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Abstract. The Orlik–Solomon algebra is a graded algebra defined by

the partially ordered set of subspace intersections of the hyperplanes

in an arrangement. Define the cohomology of an Orlik–Solomon al-

gebra as that of the complex formed by its homogeneous components

with the differential defined via multiplication by an element of degree

one. We study the dimension of the Orlik–Solomon algebra when the

arrangement is quadratic and the element defining the multiplication

is concentrated under a rank two element in the lattice of the arrange-

ment.
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Resumen. El álgebra de Orlik–Solomon es una álgebra graduada
definida por el conjunto ordenado de los espacios intersecciones de los
hiperplanos en un arreglo. Se define la cohomoloǵıa de una de estas
álgebras como el complejo formado por sus componentes homogéneas
con la diferencial definida por v́ıa de la multiplicación por un elemento
de grado uno. Se estudia la dimensión del álgebra cuando el arreglo es
cuadrático y el elemento que define la multiplicación se concentra bajo
un elmento de rango dos en el ret́ıculo del arreglo.
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1. Introduction

The theory of hyperplane arrangements is an area of mathematics
with applications in algebra, combinatorics, topology, analysis (hyper-
geometric functions), and physics (KZ-equations); for example, see [5],
[6], [13], [10], [4]. The allure of hyperplane arrangements lies both in
the straightforward definitions needed to begin studying the topic but,
more importantly, in the ability to pose interesting, yet understandable,
problems and examples. We therefore begin our discussion with two
motivating examples.

Example 1.1. It is not a difficult task to determine that removing n
distinct points from the real line leaves n+1 regions. However, by raising
the dimension just one, determining the number of regions which remain
in the plane after removing n lines is dependent on the lines themselves
and not merely n. For instance, removing the collection of lines in R

2

given by {x = 0, y = 0, x + y = 0} leaves 6 regions. But the collection
{x = 0, y = 0, x + y = 1} leaves 7 regions when removed from the
plane. This question, of course, can be raised to any dimension: given a
collection of codimension one affine spaces in R

�, how many regions are
left when this collection is removed from R

�?

In Example 1.1, we considered a finite collection of affine subspaces
of codimension one in R

�. More generally, we can take F to be be any
field and define the same notion.

Definition 1.2. Let F be a field. A hyperplane is an affine subspace
of codimension one in F �. A hyperplane arrangement in F � is a finite
collection of hyperplanes in F �, written A = {H1, . . . , Hn}.
Example 1.3. We now switch our attention to an arrangement of hy-
perplanes in C

�. In Example 1.1, we considered the space obtained by
removing the hyperplanes from R

�. Similarly, we define the complement
space M := C

� \ ∪n
i=1H. Momentarily, let � = 1 and we see the hy-

perplanes of C are points in the complex plane (the hyperplanes have
complex codimension one); hence, M is path connected. In general, for
any hyperplane arrangement in C

� with � ≥ 1, we have M is a path con-
nected space. So, the question of the number of connected components
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of M is a trivial question. However, one can consider the cohomology
algebra with coefficients in a commutative ring K, denoted H∗(M,K),
and ask the question: can H∗(M,K) be represented by generators and
relations related to the collection of hyperplanes?

Allowing Example 1.1 to guide and motivate us, it is apparent the in-
tersections of the hyperplanes play an important role as to the number
of components of the complement space; in fact, the pattern of intersec-
tions of the hyperplanes is the determining factor. It is also apparent
in Example 1.3 that the pattern of intersections of the hyperplanes is
pivotal to understanding H∗(M,K). Encoding the pattern of intersec-
tions of the hyperplanes in a combinatorial object is the purpose of the
following definition, given first by Zaslavsky in [15].

Definition 1.4. Let A be an arrangement of hyperplanes in V = F �.
We define the partially ordered set L(A) with objects given by ∩H∈BH
for B ⊆ A and ∩H∈BH �= ∅; order the objects of L(A) opposite to
inclusion. Notice ∅ ⊆ A gives V ∈ L(A) with V ≤ X for all X ∈ L(A).
For X ∈ L(A), we define rank(X) := codim X. We define rank(A) :=
maxX∈L(A) rank(X).

The problem of expressing H∗(M,K) in terms of generators and re-
lations was first studied by Arnold [1] in the case A was the braid
arrangement and K = C; that is, A was the collection of hyperplanes
{xi−xj : 1 ≤ i < j ≤ �}. This problem was later studied by Brieskorn

[3] for an arbitrary arrangement. Orlik and Solomon [11] have found
a purely algebraic characterization of H∗(M,K).

These results can be briefly summarized as follows. An algebra A(A)
(referred to as the Orlik–Solomon algebra) over K is constructed in terms
of generators and relations using only L(A). This is a graded algebra
with A(A) ∼= H∗(M,K). Hence, in Example 1.3, H∗(M,K) can be
determined by L(A).

The Orlik–Solomon algebra A(A) can also be used to answer the
question posed in Example 1.1. Zaslavsky has proven in [15] for a
hyperplane arrangement in R

�, the number of regions of the complement
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space is the sum of the dimensions of the homogeneous components of
A(A); that is,

∑�
i=1 dimAi(A).

The answers to the questions posed in Example 1.3 and Example
1.1 are important results in that topological invariants of the comple-
ment space were expressed in term of combinatorics. Indeed, a central
question in the theory of hyperplane arrangements is the problem of
expressing topological invariants of the complement space in terms of
combinatorics. In this manner, it is a natural question then to consider
a generalization of H∗(M,K) to cohomology with local coefficients.

For a ∈ A1(A), one can define a local coefficient system L(a). It
turns out that H∗(M,L(a)) relates closely to the cohomology of the
Orlik–Solomon algebra. The connection between H∗(M,L(a)) and the
cohomology of the Orlik–Solomon algebra has been studied in many
papers, for instance [9].

The cohomology of the Orlik–Solomon algebra is defined below. For
a hyperplane arrangement A = {H1, . . . , Hn}, we let {ai : Hi ∈ A}
denote a basis for A1(A). This basis is discussed in §2.

Definition 1.5. We construct a cochain complex on the graded linear

space A(A) as follows. Let a ∈ A1(A) with a =
n∑

i=1

λiai for λi ∈ K.

Multiplication by a giving the differential

dk : Ak(A) a·−→Ak+1(A)

forms a complex (A(A), a). The cohomology of this complex is said
to be the cohomology of the Orlik–Solomon algebra and is denoted
H∗(A(A), a).

Recently, there have been many results concerning dimH1(A(A), a);
for instance, [5], [14]. In the case char K �= 2, it has been shown in [9]
that dimH1(A(A), a) can be determined by a particular set of elements
from L(A). In particular, dimH1(A(A), a) is determined be

X (a) = {X ∈ L(2,A) :
∑

X⊂Hi

λiai �= 0,
∑

X⊂Hi

λi = 0, |X| > 2}
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However, little is known about the higher dimensions Hp(A(A), a) for
p > 1 [14], and this is the central concern of this paper.

In §2, the Orlik–Solomon algebra is defined. The definition of A(A)
is presented here as can be found in [12].

Definition 1.6. Let A = {H1, ..., Hn} be a hyperplane arrangement in
V = F � for some field F . We fix an order on A; that is, for hyperplanes
Hi and Hj in A, we have Hi < Hj if and only if i < j.

Let K be a commutative ring. Let E1 be the linear space over K on n
generators. Let E(A) := Λ(E1) be the exterior algebra on E1. We have
E(A) =

⊕
p≥0 Ep is a graded algebra over K. The standard K-basis for

Ep is given by

{ei1 · · · eip : 1 ≤ i1 < . . . < ip ≤ p}.
Any ordered subset S = {Hi1 , ..., Hip} of A corresponds to an element
eS := ei1 · · · eip in E(A).

Definition 1.7. We define the map ∂ : E(A) → E(A) via the usual
differential. That is,

∂(1) :=0

∂(ei) :=1,

and for p ≥ 2,

∂(ei1 · · · eip) :=
p∑

k=1

(−1)k−1ei1 · · · êik · · · eip .

Definition 1.8. Let S = {Hi1 , ..., Hip} be a subset of A. We say S is
dependent if

⋂
S �= ∅ and rank(

⋂
S) < |S|.

Definition 1.9. We define I(A) to be the ideal of E(A) which is gen-
erated by

{∂(eS) : S is dependent } ∪ {eS : ∩S = ∅}.
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Definition 1.10. The Orlik–Solomon algebra, A(A), is defined as

A(A) := E(A)/I(A).

Let π : E(A) → A(A) be the canonical projection. We write aS to
represent the image of eS under π.

Here is an outline of the paper. In §2, a linear basis for A(A) is de-
fined. In §3, we show this basis can be obtained as normal forms to a
Gröbner basis for I(A). We give conditions for when I(A) has a qua-
dratic Gröbner basis; this is dependent not only on A but on the order
of the hyperplanes in A. In this case, we say A is quadratic with respect
to the order. In §4, we deal with a famous class of arrangements called
supersolvable arrangements (see [2], [7], [13]). We define supersolvable
arrangements here for convenience.

A hyperplane arrangement A is central if ∩H∈AH �= ∅. Assume A is
central. A pair (X, Y ) ∈ L(A) × L(A) is called a modular pair if for all
Z ∈ L(A) with Z ≤ Y

Z ∨ (X ∧ Y ) = (Z ∨ X) ∧ Y.

An element X ∈ L(A) is called modular if (X, Y ) is a modular pair for
all Y ∈ L(A). We call A supersolvable if L(A) has a maximal chain of
modular elements

V = X0 < X1 < · · · < X� =
⋂

H∈A
H.

If A is supersolvable, we say the order on the hyperplanes respects
the supersolvable structure if for a maximal modular chain

V = X0 < X1 < · · · < X� =
⋂

H∈A
H

in L(A) we have

1. X1 is the smallest hyperplane, i.e. X1 = H1

2. For i > 1, we have Xi = ∩ni
j=1Hj and if a hyperplane H < Xi then

H ∈ {H1, . . . , Hni}.
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For A supersolvable, if the order respects the supersolvable structure
then the respective Gröbner basis is quadratic. We use this characteriza-
tion throughout §4 and §5. The following is an assumption maintained
thoughout §4 and §5.

Condition A. Let A be a hyperplane arrangement with
n⋂

i=1

Hi �= ∅,
and assume A is supersolvable. Fix X ∈ L(A) with rank(X) = 2 and
X a member of a maximal modular chain in L(A). Fix an order on the
hyperplanes so that the order respects the supersolvable structure.

We consider a ∈ A1(A) so a =
∑

Hi<X

λiai. Again, we assume a �= 0

and
n∑

i=1

λi = 0. We call such an a concentrated under X.

We show dim Hk(A(A), a) is determined combinatorially by a main
result of the paper.

Theorem 4.13. Let A and X ∈ L(A) be as in Condition A. Let
0 �= a ∈ A1(A) be concentrated under X. Then we can compute the
Hilbert series for H∗(A(A), a) in terms of the Hilbert series for A(A) as
follows:

H(H∗(A(A), a), t) =
t(nX − 2)

1 + t(nX − 1)
H(A(A), t).

In §5, we study the kernel, Z(a) = ⊕Zi(a), of the chain complex
(A(A), a) as an ideal of A(A). We do this with the idea in mind that if
Zk(a) = Ak(A) · Z1(a), then X (a) together with dimAk(A) will deter-
mine dimZk(a). We show in the case A and X ∈ L(A) satisfy Condition
A with a concentrated under X, this result holds, except for the top di-
mension. This is given in the following result.

Theorem 5.10. Suppose A and X ∈ L(2,A) satisfy Condition A.
Suppose � ≥ 3. Let a ∈ A1(A) be a nonzero element concentrated under
X. We have Zk(a) is generated by Z1(a) for k < �.
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2. The Orlik–Solomon Algebra and the Broken Circuit
Basis

In this section, we define the Orlik–Solomon algebra and a linear basis
for this algebra, referred to as the broken circuit basis; see Chapter 3
in [12]. The Orlik–Solomon algebra is a factor algebra of the exterior
algebra by an ideal I(A). In §2, we show the relationship between the
broken circuit basis and a Gröbner basis for I(A).

Let A = {H1, ..., Hn} be a hyperplane arrangement in V = F � for
some field F . For each Hi ∈ A fix an affine functional αi with Ker αi =
Hi. We fix an order on A; that is, for hyperplanes Hi and Hj in A, we
have Hi < Hj if and only if i < j.

Let I(A) be the ideal of E(A) as defined in §1, and let A(A) :=
E(A)/I(A) be The Orlik–Solomon algebra as defined in §1. Let π :
E(A) → A(A) be the canonical projection. We write aS to represent
the image of eS under π.

We demonstrate that A(A) is a free graded K-module by defining the
broken circuit basis for A(A). By Theorem 2.2 2 to follow, this is indeed
a basis for A(A).

Definition 2.1. Let S = {Hi1 , ..., Hip} be an ordered subset of A with
i1 < · · · < ip. We say aS is basic in Ap(A) if

1. S is independent, and
2. For any 1 ≤ k ≤ p, there does not exist a hyperplane H ∈ A so

that H < Hik with {H, Hik , Hik+1
, ..., Hip} dependent.

The set of {aS} with S as above form the broken circuit basis for A(A),
whose name is justified by the following theorem.

Theorem 2.2. As a K-module, A(A) is a free, graded module. The
broken circuit basis forms a basis for A(A).

Proof. This is proven in Theorem 3.55 in [12]. ��

The following example demonstrates the use of the broken circuit
basis for computing dimAp(A).
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Example 2.3. Let dim V = �, and let A be the braid arrangement in
V given by

Q(A) =
∏

1≤i<j≤�

(xi − xj).

Let Hij correspond to the hyperplane given by xi − xj = 0. Order the
hyperplanes lexicographically; that is, Hij < Hmn if either i < m or
i = m and j < n. We will write aHij = aij in A1(A).

In order to compute dim Ap(A), we need to describe the elements
of the broken circuit basis in Ap(A). Let a := ai1j1ai2j2 · · · aipjp be
an element of the broken circuit basis in Ap(A). By definition of the
hyperplanes, we have ik < jk.

Suppose j1 = j2. Without loss of generality, we may assume i1 < i2.
Then {Hi1j1 , Hi2j2 , Hi1i2} is dependent with Hi1i2 being minimal in the
set; this contradicts the assumption a is in the broken circuit basis. In
a similar fashion, we have j1 < j2 < · · · < jp. Moreover, if i1 = i2, then
{Hi1j1 , Hi2j2 , Hj1,j2} is dependent; but the minimal element of this set is
Hi1j1 . Therefore, a is still an element of the broken circuit basis. Hence,
there are no restrictions on ik other than jk > ik.

It is now just a matter of counting the possibilities we have for
{i1j1, ..., ipjp} with the restrictions j1 < j2 < · · · < jp and ik < jk

for k = 1, ..., p.

Fix j1, ..., jp. There are �−jk choices for ik for each k = 1, ..., p. Thus,

dim Ap(A) =
�−1∑

ip=1+ip−1

· · ·
�−p+1∑

i2=1+i1

�−p∑
i1=1

(
p∏

k=1

(� − jk))

=
∑

1≤j1<j2<···<jp≤�−1

j1j2 · · · jp.

As usual, if p = 0, then this sum is taken to be 1.

The dimensions of A1(A) and A2(A) can be easily simplified. Obvi-
ously, we have dimA1(A) =

(�
2

)
. For the dimension of A2(A), consider

minimally dependent sets of three hyperplanes. Any such set must be
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of the form {Hij , Hik, Hjk : i < j < k}. There are
(

�
3

)
of these sets.

Hence, dim A2(A) = dim E2 −
(

�
3

)
. Using the fact n =

(
�
2

)
, we arrive at

dim A2(A) =
�(� − 1)(� − 2)(3� − 1)

24
.

3. A Gröbner Basis for I(A)

In this section, we establish the relationship between the broken cir-
cuit basis and a Gröbner basis for the ideal I(A).

We establish some definitions and notations regarding Gröbner bases.
These are standard notations and results which can be found in [8]. We
include them here for clarity.

Let V be a module over a commutative ring K. Let B ⊂ V be a
K-basis. Suppose B is ordered with <; this means the order is linear
and that (B, <) is well ordered.

Definition 3.1. Let v ∈ V . Since B is a K-basis, we can write
v =

∑
bi∈B αibi for αi ∈ K and bi ∈ B. Since B is ordered and there

are only finitely many nonzero terms in the summation, there is a max-
imal element bi ∈ B with αi �= 0; say this element is b1. We define
Tip(v) := b1.

Definition 3.2. Let W ⊆ V . We define TipW := {Tip(w) : w ∈ W}.
Define the non-tips of W to be NT (W ) := B \ TipW .

Theorem 3.3. Let V be a module over K with an ordered basis (B, <).
Let W ⊆ V be a submodule of V with the condition:

* for any w ∈ W , there exists w′ ∈ W such that Tip(w) = Tip(w′)
and w′ = Tip(w′) +

∑
γibi, for γi ∈ K and bi ∈ B \ {Tip(w′)}.

Then V = W ⊕ 〈NT (W )〉.
Proof. We begin by showing W ∩〈NT (W )〉 = 0. Let v ∈ W ∩〈NT (W )〉.
We have Tip(v) ∈ TipW since v ∈ W . But v ∈ 〈NT (W )〉 implies
Tip(v) ∈ NT (W ). Hence, v = 0 as required.
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Suppose W + 〈NT (W )〉 �= V . Choose v ∈ V \ (W + 〈NT (W )〉)
with Tip(v) minimal; that is, Tip(v) ≤ Tip(w) for any w ∈ V \ (W +
〈NT (W )〉). Let 0 �= α ∈ K so that v = α Tip(v) +

∑
αibi for αi ∈ K

and bi ∈ B \ {Tip(v)}.
Suppose Tip(v) ∈ NT (W ). We construct an element with a smaller

tip by considering v−α Tip(v). Then Tip(v−α Tip(v)) < Tip(v); hence,
v − α Tip(v) ∈ W + 〈NT (W )〉. This implies v − α Tip(v) = w + n for
w ∈ W and n ∈ 〈NT (W )〉. We solve the equation for v to see that

v = w + (n + α Tip(v)) ∈ W + 〈NT (W )〉.
This is a contradiction to the choice of v.

Suppose Tip(v) ∈ Tip W . Then there exists w ∈ W so that Tip(v) =
Tip(w). By the condition (*) on W , we may assume w = Tip(w)+

∑
γibi

for γi ∈ K and bi ∈ B \ {Tip(w)}. Then Tip(v − αw) < Tip(v); hence,
by the choice of v, v − αw ∈ W + 〈NT (W )〉. This implies v − αw =
w′ + n for w′ ∈ W and n ∈ 〈NT (W )〉. By solving for v, we have
v = (w′ + αw) + n ∈ W + 〈NT (W )〉, a contradiction. ��

Corollary 3.4. Let V be a vector space over a field K with an ordered
basis (B, <). If W ⊆ V is a subspace of V , then V = W ⊕ 〈NT (W )〉.
Proof. It will suffice to show W satisfies condition (*) as given in The-
orem 3.3. Let w ∈ W . Then we have that w = γ Tip(w) +

∑
γibi for

0 �= γ, γi ∈ K and that bi ∈ B \ {Tip(w)}. Since W is a subspace of V
and K is a field, we have γ−1w ∈ W , and we take w′ := γ−1w. ��

Definition 3.5. Given a module V over K with an ordered basis (B, <)
and a submodule W ⊆ V , we define G ⊂ W to be a Gröbner basis of W
if Tip G = TipW .

We now define Gröbner bases in algebras. Again, these are standard
and can be found in [8] for the case R is commutative.

Let R be a K-algebra and let B be a K-basis of R. Suppose (B, <)
is well ordered; that is, the order is linear and any subset C ⊆ B has a
minimal element c ∈ C.
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Example 3.6. Consider the exterior algebra on n generators, E(A),
with the standard basis B = {ei1 · · · eip : 1 ≤ i1 < · · · < ip ≤ p}. We
can give B the degree lexicographic (DegLex) order. That is,

• if p < q, then ei1 · · · eip < ej1 · · · ejq ,
• if k0 = min{k : ik �= jk} with ik0 < jk0 , then ei1 · · · eip < ej1 · · · ejp.

Then B is a K-basis of E(A) and with respect to DegLex, (B, <) is well
ordered.

Definition 3.7. Let R be a K-algebra, and let B be a K-basis of R.
Let (B, <) be well ordered. We say B is monomial if for any b, b′ ∈ B
we have Tip(b′b), Tip(b′b) ∈ B unless they are zero.

Example 3.8. Consider E(A) with the well ordered basis (B, <) given
in Example 3.6. Then B is monomial.

Definition 3.9. Let R be a K-algebra and let B be a K-basis of R.
Let (B, <) be well ordered, and let B be monomial. We say the order
(B, <) is monomial if the following are satisfied:

1. Let b1, b2, c ∈ B with b1 > b2. If cbi �= 0 for i = 1, 2, then
Tip(cb1) > Tip(cb2) and Tip(b1c) > Tip(b2c).

2. If 1 ∈ B, then 1 < b for all 1 �= b ∈ B. If 1 /∈ B, then for all
b, b′ ∈ B we have Tip(bb′) > b, b′ and Tip(b′b) > b, b′ unless zero
appears.

Example 3.10. Consider the exterior algebra E(A) with the standard
basis B ordered with the DegLex order as in Example 3.6. Then (B, <)
is monomial.

Definition 3.11. Let R be a K-algebra, and let B be a K-basis of R.
Let (B, <) be well ordered and monomial. Let G ⊆ R. Let (Tip G) ⊆ B
be defined by the smallest set containing Tip G so that the following
holds:

(1) for any g ∈ (Tip G) and any b ∈ B, we have either Tip(bg),
Tip(gb) ∈ (Tip G) or bg = 0.
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Definition 3.12. Let R be a K-algebra, and let B be a K-basis for R.
Let (B, <) be well ordered and monomial. Let I �R. Let G ⊆ I. We say
G is a Gröbner basis for I if (Tip G) = Tip I.

Definition 3.13. Let R be a K-algebra, and let B be a K-basis for R.
Let (B, <) be well ordered and monomial. Let I �R. Define the non-tips
of I to be NT (I) := B \ (Tip I).

Theorem 3.14. Let R be a K-algebra, and let B be a K-basis of R.
Let (B, <) be well ordered and monomial. Let I �R. If K is a field, then
R = I ⊕ 〈NT (I)〉 as K-modules. Moreover, NT (I) is a K-basis for R/I.

Proof. The statement R = I ⊕ 〈NT (I)〉 as K-modules follows from
Corollary 3.4. Let π : R → 〈NT (I)〉 be the canonical projection. It
follows that NT (I) is a K-basis for R/I. ��

Definition 3.15. Let R be a K-algebra, and let B be a K-basis of R.
Let (B, <) be well ordered and monomial. Let G ⊆ R. We say lc(G) = 1
if for any g ∈ G with g = γ Tip(g) +

∑
γibi for 0 �= γ, γi ∈ K and

bi ∈ B \ {Tip(g)}, we have γ = 1.

Theorem 3.16. Let R be a K-algebra, and let B be a K-basis for R.
Let (B, <) be well ordered and monomial. Let I � R with I =(G) as an
ideal in R. Suppose lc(G) = 1. Then G is a Gröbner basis of I if and only
if R = I ⊕ 〈NT (G)〉 as K-modules.

Proof. Suppose G is a Gröbner basis of I. Then Tip I = (Tip G) by
Definition 3.12. Hence, NT (G) = NT (I). Since lc(G) = 1, R = I ⊕
〈NT (G)〉 follows from Theorem 3.3.

Suppose R = I ⊕ 〈NT (G)〉. We need to show Tip I = (Tip G).
Let g ∈ Tip G and b ∈ B so that Tip(bg) �= 0. Since g ∈ Tip G, there

exists h ∈ G so that Tip(h) = g. Since h ∈ G and I is generated by G,
we have h ∈ I. Hence, bh ∈ I and Tip(bh) ∈ Tip I. Since the order is
monomial, Tip(bh) = Tip(bg) or bg = 0. Therefore, Tip(bg) ∈ Tip I.

Let g ∈ Tip I. Then there exists h ∈ I so that Tip(h) = g. Since B
is a linear basis for R over K, we have h =

∑
αibi Tip(gi) +

∑
βini for

αi, βi ∈ K, bi ∈ B, gi ∈ G, and ni ∈ NT (G). Since R = I ⊕ 〈NT (G)〉 and
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h ∈ I, we must have βi = 0 for all βi. Hence g = Tip(h) ∈ (Tip G) as
required. ��

We now apply this theory to the Orlik–Solomon algebra A(A). Recall
that for any set of ordered hyperplanes S = {Hi1 , . . . , Hip}, we have
eS = ei1 · · · eip ∈ E(A).

Theorem 3.17. Let A(A) be the Orlik–Solomon algebra. Let B be the
standard basis for E(A) with the DegLex order. Let

G = {∂(eS) : S is dependent} ∪ {eS : ∩H∈SH = ∅}.
NT (G) is a linear basis for A(A).

Proof. By definition, G generates I(A) as an ideal in E(A). Also, lc(G) =
1.

We show G is a Gröbner basis of I(A).

Let Tip(bg) ∈ (Tip G) for b ∈ B and g = Tip(h) for h ∈ G. Since
G generates I(A), h ∈ I(A). Since I(A) is an ideal, bh ∈ I(A), so
Tip(bh) ∈ Tip I(A). But Tip(bh) = Tip(bg).

Let g ∈ Tip I(A). Then g = eS for S = {Hi1 , . . . , Hik} ⊆ A. We
consider different cases for S.

If ∩H∈SH = ∅, then eS ∈ Tip G.

Suppose ∩H∈SH �= ∅ for the remainder of the proof.

If S is dependent, then let H := minS. Then eS\{H} ∈ Tip G. We
then have g = Tip(eHeS\{H}) ∈ (Tip G).

Suppose S is independent. If there exists H0 with H0 < min S and
{H0} ∪ S is dependent, then by definition of G we have g = eS ∈ Tip G.

Suppose S is independent, and suppose there does not exist H0 <
min S so that {H0} ∪ S is dependent. Then eS ∈ NT (G).

We may apply Theorem 3.16 to conclude G is a Gröbner basis for I
and 〈NT (G)〉 is a K-basis for A(A). ��

We now consider the case that A is central and give a characterization
of when Tip G is generated by elements of degree two; that is, any element
g ∈ Tip G may be written as Tip(eSeT ) for |T | = 2
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Definition 3.18. A Gröbner basis G is quadratic if for any g ∈ Tip G,
there exists h ∈ G so that deg(h) = 2 and g = Tip(bh) or g = Tip(hb)
for some b ∈ B.

Definition 3.19. Let A be a central hyperplane arrangement. Order
the hyperplanes via <. Let

BC :={S ⊆ A : there is H < minS so that {H} ∪ S

is minimally dependent}.
We say A is quadratic with respect to < to mean for S ∈ BC, there
exists T ∈ BC with T ⊆ S and |T | = 2.

Proposition 3.20. Let A be a central hyperplane arrangement. If
A is quadratic under an order < of the hyperplanes, then Tip I(A) is
generated by elements of degree two, i.e. G is a quadratic Gröbner basis.

Proof. Let S ⊆ A be dependent. Let R ⊂ S be minimally dependent.
Fix H0 := minR; let R̃ := R \ {H0}. Then R̃ ∈ BC. Since A is
quadratic, there exists T ∈ BC with T ⊆ R̃ and |T | = 2. Then eT ∈
Tip G with degree two. Moreover, eS\minS = Tip(eS\(T∪minS) · eT ) as
required. ��

A central hyperplane arrangement A is called supersolvable if L(A)
has a maximal chain of modular elements

V = X0 < X1 < · · · < X� = ∩H∈AH.

Definition 3.21. Let A be a central hyperplane arrangement with
order < on the hyperplanes. If A is supersolvable, we say the order on
the hyperplanes respects the supersolvable structure if for a maximal
modular chain

V = X0 < X1 < · · · < X� = ∩H∈AH

in L(A) we have

1. X1 is the smallest hyperplane, i.e. X1 = H1

2. For i > 1, we have Xi = ∩ni
j=1Hj and if a hyperplane H < Xi then

H ∈ {H1, . . . , Hni}.
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Theorem 3.22. (Björner and Ziegler [2]) Let A be a central hy-
perplane arrangement. A is supersolvable if and only if A is quadratic
under an order that respects the supersolvable structure.

Proof. This is Theorem 2.8 in [2]. ��

Example 3.23. This example illustrates the importance of the choice
of order on the hyperplanes. Let the arrangement A be given by the
functionals {x, x − y, x + y, y, x − z, x + z, y + z, y − z, z}; order the
hyperplanes as they are written. Then A is supersolvable as a maximal
chain of modular elements is given by

V < {x = 0} < {x = y = 0} < {0}.
We can check to see that A is quadratic with this order by noticing the
element H1 ∩ H2 ∩ H3 ∩ H4 ∈ L(A) is modular and part of a maximal
modular chain in L(A).

However, if A is given by {x−y, x− z, y− z, x, x+y, y, x+ z, y+ z, z}
with the hyperplanes ordered as they are written, then A is not quadratic
under this order because S = {H1, H2, H4, H8} is minimally dependent
so {H2, H4, H8} ∈ BC. However, {H2, H4}, {H2, H8}, {H4, H8} �∈ BC.
Notice the element H1 ∩ H2 ∩ H3 ∈ L(A) is not modular.

4. The Dimension of Hk(A(A), a) for A Quadratic

We construct a cochain complex on the homogeneous components
of A(A) as follows. Let a ∈ A1(A) with a =

∑n
i=1 λiai for λi ∈ K.

Multiplication by a giving the differential dk : Ak(A) a·−→Ak+1(A) forms
a complex (A(A), a). The cohomology of this complex is said to be the
cohomology of the Orlik–Solomon algebra and is denoted H∗(A(A), a).

In this section, we work under special conditions and compute the
Hilbert series for H∗(A(A), a) in terms of the Hilbert series for A(A).
We maintain the following assumption throughout the remainder of the
paper.
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Condition A. Let A be a central hyperplane arrangement, and assume
A is supersolvable. Fix X ∈ L(A) with rank(X) = 2 and X a member
of a maximal modular chain in L(A). Fix an order on the hyperplanes
so that the order respects the supersolvable structure. Then we have
AX = {H1, . . . , HnX}.

Recall from §3 that A satisfying Condition A implies A is quadratic
under this order.

Let A = {H1, ..., Hn} be a central hyperplane arrangement in V . The
lattice, L(A), of subspace intersections formed by the hyperplanes and
ordered opposite to inclusion is ranked (via codimension) and atomic.
This allows us to discuss the rank of each element from the lattice and to
associate to it the hyperplanes which contain it. The following notational
conventions are maintained throughout the remainder of the paper.

Notational Conventions

1. For X ∈ L(A), we write i ∈ X to mean X is contained in the
hyperplane Hi.

2. For X ∈ L(A), we write X = {i1, ..., ip} to mean
(i) X is the intersection of the hyperplanes {Hi1 , ..., Hip},
(ii) if X ⊆ H then H ∈ {Hi1 , ..., Hip}.

3. If rank(X) = p, then we write X ∈ L(p,A).

Theorem 4.1. Let A be a central hyperplane arrangement. Let a =
n∑

i=1

λiai for λi ∈ K. If

n∑
i=1

λi �= 0, then H∗(A(A), a) = 0.

Proof. This is given in Proposition 2.1 in [14]. ��

By Theorem 4.1, we may now assume
n∑

i=1

λi = 0.

Definition 4.2. Let Bk be the set of indices 	j ⊆ {1, . . . , n} so that a�

is basic (with respect to the broken circuit basis) in Ak(A).

Definition 4.3. Let Mk be the matrix of the map dk : Ak
a·−→Ak+1 in

the broken circuit basis.
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Definition 4.4. Let X ∈ L(2,A). Let a be a nonzero element of

A1(A); we write a =
n∑

i=1

λiai. Assume λi = 0 for i �∈ X and
n∑

i=1

λi = 0.

In this case, we say a is concentrated under X.

In the setting of Definition 4.3 and Definition 4.4, Mk is a |Bk+1|×|Bk|
matrix. We compute the rank of Mk by considering the span of the
column space of Mk. Let X = {1, ..., nX} ∈ L(2,A). We need to consider
the types of basic elements of Ak. Let 	 = {j1, ..., jp} be a subset of 	n.
For A and X satisfying Condition A, we have the following types of
elements from Bk.

1. S = (α,	) for 	 ∈ Bk−1 and 	 ⊆ {nX + 1, ..., n} and α ∈ {1, ..., nX}.
2. S = (1, 	) for j1 ∈ {2, ..., nX} and 	 ∈ Bk−1.
3. S = 	 for 	 ⊆ {nX + 1, ..., n} and 	 ∈ Bk.

Lemma 4.5. Let A and X ∈ L(2,A) be as in Condition A. Let 1 < k <
�. Let 0 �= a ∈ A1(A) be concentrated under X. Fix 	 ⊆ {nX + 1, ..., n}
and 	 ∈ Bk−1. Then the set of columns of Mk labeled by 1	, 2	, ..., nX	
are the same. If k = 1, then the columns of Mk labeled by 1, 2, . . . , nX

are the same.

Proof. Fix 	 ⊆ {nX + 1, ..., n} and 	 ∈ Bk−1. Notice (α,	) ∈ Bk for any
α ∈ {1, ..., nX}. For α ∈ {1, ..., nX}, we have

a · aα� =
∑
i<α

λiaiα� −
nX∑

i=α+1

λiaαi�.

If α = 1, then we have a · aα� = −∑nX
i=2 λia1i�. If α > 1, then we have

a · aα� = λ1a1α� +
∑

1<i<α

λiaiα� −
nX∑

i=α+1

λiaαi�.
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However,

aiα� =a1α� − a1i�j ,

aαij =a1ij − a1αj , and
n∑

i=1

λi =0

implies a · aα� = −
∑

2≤α≤nX

λia1i�. Therefore, the α	 columns are the

same for any 1 ≤ α ≤ nX as required. Since A is quadratic under
this order, a1i� �= 0. That is, if {H1, Hi, H�} is dependent, then {Hi, H�}
is minimally dependent since 	 ∈ Bk−1. Hence, {Hi, Hjk

} is minimally
dependent for some jk. But this implies Hjk

∈ X, a contradiction.

In the case k = 1, the same proof works. ��

In light of the above theorem, we define

|	 ∈ B0 : 	 ⊆ {nX + 1, ..., n}| := 1

for ease in computations.

Lemma 4.6. Let A be a central hyperplane arrangement with
rank(A) = �. Let 0 < k < �. Let X = {1, ..., nX} be in L(2,A).
Let 0 �= a ∈ A1 be concentrated under X. Fix 	 ∈ Bk−1 with j1 ∈
{2, . . . , nX}. The column of Mk labeled by 1	 is the zero column.

Proof. This is immediate since any three elements under X are depen-
dent; in particular, we have

a · a1� =
nX∑
i=1

λiaia1� = 0. �

Lemma 4.7. Let A and X ∈ L(2,A) be as in Condition A. Let 0 �=
a ∈ A1(A) be concentrated under X. Let 0 < k < �. The set of columns
given by 	 for 	 ⊆ {nX + 1, ..., n} and 	 ∈ Bk are linearly independent.

Proof. This follows because ai� is basic in Ak+1(A) for i ∈ {1, ..., nX}
since A is quadratic under this order. Indeed, if ai� is not basic, then we
have two cases. Let S = {Hj1 , . . . , Hjk

}. If {Hi} ∪ T is dependent for
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any T ⊆ S, then a� is not basic, a contradiction. If there exists H < Hi

so that {H, Hi} ∪ S is dependent, then this set is minimally dependent
since aS is basic. Since A is quadratic, this implies Hjk

< X for some
k, a contradiction. ��

Theorem 4.8. Let A and X ∈ L(2,A) be as in Condition A. Let
0 < k < �. Let 0 �= a ∈ A1(A) be concentrated under X. We have

rank dk =
∣∣∣∣
{

	 ∈ Bk−1 : 	 ⊆ {nX + 1, ..., n}
}∣∣∣∣ +

∣∣∣∣
{

	 ∈ Bk : 	j ⊆ {nX + 1, ..., n}
}∣∣∣∣.

Proof. Lemmata 4.5, 4.6, and 4.7 imply the rank dk is the number of
1	 for 	 ⊆ {nX + 1, ..., n} and 	 ∈ Bk−1 and the number of 	 for 	 ⊆
{nX + 1, ..., n} and 	 ∈ Bk. Notice in the case that k = 0, we have
rank d0 = 1 since a �= 0. ��

Theorem 4.9. Let A and X ∈ L(2,A) be as in Condition A. Let
0 < k < �. Let 0 �= a ∈ A1 be concentrated under X. We have
dim Zk(a) = (nX − 1) rank dk−1.

Proof. We use Theorem 4.8 and calculate:

dimZk(a) = dimAk − rank dk

=|{	 ∈ Bk}| −
∣∣∣∣
{

	 ∈ Bk−1 : 	 ⊆ {nX + 1, ..., n}
}∣∣∣∣

−
∣∣∣∣
{

	 ∈ Bk : 	 ⊆ {nX + 1, ..., n}
}∣∣∣∣

=
∣∣∣∣
{

	 ∈ Bk : j1 ∈ {1, ..., nX}
}∣∣∣∣

−
∣∣∣∣
{

	 ∈ Bk−1 : 	j ⊆ {nX + 1, ..., n}
}∣∣∣∣.
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Consider the first term above. Since A is quadratic, for any α ∈ X and
	 ∈ Bk−2, we have 1α	 ∈ Bk. Hence,∣∣∣∣
{

	 ∈ Bk : j1 ∈{1, ..., nX}
}∣∣∣∣ = |{α	 ∈ Bk : α ∈ X,	 ∈ Bk−1, j1 > nX}|

+ |{1α	 ∈ Bk : α ∈ X,	 ∈ Bk−2, j1 > nX}|.

Returning to our calculations, we now have

dimZk(a) =|{α	 ∈ Bk : α ∈ X,	 ∈ Bk−1, j1 > nX}| +
|{1α	 ∈ Bk : α ∈ X,	 ∈ Bk−2, j1 > nX}| −

|{	 ∈ Bk−1 : j1 > nX}|.
Consider the first and third terms. Since A is quadratic, for any 	 ∈ Bk−1

with j1 > nX , we have α	 ∈ Bk for any α ∈ X. Hence, the sum of the
first and third terms can be expressed as (nX−1)|{	 ∈ Bk−1 : j1 > nX}|.
The middle term as written above is |{1α	 ∈ Bk : α ∈ X,	 ∈ Bk−2, u1 >
nX}|, and gives nX − 1 choices for α. Hence, the middle term can be
simplified to (nX − 1)|{	 ∈ Bk−2 : j1 > nX}|. Continuing with our
calculations, we have

dimZk(a) =(nX − 1) · |{	 ∈ Bk−1 : j1 > nX}| +
(nX − 1) · |{	 ∈ Bk−2 : j1 > nX}|

=(nX − 1) rank dk−1. ��

Theorem 4.10. Let A and X ∈ L(2,A) be as in Condition A. Let
k < �. Let 0 �= a ∈ A1(A) be concentrated under X. Then

dimHk(A(A), a) = (nX − 2) rank dk−1.

Proof. We use Theorems 4.9 and 4.9 to compute:

dim Hk(A(A), a) = dimZk(a) − rank dk−1

=(nX − 1) rank dk−1 − rank dk−1

=(nX − 2) rank dk−1. ��
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Theorem 4.11. Let A and X ∈ L(2,A) be as in Condition A. Let
0 �= a ∈ A1(A) be concentrated under X. For 0 < k < �, we have

dimHk(A(A), a) = (nX − 2)
k∑

i=1

(−1)i−1(nX − 1)i−1 dimAk−i,

and for k = �, we have

dimH�(A(A), a) = dimA� +
�∑

i=1

(−1)i(nX − 1)i−1 dimA�−i.

Proof. We consider the first statement. For k = 1, the statement clearly
holds true as dim H1(A(A), a) = nX − 2. Fix 1 < k < �− 1 and suppose
the statement is true for k− 1. By Theorem 4.10, Theorem 4.9, and the
induction hypothesis, we have

dim Hk(A(A), a) =(nX − 2) rank dk−1

=(nX − 2)[dim Ak−1 − dim Zk−1(a)]

=(nX − 2) dimAk−1 − (nX − 2) dimZk−1(a)

=(nX − 2) dimAk−1 − (nX − 1) dimZk−1(a)

+ dim Zk−1(a)

=(nX − 2) dimAk−1 − (nX − 1) dimZk−1(a)

+ (nX − 1) rank dk−2

=(nX − 2) dimAk−1 − (nX − 1) dimHk−1(A(A), a)

=(nX − 2) dimAk−1

− ((nX − 1)(nX − 2)
k−1∑
i=1

(−1)i−1(nX − 1)i−1 dim Ak−1−i

=(nX − 2)
k∑

i=1

(−1)i−1(nX − 1)i−1 dim Ak−i.

We now consider the second statement. We first prove for 1 ≤ k < �,

dim Zk(a) =
k∑

i=1

(−1)i−1(nX − 1)i dim Ak−i. (∗)
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For k = 1, (*) holds since dimZ1(a) = nX − 1. Fix 1 < k < � and
suppose (*) holds for k − 1. Then

dim Zk(a) =(nX − 1) rank dk−1

=(nX − 1)(dimAk−1 − dim Zk−1(a))

=(nX − 1) dim Ak−1

− (nX − 1)
k−1∑
i=1

(−1)i−1(nX − 1)i dimAk−1−i

=
k∑

i=1

(−1)i−1(nX − 1)i dimAk−i.

Hence, (*) is true for all 1 ≤ k < �− 1 and we use it to prove the second
statement of the theorem.

Indeed, we have the following which proves the theorem:

dimH�(A(A), a) =dim A� − rank d�−1

=dim A� − dim A�−1 + dimZ�−1(a)
=dim A� − dim A�−1

+
�−1∑
i=1

(−1)i−1(nX − 1)i dim A�−1−i

=dim A� +
�∑

i=1

(−1)i(nX − 1)i−1 dim A�−i. �

Definition 4.12. The Hilbert series of a graded algebra A over K is
defined to be

H(A, t) :=
∞∑
i=1

(dimK Ai)ti.

Theorem 4.13. Let A and X ∈ L(2,A) be as in Condition A. Let
0 �= a ∈ A1(A) be concentrated under X. We can compute the Hilbert
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series for H∗(A(A), a) in terms of the Hilbert series for A(A) as follows:

H(H∗(A(A), a), t) =
t(nX − 2)

1 + t(nX − 1)
H(A(A), t).

Proof. In the proof of Theorem 4.11, we have for 1 ≤ k < �

dimHk(A(A), a) = (nX − 2) dimAk−1 − (nX − 1) dim Hk−1(A(A), a).

So, the series holds for k < �.

We now check for k = �. For k < �, we have

dimZk(a) =(nX − 1) rank dk−1

=(nX − 1)(dimAk−1 − dimZk−1(a)).

Hence, we may use the series
∑∞

i=0

t(nX − 1)
1 + t(nX − 1)

H(A(A), a) to compute

dim Zk(a) for k < �. Since dim H�(A(A), a) = dim A� − dim A�−1 +
dim Z�−1, we find dimH�(A(A), a) by taking the coefficient of t� in the

series (1 + t)H(A(A), t) +
t(nX − 1)

1 + t(nX − 1)
H(A(A), a). By obtaining a

common denominator and adding, we have dimH�(A(A), a) is given by
the coefficient of t� in the series

t(nX − 2)
1 + t(nX − 1)

H(A(A), t)

as required. ��

5. The Ideal Z(a) = ⊕Zk(a) for A quadratic

We now consider Z(a) = ⊕Zk(a) as an ideal of A(A). We endeavor
to show that if A and X ∈ L(2,A) are as in Condition A with a con-
centrated under X, then we have Zk(a) is generated by Z1(a) (that is,
Zk(a) = Ak−1(A) · Z1(a)) except in the top dimension �.

We recall the following description of Z1(a) from Libgober and
Yuzvinsky [9].
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Theorem 5.1. Let A be a central hyperplane arrangement. Let x ∈
A1(A) with x =

∑n
i=1 xiai. Then x ∈ Z1(a) if and only if the following

conditions hold:

1. For every Y ∈ L(2) with |Y | > 2 and a(Y ) �= 0 but
∑

i∈Y λi = 0,
we have

∑
i∈Y xi = 0.

2. For every other Y ∈ L(2) and every pair i < j from Y, we have
λixj − λjxi = 0.

We use this description to prove the following lemma.

Lemma 5.2. Let A be a central hyperplane arrangement. Let X =
{1, ..., nX} be in L(2,A). Let 0 �= a ∈ A1(A) be concentrated under X.
If z, w ∈ Z1(a) and both nonzero, then z ∈ Z1(w) and dim(z ·A1(A)) =
dim(w · A1(A)).

Proof. Let z, w ∈ Z1(a). It will suffice to show z ∈ Z1(w). We show
conditions (1) and (2) above hold for any Y ∈ L(2,A). Let Y ∈ L(2)
with Y = {i1, ..., ik}. We consider the following three cases.

Case 1. Suppose Y = X. If |X| > 2, then since z, w ∈ Z1(a),
a(X) �= 0, and

∑
i∈X λi = 0, condition (1) gives

∑
i∈X zi =

∑
i∈X wi = 0

as required. If |X| = 2, then condition (2) together with a(X) �= 0 gives
z1 = −z2 and w1 = −w2; hence, z1w2 − z2w1 = 0 as required.

Case 2. Suppose i1 > nX . In this case, we have a(Y ) = 0. It will
suffice to show z(Y ) and w(Y ) are both zero. Since a �= 0, we may
assume without loss of generality that λ1 �= 0. Consider the element
Wj ∈ L(2) which contains {H1, Hij}. Then a(Wj) �= 0 and

∑
i∈Wj

λi =
λ1 �= 0. By condition (2), we have zij = wij = 0 for all 1 ≤ j ≤ k.

Case 3. Suppose i1 ∈ X. Then
∑

i∈Y λi = λi1 . If λi1 �= 0, then by
condition (2), zij , wij = 0 for all j > 1. Hence, zijwim − zimwij = 0 for
any Him , Hij ∈ Y . If λi1 = 0, then we follow the same approach as Case
2 to obtain z(Y ) and w(Y ) are linearly dependent. In particular, assume
λ1 �= 0. Then consider Wj as defined previously, noting W1 = X. We
have zij = wij = 0 for all 2 ≤ j ≤ k. Hence, z(Y ) and w(Y ) are linearly
dependent. The lemma now follows. ��
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Lemma 5.3. Let A be a central hyperplane arrangement. Let X ∈
L(2,A) with X = {1, ..., nX}. Let 0 �= a ∈ A1 be concentrated under
X. Assume λ1 �= 0. Then Z1(a) has a basis given by {a1 − ak} for
2 ≤ k ≤ nX .

Proof. By straightforward computation and the assumption
nX∑
i=1

λi = 0,

we have that a1 − ak ∈ Z1(a) for 2 ≤ k ≤ nX . Indeed, we compute

a · (a1 − ak) =(
nX∑
i=1

λiai)(a1 − ak)

= −
nX∑
i=2

λia1i −
∑
i<k

λiaik +
∑

k<i<nX

λiaki.

Since aik = a1k − a1i and aki = a1i − a1k, we substitute and have

a · (a1 − ak) = −
nX∑
i=1

λia1k

=0.

Obviously, {a1 − ak : 2 ≤ k ≤ nX} is a set of linearly independent
elements from A1(A). Let z ∈ Z1(a). By the proof of Lemma 5.2, we
have zi = 0 for any i > nX . Moreover,

∑nX
i=1 zi = 0 implies z is a linear

combination of {a1 − ak : 2 ≤ k ≤ nX}. ��

Theorem 5.4. Let A be a central hyperplane arrangement. Let X ∈
L(2,A) so that X = {1, ..., nX}. Let 0 �= a ∈ A1(A) be concentrated in
X ∈ L(2,A). We have the following description of Z1(a):

Z1(a) =
{ n∑

i=1

xiai : xj = 0 for j /∈ X,
n∑

i=1

xi = 0
}

Proof. This follows immediately from Lemma 5.3. ��

Lemma 5.5. Let A be a central hyperplane arrangement. Let X ∈
L(2,A) with X = {1, ..., nX}. Let 0 �= a ∈ A1(A) be concentrated under
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X. Let zi, zk be basic elements of Z1(a) as given in Lemma 5.3. We
have A1(A)zi ∩ A1(A)zk = 0.

Proof. Suppose zi = a1 − ai and zk = a1 − ak. Let γ ∈ A1(A). Then by
computation

ziγ =
( nX∑

j=1

γj

)
a1i +

∑
j>nX

γja1j −
∑

j>nX

γjaij .

So, for ziγ = zkσ with γ, σ ∈ A1(A), we have
( nX∑

j=1

γj

)
a1i +

∑
j>nX

γja1j −
∑

j>nX

γjaij =

( nX∑
j=1

σj

)
a1k +

∑
j>nX

σja1j −
∑

j>nX

σjakj .

Since i �= k,
∑nX

j=1 γj =
∑nX

j=1 σj = 0. Since i �= k and nX < j ≤ n, akj

and aij are distinct basic elements of A2(A); this forces σj = γj = 0 for
nX < j ≤ n. By Theorem 5.4, this implies γ, σ ∈ Z1(a) as required. ��

Theorem 5.6. Suppose A and X ∈ L(2,A) satisfy Condition A. Let
a ∈ A1(A) be a nonzero element concentrated under X. We have Z2(a)
is generated by Z1(a), i.e. Z2(a) = A1(A) · Z1(a).

Proof. We follow the argument given in Theorem 4.9 and compute

dimZ2(a) = (nX − 1)(n − nX) + nX − 1.

By using Lemma 5.2 and Lemma 5.5, we compute dimA1(A) · Z1(a) to
be

(nX − 1)(n − nX + 1).

Since these two quantities are equal and we have the containment A1(A)·
Z1(a) ⊆ Z2(a), the result now follows. ��

Lemma 5.7. Suppose A and X ∈ L(2,A) satisfy Condition A. Let
� ≥ 3. Let a ∈ A1(A) be a nonzero element concentrated under X. Let
	 ∈ Bk for k < �. Suppose γa� ∈ Zk(a) for some γ ∈ K. If j1 > nX , then
γ = 0.
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Proof. Suppose j1 > nX . Since A is quadratic, aα� ∈ Bk+1 for any
α ∈ X. Since γa� ∈ Zk(a), we must have γ = 0. ��

Lemma 5.8. Suppose A and X ∈ L(2,A) satisfy Condition A. Let
a ∈ A1(A) be a nonzero element concentrated under X. Let 	 ∈ Bk

for 2 ≤ k < �. Suppose a� ∈ Zk(a). If j1 = 1 and j2 ∈ X, then
a� ∈ A1(A) · Z1(a).

Proof. Without loss of generality, we may assume λ1 �= 0. Suppose
j1 = 1 and j2 ∈ X. Then (a1 − aα)a1j2 = 0 for all 2 ≤ α ≤ nX . Hence,
a1j2 ∈ Z2(a), and by Theorem 5.6, Z2(a) is generated by Z1(a). Thus,
a� ∈ A1(A) · Z1(a). ��

Lemma 5.9. Suppose A and X ∈ L(2,A) satisfy Condition A. Let

0 �= a ∈ A1(A) be concentrated under X. Let 	′ ∈ Bk−1 with 	′∩X = ∅.
For k < �, if

∑nX
α=1 γαa

α�′ ∈ Zk(a) with γα ∈ K, then
∑nX

α=1 γαa
α�′ ∈

Ak−1(A) · Z1(a).

Proof. Suppose 	 ∩ X �= ∅ with j1 ∈ X and j2 �∈ X. Then 	′ :=
{j2, ..., jk} is in Bk−1. Since A is quadratic, we have a

α�′ ∈ Bk for
any α ∈ X. Assume λ1 �= 0. By Lemma 5.3, we may express a as

a =
nX∑
α=2

cα(a1 − aα). By computing,

aa� =
( nX∑

α=2

cα

)
a1� −

nX∑
α=2

cαaα�j.

But α	 begins with αj1 for 2 ≤ α ≤ nX . For j1 = 1, we have

aa� =
nX∑
α=2

cαa
1α�′.

If j1 �= 1, then aα� is not basic and we have aα� = a1� − a
1α�′ ; but we

still obtain

aa� =
nX∑
α=2

cαa
1α�′.
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Fix 	′ ∈ Bk−1 with 	′ ∩ X = ∅. For any α ∈ X, we have α	′ ∈ Bk. Let

γα ∈ K so that
nX∑
α=1

γαa
α�′ ∈ Zk(a) as in the assumption of the lemma.

We have

a

( nX∑
α=1

γαa
α�′

)
=

nX∑
α=1

γα

( nX∑
i=2

cia1i�′

)
=

nX∑
i=2

( nX∑
α=1

γα

)
cia1i�′

Since
nX∑
α=1

γαa
α�′ ∈ Zk(a), we have

nX∑
α=1

γα = 0. Hence,
nX∑
α=1

γαaα ∈ Z1(a)

by Theorem 5.4, so
nX∑
α=1

γαa
α�′ is generated by Z1(a). ��

Theorem 5.10. Suppose A and X ∈ L(2,A) satisfy Condition A.
Suppose � ≥ 3. Let a ∈ A1(A) be a nonzero element concentrated under
X. We have Zk(a) is generated by Z1(a) for k < �.

Proof. Theorem 4.10 shows Z2(a) is generated by Z1(a). Let γ ∈ Zk(a)
for k ≥ 3. Then γ =

∑
γ�a� for 	 ∈ Bk. We now decompose γ by

considering different types of 	. There are three possibilities for 	.

1. Suppose j1 > nX . Then by Lemma 5.8, we have γ� = 0.
2. Suppose j1 = 1 and j2 ∈ X. Then by Lemma 5.9, we have a� is

generated by Z1(a).
3. Suppose j1 ∈ X and j2 �∈ X. Then 	′ = {j2, ..., jk} is in Bk−1. We

have
nX∑
α=1

γ
α�′aα�′ ∈ Zk(a).

By Lemma 5.9, this implies
nX∑
α=1

γ
α�′aα�′ is generated by Z1(a).

Since each summand of γ is generated by Z1(a), this implies γ
is generated by Z1(a) ��

We provide examples demonstrating the results of the previous two
sections and examples where dropping hypotheses cause the results to
fail.
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Example 5.11. Let A be the arrangement given by the functionals
{x, x − y, x + y, y, x − z, x + z, y + z, y − z, z}; order the hyperplanes as
they are written. Then A is supersolvable and the order respects the
supersolvable structure. Let a be concentrated under X = {1, 2, 3, 4} ∈
L(2,A). The indices for the broken circuit basis for A2(A) are

{12, 13, 14, 15, 16, 17, 18, 19, 25,26, 27, 28, 29, 35, 36, 37, 38, 39, 45, 46,

47, 48, 49}.
Checking Theorem 4.13, we see

t(nX − 2)
1 + t(nX − 1)

H(A(A), t) =
2t

1 + 3t
(1 + 9t + 23t2 + 15t3)

=(2t)(t + 1)(5t + 1)

=10t3 + 12t2 + 2t

We now check the dimensions of Hk(A(A), a) by computing

dimZ1(a) = 3 and rank d1 = 6,

dim Z2(a) = 18 and rank d2 = 23 − 18 = 5.

Therefore, the dimensions of Hk(A(A), a) match the Hilbert series above.

Moreover, dimZ2(a) = 18 and dimA1 · Z1(a) = 18, so Z2(a) = A1 ·
Z1(a).

Example 5.12. However, if A is the arrangement given by the func-
tionals {x, x−y, x+y, y, x−z, x+z, y+z, y−z, z} with the hyperplanes
ordered as they are written, then the indices for the broken circuit basis
for A2(A) are

{12, 13, 14, 15, 16, 17, 18,19, 24, 25, 26, 27, 28, 29, 34, 35, 36, 37,

38, 39, 48, 59, 67}.
We also have A is not quadratic under this order because
S = {H1, H2, H4, H8} is minimally dependent but |{H2, H4, H8}| �= 2.
Notice the element H1 ∩ H2 ∩ H3 ∈ L(A) is not modular. Even though
A is supersolvable arrangement, we show the formulas derived earlier do
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not hold in this case because the order does not respect the supersolv-
able structure. Let a be concentrated under {1, 2, 3} ∈ L(2,A). Then
dim Z2(a) = 17 and rank d1 = 7, so dimZ2(a) �= 2 · rank d1.

Moreover, dimZ2(a) = 17 and dimA1 · Z1(a) = 14, so Z2(a) �= A1 ·
Z1(a).
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