⊗A+)× (sl(2)⊗A+)→ K
defined by

B1(x⊗ a, y ⊗ b) := K(x, y)B(a, b), ∀(x, a), (y, b) ∈ sl(2)×A,

so (sl(2)⊗A+, [−,−]1, B1) is a quadratic Lie algebra, where K is the Killing
form of sl(2), that is to say K(x, y) := trace(adxady). Similarly as in example
3.10, if D is a derivation of (A+, ◦), then D := idsl(2)⊗D is a derivation of Lie

algebra (sl(2) ⊗ A+, [−,−]1). Moreover, if D is skew-symmetric with respect
to B, it follows that D is skew-symmetric with respect to B1. In fact, let
(x, a), (y, b) be in sl(2)×A+,

B1(D(x⊗ a), y ⊗ b) = K(x, y)B(D(a), b) = −K(x, y)B(a,D(b))

= −B1(x⊗ a,D(y ⊗ b)).

In addition, D is an inner derivation of the Lie algebra (sl(2)⊗A+, [−,−]1).
Since (A, .) is a Poisson-admissible algebra, then for all x ∈ A we have

that δx := adA−x is derivation of (A+, ◦) and furthermore is skew-symmetric
with respect to B. So, for all x ∈ A, δx e is a skew-symmetric derivation of
(sl(2) ⊗ A+, [−,−]1, B1), moreover δx can not be inner (see proposition 4.6).
Let us consider x /∈ Z(A). We have that adA−x 6= 0 (because if we consider
x ∈ Z(A), adA−x = 0 and it does not provide any additional information to
the algebra, which we want to make). Then we can consider g(A) := A− ⊕
(sl(2) ⊗A+) ⊗ (A−)∗ the double extension of (sl(2) ⊗A+, [−,−]1, B1) by the
Lie algebra A− by means the homomorphism ϕ : A− → dera(sl(2) ⊗ A+, B1)
defined as ϕ(X) := δx, for all x ∈ A. Therefore, (g(A), [−,−], T0) is a quadratic
Lie algebra, where T0(x+s⊗a+f, y+s′⊗b+h) := K(s, s′)B(a, b)+f(y)+h(x),
for all x, y, a, b ∈ A, f, h ∈ A∗.

Proposition 4.6. Let (A, ., B) a Poisson-admissible algebra, (sl(2), [−,−]) the
Lie algebra whose basis is {H,E, F} such that [H,E] = E, [H,F ] = −F ,
[E,F ] = 2H and D ∈ der(A). D is an inner derivation of the Lie algebra
(sl(2)⊗A+, [−,−]1) if and only if D = 0.
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Proof. If D = 0, because D : sl(2)⊗A+ → sl(2)⊗A+, x⊗D(a) = x⊗ 0 with
x ∈ sl(2), and a ∈ A+, it follows that D = 0sl(2)⊗A+ .

On the other hand, if D is an inner derivation, then

D = ad(H ⊗ a1) + ad(E ⊗ a2) + (F ⊗ a3),

with a1, a2, a3 ∈ A. Sea a ∈ A y H ∈ sl(2) an element of the basis, so

D(H ⊗ a) = (ad(H ⊗ a1) + ad(E ⊗ a2) + ad(F ⊗ a3))(H ⊗ a)

H ⊗D(a) = [H ⊗ a1, H ⊗ a] + [E ⊗ a2, H ⊗ a] + [F ⊗ a3, H ⊗ a]

= [H,H]⊗ a1 ◦ a+ [E,H]⊗ a2 ◦ a+ [F,H]⊗ a3 ◦ a
= −E ⊗ a2 ◦ a+ F ⊗ a3 ◦ a,

because H,E, F are different elements in the basis, H⊗D(a) can not generate
from elements with form E ⊗ b, F ⊗ c con b, c ∈ A. Moreover, as H 6= 0 we
have that D(a) = 0, due to a is arbitrary. Therefore, D = 0.

Lemma 4.7. If D is a derivation of a quadratic Poisson-admissible algebra
(A, ., B) additionally skew-symmetric with respect to B, then the endomorphism
∼
D over g(A) defined by

∼
D(x) :=D(x);

∼
D(f)=−f◦D;

∼
D(s⊗a) := s⊗D(a),∀a, x ∈ A, f ∈ A∗, s ∈ sl(2),

is a derivation of Lie algebra g(A), skew-symmetric with respect to T , that is

the invariant scalar product over g(A). Even more if D is invertible, then
∼
D

is invertible.

Proof. Let x + s ⊗ a + f, y + r ⊗ b + h be in g(A), with g(A) defined as in

Example 4.5. Let us see that
∼
D is a derivation:

∼
D([x+ s⊗ a+ f, y + r ⊗ b+ h]) =

∼
D([x, y] + ([s⊗ a, r ⊗ b] + ϕ(x)(r ⊗ b)

− ϕ(y)(s⊗ a))

+ (π(x)(h)− π(y)(f) + ψ(s⊗ a, r ⊗ b))

=
∼
D([x, y]) +

∼
D([s, r]⊗ (a ◦ b) + r ⊗ [x, b]− s⊗ [y, a])

+
∼
D(π(x)(h)− π(y)(f) + ψ(s⊗ a, r ⊗ b)) ◦D

= D([x, y]) + [s, r]⊗D(a ◦ b) + r ⊗D([x, b])− s⊗D([y, a])−π(x)(h) ◦D
+ π(y)(f) ◦D − ψ(s⊗ a, r ⊗ b) ◦D,

and,
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[
∼
D(x+ s⊗ a+ f), y + r ⊗ b+ h] + [x+ s⊗ a+ f,

∼
D(y + r ⊗ b+ h)]

= [D(x) + s⊗D(a)− f ◦D, y + r ⊗ b+ h]

+ [x+ s⊗ a+ f,D(y) + s⊗D(b)− h ◦D]

= [D(x), y] + ([s⊗D(a), r ⊗ b] + ϕ(D(x))(y ⊗ b)− ϕ(y)(s⊗D(a)))

+ (π(D(x))(h)− π(y)(−f ◦D) + ψ(s⊗D(a), r ⊗ b)) + [x,D(y)]

+ ([s⊗ a, r ⊗D(b)] + ϕ(x)(r ⊗D(b))− ϕ(D(y))(s⊗ a))

+ (π(x)(−h ◦D)− π(D(y))(f) + ψ(s⊗ a, r ⊗D(b))).

The two previous elements in g(A) are equal, since if we take an arbitrary
z ∈ A−, then we have

[s⊗D(a), r ⊗ b] + ϕ(D(x))(y ⊗ b)− ϕ(y)(s⊗D(a)) + [s⊗ a, r ⊗D(b)]

+ ϕ(x)(r ⊗D(b))

−ϕ(D(y))(s⊗ a) = [s⊗D(a), r ⊗ b] + r ⊗ [D(x), b]− s⊗ [y,D(a)]

+ [s⊗ a, r ⊗D(b)] + r ⊗ [x,D(b)]− s⊗ [D(y), a]

= [s⊗D(a), r ⊗ b] + [s⊗ a, r ⊗D(b)]

+ r ⊗ ([D(x), b] + [x,D(b)])

− s⊗ ([y,D(a)] + [D(y), a])

= [s, r]⊗D(a) ◦ b+ [s, r]⊗ a ◦D(b) + r ⊗D([x, b])

− s⊗D([y, a])

= [s, r]⊗D(a ◦ b) + r ⊗D([x, b])− s⊗D([y, a]),

and,

(π(D(x))(h) + π(x)(−h ◦D))(z) = h(−[D(x), z])− h ◦D(−[x, z])

= h(−[D(x), z]) + h(D([x, z]))

= h([x, z]− [D(x), z])

= h([x,D(z)])

= (−π(x)(h) ◦D)(z),

(π(D(y))(f) + π(y)(−f ◦D))(z) = (−π(y)(f) ◦D)(z),

together with
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(ψ(s⊗D(a), r ⊗ b) + ψ(s⊗ a, r ⊗D(b)))(z)

= B1(ϕ(z)(s⊗D(a)), r ⊗ b) +B1(ϕ(z)(s⊗ a), r ⊗D(b))

= B1(s⊗ [z,D(a)], r ⊗ b) +B1(s⊗ [z, a], r ⊗D(b))

= K(s, r)B([z,D(a)], b) +K(s, r)B([z, a], D(b))

= K(s, r)B([z,D(a)], b)−K(s, r)B(D([z, a]), b)

= K(s, r)B([z,D(a)]−D([z, a]), b)

= K(s, r)B(−[D(z), a], b)

= −B1(s⊗ [D(z), a], r ⊗ b)
= −B1(ϕ(D(z))(s⊗ a), r ⊗ b)
= (−ψ(s⊗ a, r ⊗ b) ◦D)(z).

Furthermore,
∼
D is skew-symmetric with respect to T , since

T (
∼
D(x+ s⊗ a+ f), y + r ⊗ b+ h) = T (D(x) + s⊗D(a)− f ◦D, y + r ⊗ b+ h)

= B1(s⊗D(a), r ⊗ b)− (f ◦D)(y) + h(D(x))

= K(s, r)B(D(a), b)− (f ◦D)(y) + h(D(x))

= − (K(s, r)B(a,D(b))− (h ◦D)(x) + f(D(y)))

= − T (x+ s⊗ a+ f,D(y) + r ⊗D(b)− h ◦D)

= − T (x+ s⊗ a+ f,
∼
D(y + r ⊗ b+ h)).

If D is invertible, then there exists D−1, so we consider
∼
D
−1

, where

∼
D

−1

(x) := D−1(x);
∼
D

−1

(f) = −f ◦D−1;

∼
D

−1

(s⊗ a) := s ⊗ D−1(a),∀a, x ∈ A, f ∈ A∗, s ∈ sl(2),

(
∼
D ◦

∼
D

−1

)(x+ s⊗ a+ f) =
∼
D(D−1(x) + s⊗D−1(a)− f ◦D−1)

= D(D−1(x)) + s⊗D(D−1(a))− (−f ◦D−1) ◦D

= x+ s⊗ a+ f ◦D−1 ◦D
= x+ s⊗ a+ f.

Similarly we have that (
∼
D
−1
◦
∼
D)(x + s ⊗ a + f) = x + s ⊗ a + f . Thus,

∼
D ◦

∼
D
−1

=
∼
D
−1
◦
∼
D = idg(A), therefore

∼
D is invertible.

Theorem 4.8 (see [2]). If (A, B, ω) is a quadratic Poisson-admisible algebra
and D a skew-symmetric invertible derivation (with respect to B) of A such
that ω(x, y) = B(D(x), y), for all x, y ∈ A, then (g(A), T,Ω) is a symplectic
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quadratic Lie algebra where Ω is the symplectic structure over the Lie algebra
g(A) defined by:

Ω(X,Y ) := T (
∼
D(X), Y ), ∀X,Y ∈ g(A).

Proof. Note that (g(A), T ) is a quadratic Lie algebra given by construction.
Since D is an invertible skew-symmetric (with respect to B) derivation of A,

Lemma 4.7 guarantees that
∼
D is an invertible skew-symmetric (with respect to

T ) derivation defined on g(A). Now, from Proposition 3.8 we conclude that Ω
define a symplectic structure on g(A).
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