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Existence and regularity of 1D-solitons for a
hyperelastic dispersive model

Existencia y regularidad de 1D-solitones para un modelo
hiperelástico dispersivo

Alex M. Montes1,a, Ricardo Córdoba1,b

Abstract. We show the existence, regularity and analyticity of one-dimensio-
nal solitons for a dispersive type equation that models the deformations of a
hyperelastic compressible plate. We follow a variational approach by charac-
terizing solitons as critical points of a suitable functional. Our method involves
the Mountain Pass Theorem.
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Resumen. En este trabajo mostramos la existencia, regularidad y analitici-
dad de solitones uno-dimensionales para una ecuación de tipo dispersivo que
modela las deformaciones de una placa hiperelástica. Seguimos una aproxi-
mación variacional, en la cual caracterizamos solitones como puntos cŕıticos
de una funcional adecuada. Nuestro método involucra el Teorema de Paso de
Montaña.
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1. Introduction

In this work we consider the following generalized two-dimensional nonlinear
dispersive elastic equation
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1Departamento de Mátematicas, Universidad del Cauca, Popayán, Colombia
aamontes@unicauca.edu.co
bricardocor-10@hotmail.com



118 Alex M. Montes & Ricardo Córdoba

Equation (1) was derived by R. M. Chen in [6] as a model for the deforma-
tions of a hyperelastic compressible plate relative to a uniformly pre-stressed
state. In this model u represents vertical displacement of the plate relative to
a uniformly pre-stressed state, while x and y are rescaled longitudinal and lat-
eral coordinates in the horizontal plane. To reduce the full three-dimensional
field equation to an approximate two-dimensional plate equation, an assump-
tion has been made that the thickness of the plate is small in comparison to
the other dimensions. It is also assumed that the small perturbations super-
imposed on the pre-stressed state only appear in the vertical direction (the
z-direction) and in one horizontal direction (the x-direction). Hence the vari-
ation of waves in the transverse direction (the y-direction) is small. Equation
(1) is obtained under the additional assumption that the wavelength in the
x-direction is short. On the other hand, if the wavelength is large, we obtain
the Kadomtsev-Petviashvili (KP) equation.

The parameters in equation (1) are all material constants. The scalar µ
describes the stiffness of the plate which is nonnegative. The coefficients α and
β are material constants that measure weak transverse effects. The material
constant γ occurs as a consequence of the balance between the nonlinear and
dispersive effects. Note that there is no dissipation in this model.

Equation (1) generalizes several well-known equations including the BBM
equation [2] when µ = α = β = γ = 0, the regularized long-wave Kadomtsev-
Petviashvili (KP) equation [3] (also referred as KP-BBM equation, see [8])
when µ = β = γ = 0, and the Camassa-Holm (CH) equation [5] when δ = α =
β = 0, γ = 1. In contrast to the derivation in [6] of nonlinear dispersive waves
in a hyperelastic plate, these particular equations are usually derived as models
of water waves. In equation (1), the two spatial dimensions make the analysis
very different from the CH equation. The µ−terms include a nonlinear term
of fourth order, which makes equation (1) very different from the KP-BBM
equation.

For equations that model the evolution of nonlinear waves, it is very impor-
tant to determine the existence and uniqueness of solution for the associated
initial value problem, and the existence of special solutions as the travelling
waves. For instance, travelling wave solutions are important in the study of
dynamics of wave propagation in many applied models such as fluid dynamics,
acoustic, oceanography, and weather forecasting. An important application is
the use of solitons (travelling wave of finite energy) as an efficient means of
long-distance communication.

For γ ∈ R, µ, α, β > 0 and p = 1, R. M. Chen (see [7]) showed, in the
“nonstandard” space Sobolev type W (R2) equipped with the norm

‖u‖2W =

∫
R

[
u2 + u2

x + u2
xx + (∂−1

x uy)2 + u2
y

]
dxdy,

the existence (in the weak sense) and stability of two-dimensional travelling
wave solutions (2D-solitons) which propagate with speed wave c > 0, i.d.
solutions of the form u(x, y, t) = v(x − ct, y). For this, R. M. Chen used
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the Concentration-Compactness Theorem. Formally ∂−1
x uy is defined via the

Fourier transform as

∂̂−1
x uy =

η

ξ
û(ξ, η).

In this paper, using the Mountain Pass Theorem, for p = p1/p2 with (p1, p2) = 1
(p2 odd), γ ∈ R and µ, α, β > 0 we establish the existence, regularity and
analyticity of one-dimensional travelling wave solutions (1D-solitons) for the
equation (1). This is, solutions of the form

u(x, y, t) = v(x+ y − ct), (2)

which propagate with wavefront normal to z = (1, 1) ∈ R2, velocity c
|z| , and

profile v. First we show the existence of 1D-solitons in the “standard” Sobolev
space H2(R) equipped with the norm

‖v‖2H2 =

∫
R

[
v2 + (v′)2 + (v′′)2

]
dx.

We will use a variational approach for which travelling waves corresponding to
critical points of a suitable energy functional. Next, we prove that this solutions
are regular functions. Moreover, we prove that this solutions admit a Taylor
expansion (analytic solutions). These characteristics make the 1D-solitons very
interesting from the physical and numerical view points.

1.1. Variational approach

By a 1D-soliton for the equation (1) we shall mean a solution of the form (2),
where c denote the speed of the wave. Then one see that the travelling wave
profile v should satisfy the ordinary differential equation[

(c+ α)v − (c+ β)v′ + cµv′′′′ − p+ 2

p+ 1
vp+1

+ γ
(
v
[
(v′)p

]′
+

p

p+ 1
(v′)p+1

)]′′
= 0. (3)

Among all the travelling wave solutions of (1) we shall focus on solutions which
have the additional property that the waves are localized and that v and its
derivatives decay at infinity, that is,

v(k)(y)→ 0 as |y| → ∞, 0 ≤ k ≤ 6.

We denote by Ck0 (R) the space of real functions with k continuous derivatives
vanishing at infinity, with the obvious sense when k = ∞. Under this decay
assumption the travelling wave equation takes the form

(c+α)v−(c+β)v′′+cµv′′′′− p+ 2

p+ 1
vp+1 +γ

(
v [(v′)p]

′
+

p

p+ 1
(v′)p+1

)
= 0. (4)
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A classical solution of (4) is a C4
0 (R) function satisfying (4) in the usual sense.

Multiply the travelling wave equation (4) with a test function w ∈ C∞0 (R),
after integration by parts, we obtain∫

R

[
(c+ α)vw + (c+ β)v′w′ + cµv′′w′′

]
dx

−
∫
R

[p+ 2

p+ 1
vp+1w + γ

(
v(v′)pw′ +

1

p+ 1
(v′)p+1w

)]
dx = 0. (5)

Note that (5) makes sense as soon as v ∈ C2
0 (R), whereas (4) requires four

derivatives on v. Let us say (provisionally) that a C2
0 (R) function v that satisfies

(5) is a weak solution of (4).
The following program outlines the main steps of the variational approach

in the theory of partial differential equations (see Section 8.1 in [4]):
Step A. The notion of weak solution is made precise. This involves Sobolev
spaces.
Step B. Existence of a weak solution is established by a variational method,
via the Mountain Pass Theorem in our case.
Step C. Weak solution is proved to be of class C4

0 (R) (for example): this is a
regularity result.
Step D. A classical solution is recovered by showing that any weak solution
that is C4

0 (R) is a classical solution.
To carry out Step D is very simple. In fact, suppose that v ∈ C4

0 (R) satisfies
(5). Then integrating by parts (5) we obtain for all w ∈ C∞0 (R) that∫

R

[
(c+ α)v − (c+ β)v′′ + cµv′′′′ − p+ 2

p+ 1
vp+1

]
w dx

+ γ

∫
R

[
v
(
(v′)p

)′
+

p

p+ 1
(v′)p+1

]
w dx = 0.

Hence, using that the space C∞0 (R) is dense in L2(R), the equation (4) holds
a.e. on R and thus everywhere on R, since v ∈ C4

0 (R). Finally, we notice that
if v ∈ C6

0 (R) is a solution for the equation (4) then v is a classical solution for
the equation (3).

Throughout this work ‖ · ‖X denotes norm in the Hilbert space X, <,>X
is its inner product and X ′ represents the dual space. C denotes a generic
constant whose value may change from instance to instance.

2. Existence of weak solutions

In this section we will establish the existence of a solution of (4) in the weak
sense by using a variational approach in which weak solutions correspond to
critical points of a suitable functional. We begin by defining the appropriate
functional spaces. The usual Sobolev space Hk(R), k ∈ Z+∪{0}, is the Hilbert
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space defined as the closure of C∞0 (R) with respect to the inner product

〈v, w〉Hk =

k∑
n=0

∫
R
v(n) · w(n)dx,

and the norm

‖v‖2Hk =

k∑
n=0

∫
R

[
v(n)

]2
dx.

Now, if we assume that v, w ∈ H2(R), from the Young inequality, we see that∫
R

[
(c+ α)vw + (c+ β)v′w′ + cµv′′w′′

]
dx ≤ C(c, α, β, µ)

(
‖v‖2H2 + ‖w‖2H2

)
.

So that, the first integral in (5) is well defined. In a similar way, using the
Hölder inequality and the fact that for q ≥ 2 the embedding H1(R) ↪→ Lq(R)
is continuous, we see that∫

R
vp+1w dx,

∫
R

(v′)p+1w dx ≤
(
‖v‖p+1

L2(p+1) + ‖v′‖p+1
L2(p+1)

)
‖w‖L2

≤ C
(
‖v‖p+1

H1 + ‖v′‖p+1
H1

)
‖w‖L2

≤ 2C‖v‖p+1
H2 ‖w‖H2 .

In addition, ∫
R
v(v′)pw dx ≤ ‖v‖L4‖v′‖pL4p‖w‖L2

≤ C‖v‖L4‖v′‖pH1‖w‖L2

≤ C‖v‖p+1
H2 ‖w‖H2 .

Therefore, the second integral in (5) is well defined. Then we have the following
definition.

Definition 2.1. We say that v ∈ H2(R) is a weak solution of (4) if for all
w ∈ H2(R) the integral equation (5) holds.

Next, we will see that weak solutions of the equation (4) corresponds to
critical points of the functional Jc defined as

Jc(v) = Ic(v) +G(v),

where

Ic(v) =
1

2

∫
R

[
(c+ α)v2 + (c+ β)(v′)2 + cµ(v′′)2

]
dx,

G(v) =
1

p+ 1

∫
R

[
vp+2 + γv(v′)p+1

]
dx.

First we will show in the following lemma some properties for Ic and G, as-
suming that p = p1/p2 with (p1, p2) = 1 (p2 odd), γ ∈ R and µ, α, β > 0.
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Lemma 2.2. Let c > 0. Then

1. The functionals Ic and G are well defined in H2(R).

2. The functional Ic is nonnegative. Moreover, there are C1(α, β, µ, c) <
C2(α, β, µ, c) such that

C1‖v‖2H2 ≤ Ic(v) ≤ C2‖v‖2H2 . (6)

Proof. 1. Ic is clearly well defined for v ∈ H2(R). In addition, note that
if v ∈ H2(R) then, using the fact that the embedding H1(R) ↪→ Lq(R) is
continuous for q ≥ 2, we see that there is a constant C = C(p, γ) > 0 such that

|G(v)| ≤ C
(
‖v‖p+2

Lp+2 + ‖v‖L2‖v′‖p+1
L2(p+1)

)
≤ C‖v‖p+2

H2 . (7)

So, G is well defined.
2. This property is straightforward. We define C1, C2 by

C1 = min{c+ α, c+ β, cµ}, C2 = max{c+ α, c+ β, cµ}.

Proposition 2.3. If v is a nontrivial critical point for the functional Jc in the
space H2(R), then v is a nontrivial weak solution for the equation (4).

Proof. If v, w ∈ H2(R), a direct calculation shows that

〈I ′c(v), w〉 =

∫
R

[
(c+ α)vw + (c+ β)v′w′ + cµv′′w′′

]
dx,

〈G′(v), w〉 =

∫
R

[p+ 2

p+ 1
vp+1w + γ

(
v(v′)pw′ +

1

p+ 1
(v′)p+1w

)]
dx.

In particular, if v ∈ H2(R) is a critical point for the functional Jc we see that
for all w ∈ H2(R),

〈I ′c(v), w〉 − 〈G′(v), w〉 = 〈J ′c(v), w〉 = 0. (8)

Therefore, v is a solution of the integral equation (5).

Our approach to show the existence of a nontrivial critical point for the
functional Jc is to use the Mountain Pass Theorem without the Palais-Smale
condition (see M. Willem [10], A. Ambrosetti et al. [1]) to build a Palais-Smale
sequence for Jc for a minimax value and use a local embedding result to obtain
a critical point for Jc as a weak limit of such Palais-Smale sequence.

Theorem 2.4. (Mountain Pass Theorem) Let X be a Hilbert space, ϕ ∈
C1(X,R), e ∈ X and r > 0 such that ‖e‖X > r and

ϑ = inf
‖v‖X=r

ϕ(v) > ϕ(0) ≥ ϕ(e).
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Then, given n ∈ N, there is vn ∈ X such that

ϕ(vn)→ δ, ϕ′(vn)→ 0 in X ′ and δ ≥ ϑ, (PS)

where

δ = inf
π∈Π

max
t∈[0,1]

ϕ(π(t)), and Π = {π ∈ C([0, 1], X) : π(0) = 0, π(1) = e} .

Before we go further, we establish an important result for our analysis. Br(ζ)
denotes the ball in R of center ζ and radius r > 0.

Lemma 2.5. If (vn)n is a bounded sequence in H2(R) and there is a positive
constant r > 0 such that

lim
n→∞

sup
ζ∈R

∫
Br(ζ)

(vn)2 dx = 0.

Then we have that
lim
n→∞

G(vn) = 0. (9)

Proof. Let ζ ∈ R and r > 0. Using the Hölder inequality and the fact that
the embedding H1(Br(ζ)) ↪→ Lq(Br(ζ)) is continuous for q ≥ 2, we see that∫

Br(ζ)

|vn||v′n|p+1dx ≤ ‖vn‖L2(Br(ζ))‖v′n‖
p+1
L2(p+1)(Br(ζ))

≤ C‖vn‖L2(Br(ζ))‖v′n‖
p+1
H1(Br(ζ))

≤ C‖vn‖p+1
H2(Br(ζ))

(
sup
ζ∈R

∫
Br(ζ)

|vn|2dx

)1/2

.

Now, covering R by balls of radius r in such a way that each point of R is
contained in at most two balls, we find

∫
R
|vn||v′n|p+1dx ≤ 2C‖vn‖p+1

H2(R)

(
sup
ζ∈R

∫
Br(ζ)

|vn|2dx

)1/2

.

Thus, under the assumptions of the lemma,

lim
n→∞

∫
R
|vn||v′n|p+1dx = 0.

In a similar fashion we obtain that limn→∞
∫
R v

p+2
n dx = 0. So that

lim
n→∞

G(vn) =
1

p+ 1
lim
n→∞

∫
R

[
vp+2
n + γvn(v′n)p+1

]
dx = 0.
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Now, we want to verify the Mountain Pass Theorem hypotheses given in
Theorem 2.4 and to build a Palais-Smale sequence for Jc.

Lemma 2.6. Let c > 0. Then

1. There exists ρ > 0 small enough such that

ϑ(c) := inf
‖z‖H2(R)=ρ

Jc(z) > 0.

2. There is e ∈ H2(R) such that ‖e‖H2 ≥ ρ and Jc(e) ≤ 0.

3. If δ(c) is defined as

δ(c) = inf
π∈Π

max
t∈[0,1]

Jc(π(t)), Π = {π ∈ C
(
[0, 1], H2

)
: π(0) = 0, π(1) = e},

then δ(c) ≥ ϑ(c) and there is a sequence (vn)n in H2(R) such that

Jc(vn)→ δ, J ′c(vn)→ 0 in
(
H2(R)

)′
. (10)

Proof. From inequalities (6)-(7), we have for any v ∈ H2(R) that

Jc(v) ≥ C1‖v‖2H2 − C(λ, p)‖v‖p+2
H2

≥
(
C1 − C‖v‖pH2

)
‖v‖2H2 .

Then for ρ > 0 small enough such that

C1 − ρpC > 0, (11)

we conclude for ‖v‖H2(R) = ρ that

Jc(v) ≥ (C1 − ρpC) ρ2 := ε > 0.

In particular, we also have that

ϑ(c) = inf
‖z‖H2=ρ

Jc(z) ≥ ε > 0.

For any t ∈ R we see that

Jc(tv0) = t2
[
Ic(v0)− tp

p+ 1

∫
R

(
vp+2

0 + γv0(v′0)p+1
)
dx

]
.

Using the hypothesis, it is not hard to prove that there exist v0 ∈ C∞0 (R) ⊂
H2(R) such that G(v0) > 0. So that,

lim
t→∞

Jc(tv0) = −∞,

because 0 ≤ Ic(v0) ≤ C2(c)‖v0‖2H2 . Then, there is t0 > 0 such that e = t0v0 ∈
H2(R) satisfies that

t0‖v0‖H2 = ‖e‖H2 > ρ

and that Jc(e) ≤ Jc(0) = 0. The third part follows by direct applying Theorem
2.4.
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The following theorem is our main result in this section.

Theorem 2.7. Let c > 0. The equation (4) admits nontrivial weak solutions
in the space H2(R).

Proof. We will see that δ(c) is in fact a critical value of Jc. Let (vn)n be the
sequence in H2(R) given by previous lemma. First note from (12) that

δ(c) ≥ ϑ(c) ≥ ε > 0. (12)

Using the definition of Jc we have that

〈J ′c(v), v〉 = 2Ic(v)− (p+ 2)G(v) (13)

= 2Jc(v)− pG(v).

Then we obtain that

Ic(vn) =
p+ 2

p
Jc(vn)− 1

p
〈J ′c(vn), vn〉 .

But from (6) we conclude for n large enough that

C1‖vn‖2H2 ≤ Ic(vn) ≤ p+ 2

p
(δ(c) + 1) + ‖vn‖H2 .

Then we have shown that (vn)n is a bounded sequence in H2(R). We claim
that

ε∗ = lim
n→∞

sup
ζ∈R

∫
B1(ζ)

(vn)2dx > 0.

Suppose that

lim
n→∞

sup
ζ∈R

∫
B1(ζ)

(vn)2dx = 0.

Hence, from Lemma 2.5 we conclude that

lim
n→∞

G(vn) = 0.

Then, we have from (12)-(13) that

0 < ε ≤ δ(c) = Jc(vn)− 1

2
〈J ′c(vn), vn〉+ o(1)

≤ p

2
G(vn) + o(1)

≤ o(1),

but this is a contradiction. Thus, there is a subsequence of (vn)n, denoted the
same, and a sequence ζn ∈ R such that∫

B1(ζn)

(vn)2dx ≥ ε∗

2
. (14)
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Now, we define the sequence ṽn(x) = vn(x + ζn). For this sequence we also
have that

‖ṽn‖H2 = ‖vn‖H2 , Jc(ṽn)→ δ and J ′c(ṽn)→ 0 in
(
H2(R)

)′
.

Then (ṽn)n is a bounded sequence in H2(R). Thus, for some subsequence of
(ṽn)n, denoted the same, and for some v ∈ H2(R) we have that

ṽn ⇀ v, as n→∞ (weakly in H2(R)).

Since the embedding H2(Ω) ↪→ L2(Ω) is compact for all bounded open set Ω,
we see that

ṽn → v in L2
loc(R).

Note that v 6= 0 because using (14) we have that∫
B1(0)

v2dx = lim
n→∞

∫
B1(0)

(ṽn)2dx = lim
n→∞

∫
B1(ζn)

(vn)2dx ≥ ε∗

2
.

Moreover, if w ∈ C∞0 (R), then for K = suppw we have that

〈I ′c(v), w〉 =

∫
K

[(c+ α)vw + (c+ β)v′w′ + cµv′′w′′] dx

= lim
n→∞

∫
K

[(c+ α)ṽnw + (c+ β)ṽ′nw
′ + cµṽ′′nw

′′] dx

= lim
n→∞

〈I ′c(ṽn), w〉 .

Now (taking a subsequence, if necessary) noting that

(ṽn)p+1 ⇀ vp+1, (ṽ′n)p+1 ⇀ (v′)p+1, ṽn(ṽ′n)p ⇀ v(v′)p in L2
loc(R),

we have that∫
K

(ṽn)p+1w dx→
∫
K

vp+1w dx,

∫
K

(ṽ′n)p+1w dx→
∫
K

(v′)p+1wdx

and ∫
K

ṽn(ṽ′n)pw′dx→
∫
K

v(v′)pw′dx.

Then we conclude that

〈G′(v), w〉 = lim
n→∞

〈G′(ṽn), w〉 ,

and also that
〈J ′c(v), w〉 = lim

n→∞
〈J ′c(ṽn), w〉 = 0.

If w ∈ H2(R), by using density, there is wk ∈ C∞0 (R) such that wk → w in
H2(R). Hence,

|〈J ′c(v), w〉| ≤ |〈J ′c(v), w − wk〉|+ |〈J ′c(v), wk〉|
≤ ‖J ′c(v)‖(H2)′ ‖w − wk‖H2 + |〈J ′c(v), wk〉| → 0.
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Thus, we have already established that

J ′c(v) = 0.

In other words, v ∈ H2(R) is a nontrivial weak solution for the equation (4).

3. Regularity and analyticity of solutions

In this section, we will establish that any weak solution of the equation (4) is
a regular and analytic function. For this, we will use that for s ≥ 0 there are
K1,K2 > 0 such that for all v ∈ Hs(R),

K1‖v‖2Hs ≤
∫
R

(
1 + ξ2

)s |v̂|2dξ ≤ K2‖v‖2Hs ,

where the Fourier transform of a function v defined on R is given by

v̂(ξ) =
1

(2π)
1
2

∫
R
e−ixξv(x)dx.

In addition, we will use the following result (see Proposition 16 (c) in F. H.
Soriano [9]).

Proposition 3.1. For s > 1 there exists C3 > 0 such that for all p and k ∈ Z+,∑
k1+···+kp=k

1

(k1 + 1)s · · · (kp + 1)s
≤ Cp−1

3

(k + 1)s
.

Theorem 3.2. Let c > 0. If v ∈ H2(R) is a weak solution of the equation (4)
then v is a classic solution. Moreover, v is a analytic function, this is, for each
ζ0 ∈ R there is R > 0 such that∑

k

Dkv (ζ0)

k!
(x− ζ0)k

converges absolutely in R to v(x) for all x ∈ BR(ζ0).

Proof. First we will establish that v ∈ H l(R) for any l ≥ 0, if v ∈ H2(R) is a
weak solution of (4). Thus, using that if f ∈ H l(R), l ≥ 1 +k, then f ∈ Ck0 (R),
we conclude that v is a classical solution.

From the facts H1(R) ↪→ L∞(R) and H1(R) ↪→ L2(p+1)(R) we have that
the functions

f =
p+ 2

p+ 1
vp+1, g = −γv [(v′)p]

′
, h = − γp

p+ 1
(v′)p+1 (15)

belong to L2(R). Since∫
R

[
v(v′)p−1v′′

]2
dx ≤ ‖v‖2L∞‖v′‖2(p−1)

L∞ ‖v′′‖2L2 ≤ C‖v‖2(p+1)
H2
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and ∫
R
v2(p+1)dx,

∫
R

(v′)2(p+1)dx ≤ C‖v‖2(p+1)
H2 .

Taking Fourier transform on the equation (4) we obtain that v̂ satisfies

v̂(ξ) =
f̂(ξ) + ĝ(ξ) + ĥ(ξ)

(c+ α) + (c+ β)ξ2 + cµξ4
.

Hence, there exists M = M(α, β, µ, c) such that∫
R

(
1 + ξ2

)4 |v̂|2dξ ≤M ∫
R

(
|f̂ |2 + |ĝ|2 + |ĥ|2

)
dξ = M

(
‖f‖2L2 + ‖g‖2L2 + ‖h‖2L2

)
.

This implies that v ∈ H4(R). Now, since H l(R) is a algebra for l ≥ 1, by
using (15) we see that f, g, h ∈ H2(R). Then, repeating the previous argument
we have that v ∈ H8(R). A simple bootstrapping argument then yields that
v ∈ H l(R) for all l ≥ 0.

Next, we will prove the analyticity of v. First we establish the result under
the assumption of the existence of R > 0 such that for all k ∈ N0,∥∥Dkv

∥∥
H2 ≤ C

k!

(k + 1)2
Rk, (16)

where Dkv = v(k). If ζ0 ∈ R, we will show that there exists r > 0 such that we
have the following Taylor expansion for v in Br(ζ0),

v(x) =
∑
k

Dkv(ζ0)

k!
(x− ζ0)k.

If we set ζ = x − ζ0, then by the Taylor Theorem (with remainder) we have
that

v(x) =

N−1∑
k=0

Dkv(ζ0)

k!
ζk + EN (x), EN (x) =

DNv(ζ0 + tζ)

N !
ζN .

On the other hand, using (16) and the embedding H l(R) ↪→ L∞(R) for l ≥ 1,
if k ∈ N0 we have that

|Dkv(x)| ≤ ||Dkv||L∞ ≤ ||Dkv||H2 ≤ CRk k!

(k + 1)2
.

If we take r > 0 in such a way that 2rR < 1, we conclude for |ζ| < r that

|EN (x)| ≤ C (rR)N

(N + 1)2
≤ C(rR)N ≤ C2−N .

In other words, the Taylor series for v converges in BR(ζ0).
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To complete the proof, we only need to prove that there exists R > 0
such that (16) holds for all k ≥ 0. We will argue by induction on k. Since
v ∈ H l(R), l ≥ 0, we have the result for k = 0, 1. Now, suppose that (16) holds
for fixed k ∈ Z+ and R (which will be chosen later). If we apply the operator
Dk to equation (4), then multiply with Dkv, after integration by parts, we
obtain that

2Ic(D
kv) =

p+ 2

p+ 1

〈
Dk(vp+1), Dkv

〉
L2 (17)

+ γ
(〈
Dk [v(v′)p] , Dkv′

〉
L2 +

1

p+ 1

〈
Dk
[
(v′)

p+1]
, Dkv

〉
L2

)
.

But by using Hölder inequality,∣∣〈Dk [v(v′)p] , Dkv′
〉
L2

∣∣ ≤ ‖Dk [v(v′)p] ‖L2‖Dkv′‖L2

≤ C‖Dk [v(v′)p] ‖L2‖Dkv‖H2 .

In addition, we see that∣∣〈Dk(vp+1), Dkv
〉
L2

∣∣ ≤ ‖Dk(vp+1)‖L2‖Dkv‖L2 .

Also we have that∣∣〈Dk
[
(v′)

p+1]
, Dkv

〉
L2

∣∣ ≤ ∥∥Dk
[
(v′)

p+1]∥∥
L2‖Dkv‖L2 .

Then applying in (17) the previous estimates and inequality (6) we obtain that

‖Dkv‖H2(R) ≤ C1

(
‖Dk(vp+1)‖L2 + ‖Dk [v(v′)p] ‖L2 + ‖Dk

[
(v′)p+1

]
‖L2

)
.

We want to estimate the terms of right hand side. For simplicity first we
consider p = 1. Thus, note that if u,w ∈ H l for any l ≥ 1, we have for k ∈ Z+

that

Dk(uw) =
(
Dku

)
w +

k−1∑
m=1

(
k
m

)
(Dk−mu)Dm(w) + uDkw.

Then we see, for example, that

Dk
[
(v′)2

]
= 2Dk(v′)v′ +

k−1∑
m=1

(
k
m

)
Dk−m(v′)Dm(v′). (18)

Using the induction hypothesis we have that

‖Dk(v′)v′‖L2 ≤ ‖Dk(v′)‖L2‖v′‖L∞

≤ C2‖Dk+1v‖L2‖v′‖H1

≤ C2‖Dk−1v‖H2‖v‖H2

≤ C2C
2Rk−1 (k − 1)!

k2

≤
(
C

(k + 1)!

(k + 2)2
Rk+1

)(
C2CR

−2 (k + 2)2

k2(k + 1)

)
.

Bolet́ın de Matemáticas 22(2) 117-134 (2015)



130 Alex M. Montes & Ricardo Córdoba

Also we obtain that

‖Dk−m(v′)Dm(v′)‖L2 ≤ ‖Dk−m+1v‖L2‖Dm(v′)‖L∞

≤ C2‖Dk−m−1v‖H2‖Dm(v′)‖H1

≤ C2‖Dk−m−1v‖H2‖Dmv‖H2 .

Hence, using induction hypothesis on the right hand side and Proposition 3.1,
we obtain that

k−1∑
m=1

(
k
m

)
‖Dk−m(v′)Dm(v′)‖L2 ≤ C2

k−1∑
m=1

k!

(k −m)!m!
‖Dk−m−1v‖H2‖Dmv‖H2

≤ C2C
2k!Rk−1

k−1∑
m=1

1

(k −m)3(m+ 1)2

≤ C2C
2k!Rk−1

∑
k1+k2=k−1

1

(k1 + 1)2(k2 + 1)2

≤
(
C

(k + 1)!

(k + 2)2
Rk+1

)(
C2C3CR

−2 (k + 2)2

k2(k + 1)

)
.

Note that there exists M > 0 such that (k+2)2

k2(k+1) < M . So, taking R > 0 large

enough such that

C2C3CMR−2 < 1,

we conclude that

‖Dk[(v′)2]‖L2 ≤ C (k + 1)!

(k + 2)2
Rk+1.

Next, we see that

‖
(
Dkv

)
v′‖L2 ≤ ‖Dkv‖L2‖v′‖L∞

≤ C2‖Dk−1v‖H1‖v′‖H1

≤ C2‖Dk−1v‖H2‖v‖H2 ,

and also that

‖Dk(v′)v‖L2 ≤ ‖Dk+1v‖L2‖v‖L∞ ≤ C2‖Dk−1v‖H2‖v‖H2 .

Moreover,

‖Dk−m(v)Dm(v′)‖L2 ≤ ‖Dk−m−1v‖H1‖Dm(v′)‖H1 ≤ C2‖Dk−m−1v‖H2‖Dmv‖H2 .

Then we obtain that

‖Dk(vv′)‖L2 ≤ C (k + 1)!

(k + 2)2
Rk+1.
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In a similar fashion we obtain that

‖Dk(v2)‖L2 ≤ C (k + 1)!

(k + 2)2
Rk+1.

In other words, we have shown for R large enough that

‖Dk(v2)‖L2 + ‖Dk (vv′) ‖L2 + ‖Dk
[
(v′)2

]
‖L2 ≤ C (k + 1)!

(k + 2)2
Rk+1.

Now we consider the case p ≥ 1. To illustrate the type of computation we only
consider the typical term Dk[(v′)p+1], for this we will use the general rule

Dk[(v′)p+1] =
∑

k0+k1+···+kp=k

(
k

k0, k1 . . . , kp

)
(Dk0v′)(Dk1v′) · · · (Dkpv′),

where the sum extends over all (p + 1)-tuples (k0, k1, . . . , kp) of non-negative
integers with

p∑
i=0

ki = k and

(
k

k0, k1, . . . , kp

)
=

k!

k0!k1! · · · kp!
.

Define the set A(k, p) as

A(k, p) =
{

(k0, k1, . . . , kp) : 0 ≤ ki ≤ k − 1 and

p∑
i=0

ki = k
}
.

Then we see that

Dk[(v′)p+1] = (p+1)(Dkv′)(v′)p+
∑
A(k,p)

(
k

k0, k1 . . . , kp

)
(Dk0v′)(Dk1v′) · · · (Dkpv′).

But we have that

‖(Dkv′)(v′)p‖L2 ≤ ‖Dk(v′)‖L2‖v′‖pL∞

≤ (C2)p‖Dk−1v‖H2‖v‖pH2

≤
(
C

(k + 1)!

(k + 2)2
Rk+1

)(
(C2C)pR−2 (k + 2)2

k2(k + 1)

)
,
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and also that∑
A(k,p)

(
k

k0, . . . , kp

)∥∥Dk0(v′) · · ·Dkp(v′)
∥∥
L2

≤ (C2)p
∑
A(k,p)

k!

k0! · · · kp!
‖Dk0−1v‖H2‖Dk1v‖H2 · · · ‖Dkpv‖H2

≤ (C2)pC(p+1)k!Rk−1
∑
A(k,p)

1

k3
0(k1 + 1)2 · · · (kp + 1)2

≤ (C2)pC(p+1)k!Rk−1
∑

k0+k1+···+kp=k−1

1

(k0 + 1)2(k1 + 1)2 · · · (kp + 1)2

≤
(
C

(k + 1)!

(k + 2)2
Rk+1

)(
C3(C2C)pR−2 (k + 2)2

k2(k + 1)

)
.

Then we can see for R large enough that

‖Dk(vp+1)‖L2 + ‖Dk [v (v′)p]‖L2 + ‖Dk
[
(v′)p+1

]
‖L2 ≤ C (k + 1)!

(k + 2)2
Rk+1. (19)

By using (19) we will establish that

∥∥Dk+1v
∥∥
H2 ≤ C

(k + 1)!

k + 2
Rk+1.

To do this, we apply operator Dk+1 to equation (4) and compute the L2- inner
product with Dk+1v. Thus, we have that

2Ic(D
k+1v) =

p+ 2

p+ 1

〈
Dk+1(vp+1), Dk+1v

〉
L2 (20)

+ γ

(〈
Dk+1 [v(v′)p] , Dk+1v′

〉
L2 +

1

p+ 1

〈
Dk+1

[
(v′)

p+1]
, Dk+1v

〉
L2

)
.

Next, we see that∣∣〈Dk+1
[
v (v′)

p]
, Dk+1v′

〉
L2

∣∣ =
∣∣〈Dk

[
v (v′)

p]
, Dk+3v

〉
L2

∣∣
≤ ‖Dk

[
v (v′)

p]‖L2‖Dk+3v‖L2

≤ ‖Dk
[
v (v′)

p]‖L2‖Dk+1v‖H2 .

In a similar way we have that∣∣〈Dk+1(vp+1), Dk+1v
〉
L2

∣∣ ≤ ‖Dk(vp+1)‖L2‖Dk+1v‖H2 ,

and ∣∣〈Dk+1
[
(v′)

p+1]
, Dk+1v

〉
L2

∣∣ ≤ ‖Dk
[
(v′)

p+1]‖L2 ||Dk+1v||H2 .
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Therefore,

Ic(D
k+1v)

≤ C1

(
‖Dk(vp+1)‖L2 + ‖Dk

[
v (v′)

p]‖L2 + ‖Dk
[
(v′)

p+1]‖L2

)
‖Dk+1v‖H2 .

Then, from (6) and (19) we conclude that

‖Dk+1v‖H2 ≤ C1

(
‖Dk(vp+1)‖L2 + ‖Dk

[
v (v′)

p]‖L2 + ‖Dk
[
(v′)

p+1]‖L2

)
≤ C (k + 1)!

k + 2
Rk+1,

as desired.
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