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Abstract

In the context of insurance mathematics, we study the renewal
properties of the so-called aggregate claim amount for the non-dis-
counted and the discounted case. For these models, we set integral
equations for the distribution function. Additionally we mention how
the integral equation may be used to find an approximation of the
distribution.
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Resumen

En el ámbito de matemáticas actuariales, estudiamos las propiedades
de renovación del llamado monto agregado de reclamaciones en los ca-
sos no-descontado y descontado. Se establecen ecuaciones integrales
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para la función de distribución de estos modelos. Adicionalmente
mencionamos como usar estas ecuaciones integrales para encontrar
aproximaciones numéricas de la distribución.

Palabras clave: monto agregado de reclamaciones, ecuación integral de
Volterra, proceso de descuento.
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1 Introduction

The classical model for the aggregate claim amount in an insurance com-
pany is given by the following random sum

Z =

{
Zt =

Nt∑

i=1

Xi, t ≥ 0

}
, (1)

where X1,X2, . . . is a sequence of independent identically distributed (i.i.d.)
positive random variables (r.v.s), which represent the amount of the claim,
and N = {Nt, t ≥ 0} is a renewal process, i.e.

Nt = max

{
k :

k∑

i=1

τi ≤ t

}
, (2)

with τ1, τ2, . . . a sequence of i.i.d. positive r.v.s, usually called “interarrival
times” (they represent the time between claims). We have the convention
that Zs = 0 for s < τ1, i.e. before the first jump the process is 0.

Using probabilistic arguments, one can easily find an integral equation
for the distribution of Zt. This integral equation classifies as a renewal type
equation, amply discussed and use in applied probability. Also, there are
numerous papers dealing with the numerical treatment of this equation.

Another popular model similar to (1) is the discounted aggregate claim
amount, which takes into account the monetary present value of the cash
flow. The model is given as

Z(δ) =

{
Z

(δ)
t =

Nt∑

i=1

Xie
−δTi , t ≥ 0

}
, (3)

where Nt is defined as in (2), Ti =
∑i

j=1 τj (arrival times), X1,X2, . . . are
i.i.d. positive r.v.s., and δ > 0 is the continuous time interest rate. In this
paper we find an integral equation of Volterra type for Z

(δ)
t .

Model (1) is well known, and it comes across in a great variety of
applications; some references for this model are [1, 6]. This random sum
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belongs to a general class of random summations known as continuous-
time random walks, CTRWs for short (see for instance [7, 10]). Notice
that process Z is also called renewal-reward process (see [10]). There is a
vast literature for this kind of processes, and when the interarrival times are
exponentially distributed, process Z is simply a compound Poisson process.
By the renewal properties of the process, it is possible to derive an integral
equation for the density of CTRWs, which is termed the master equation
in Scalas et al [8]. Such equation is in general of Volterra type, and thus it
becomes possible to solve it numerically by standard procedures. There are
available in the literature methods for solving Volterra integral equations
in two dimensions (see for example [3]). Othe related work is [9], where
it is study the so-called ruin probabilities by means of a Thorin integral
equation.

2 The non-discounted sum

We are interested in finding the distribution of Zt, model (1):

F (t, z) := P (Zt ≤ z). (4)

Denote by fX(x) and fτ (t) the density functions of X1 and τ1, respectively.
We also denote by fW (w | A) the density of the r.v. W conditioned to the
event A.

The following explanation is instructive for deriving integral equations
for the density of Zt, and also for Z

(δ)
t .

Given the quantity τ1 + . . . + τn = T for any fixed n ≥ 1, then

NT+t − n
d= Nt, t ≥ 0. (5)

This means that the process is renewed at the very moment of a jump.
In general, the process Z is not a Markov process and it does not have
independent increments, but by assuming that X1,X2, . . . are i.i.d. and
that

∑n
i=1 Xi = z is given, it holds that

ZT+t − z
d= Zt, t ≥ 0. (6)

Here d= stands for equality in distribution.

Proposition 1 Function F satisfies the following Volterra linear integral
equation in two dimensions:

F (t, z) = P (τ1 > t) +
∫ t

0

∫ z

0
F (u,w)fX (z − w)fτ (t − u)dw du, (7)

for t ≥ 0 and z ≥ 0.
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Proof. The proof relies in the idea of splitting into independent events. In
this case it is convenient to think of two cases: when the first jump occurs
after time t, and when it occurs before. Thus, we have that

F (t, z) = P (Zt ≤ z | τ1 > t)P (τ1 > t) + P (Zt ≤ z | τ1 ≤ t)P (τ1 ≤ t). (8)

Notice that P (Zt ≤ z | τ1 > t) = 1, and we apply the law of total
probability to P (Zt ≤ z | τ1 ≤ t). Equation (8) becomes

F (t, z) = P (τ1 > t)+

+P (τ1 ≤ t)
∫ t

0

∫ ∞

0
P (Zt ≤ z | τ1 = u,X1 = w)fX(w)fτ (u | τ1 ≤ t)dw du.

Now, we split the last double integral as follows,

∫ t

0

∫ ∞

0
P (Zt ≤ z | τ1 = u,X1 = w)fX(w)fτ (u | τ1 ≤ t)dw du =

∫ t

0

∫ z

0
P (Zt ≤ z | τ1 = u,X1 = w)fX(w)fτ (u | τ1 ≤ t)dw du+

∫ t

0

∫ ∞

z
P (Zt ≤ z | τ1 = u,X1 = w)fX(w)fτ (u | τ1 ≤ t)dw du.

Clearly, if X1 > z then P (Zt ≤ z) = 0, so the second part is zero. Now
we use the renewal property on the first part to obtain

∫ t

0

∫ z

0
P (Zt−u ≤ z − w | τ1 = u,X1 = w)fX(w)fτ (u | τ1 ≤ t)dw du =

∫ t

0

∫ z

0
F (t − u, z − w)fX(w)

fτ (u)
P (τ1 ≤ t)

dw du,

substituting this into (8) yields (7) after a change of variables.

Example. Suppose that X1 ∼ exp(µ) and τ1 ∼ exp(λ), i.e. process
Z is a Compound Poisson process with exponential jumps. Then we can
work out the probabilities in equation (7) to obtain

F (t, z) = e−λt +
∫ t

0

∫ z

0
λe−λ(t−u)µe−µ(z−w)F (u,w)dw du. (9)

Solving analytically these integral equations is not an easy task, thus
it seems natural appealing to numerical methods.
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2.1 A numerical example

We solve numerically equation (9) and we also carry out some simulations
in order to have a comparison.

We have taken λ = 1 and µ = 1 in equation (9). We made a grid of the
region D = [0, 1]× [0, 1] by taking a partition of 60 equidistant subintervals
on both axis, then we solve iteratively. Table 1 shows the approximated
values of F (t, z) at specific nodes.

t\z 0.1 0.5 0.7 1
0.1 0.913373 0.940521 0.950717 0.962831
0.5 0.635487 0.731907 0.770276 0.817963
0.7 0.529976 0.643721 0.690256 0.749334
1 0.403539 0.52919 0.582708 0.652746

Table 1: F (t, z).

In order to check the obtained values, additionally, we carry out esti-
mates for F (t, z) on the nodes of Table 1 by means of simulation. That is,
we run 100, 000 paths for the process Zt for 0 ≤ t ≤ 1, then we calculate
the proportions F (t, z) for t = {.1, .5, .7, 1} and z = {.1, .5, .7, 1}. The
results are in Table 2 and can be compared with those ones of Table 1.

3 Discounted random sums

Now, we are interested in calculating the probability distribution of Z
(δ)
t ,

defined in (3). For this model, we use the following notation:

Fδ(t, z) = P (Z(δ)
t ≤ z).

Proposition 2 The following integral equation holds for Fδ(t, z):

Fδ(t, z) = P (τ1 > t)+

t\z 0.1 0.5 0.7 1
0.1 0.91326 0.94076 0.95076 0.96332
0.5 0.6341 0.73235 0.77147 0.82081
0.7 0.53114 0.64576 0.69151 0.75113
1 0.40435 0.52928 0.58306 0.65277

Table 2: F (t, z).
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∫ t

0

∫ zeδ(t−u)

0
Fδ(u,w)fX1(zeδ(t−u) − w)fτ1(t − u)dw du (10)

Proof. Analogously to Proposition 1 we have

Fδ(t, z) = P (Z(δ)
t ≤ z | τ1 > t)P (τ1 > t) + P (Z(δ)

t ≤ z | τ1 ≤ t)P (τ1 ≤ t).

Notice that P (Z(δ)
t ≤ z | τ1 > t) = 1. Now, we treat P (Z(δ)

t ≤ z | τ1 ≤ t)
separately,

P (Z(δ)
t ≤ z | τ1 ≤ t) =

∫ t

0
P (Z(δ)

t ≤ z | τ1 = u)f(τ1 |τ1≤t)(u)du (11)

=
∫ t

0

∫ ∞

0
P (X1e

−δτ1 + e−δτ1

Nt∑

i=2

Xie
−δT+

i ≤ z | τ1 = u,X1 = w) ×

×fX1(w)fτ1(u | τ1 ≤ t)dw du,

where T+
i =

∑i
j=2 τj. Notice that if w > zeδu, the probability inside the

double integral is naught. This is because once the first claim surpasses the
future value of z, the total discounted amount will be above z thereafter,
because the process is increasing. Therefore, equation (11) resumes into

∫ t

0

∫ zeδu

0
P (we−δu + e−δu

Nt∑

i=2

Xie
−δT+

i ≤ z)fX1(w)fτ1(u | τ1 ≤ t)dw du =

(we now apply the renewal property)

∫ t

0

∫ zeδu

0
P (

Nt−u∑

i=1

Xie
−δTi ≤ zeδu − w)fX1(w)

fτ1(u)
P (τ1 ≤ t))

dw du =

∫ t

0

∫ zeδu

0
Fδ(t − u, zeδu − w)fX1(w)

fτ1(u)
P (τ1 ≤ t)

dw du,

which can be written as in (10) after a change of variable.

Example. Assume that X1 ∼ exp(µ) and τ1 ∼ exp(λ), as in the
previous example, one can write down a more explicit relation:

Fδ(z, t) = e−λt +
∫ t

0

∫ zeδ(t−u)

0
λe−λ(t−u)µe−µ(z−weδ(t−u))Fδ(w, u)dw du.

(12)
For equation (12), one may use a numerical method to solve it.
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