
Revista de Matemática: Teoŕıa y Aplicaciones 2009 16(1) : 148–158

cimpa – ucr issn: 1409-2433

the bps preconditioner on beowulf cluster

Oscar Salas-Huertas∗ Daniele Marazzina† Sergio Rovida‡

Giovanni Sacchi§ Simone Scacchi¶

Recibido/Received: 20 Feb 2008 — Aceptado/Accepted: 9 Oct 2008

Abstract

This work presents the implementation on a Linux Cluster of a parallel precondi-
tioner for the solution of the linear system resulting from the finite element discretiza-
tion of a 2D second order elliptic boundary value problem. The numerical method,
proposed by Bramble, Pasciak and Schatz, is developed using Domain Decomposition
techniques, which are based on the splitting of the computational domain into sub-
regions of smaller size, enforcing suitable compatibility conditions. The Fortran code
is implemented using PETSc: a suite of data structures and routines devoted to the
scientific parallel computing and based on the MPI standard for all message-passing
communications. The main interest of the paper is to present an efficient and portable
code for the solution of large-scale linear systems and to investigate how the architec-
tural aspects of the cluster influence the performance of the considered algorithm. We
provide an analysis of the execution times as well as of the scalability, using as test
case the classical Poisson equation with Dirichlet boundary conditions.

Keywords: Domain Decomposition, Parallelization, Partial Differential Equation, Pre-
conditioner, Beowulf Cluster.

Resumen

En este trabajo se presenta una implementación para Cluster Linux de un pre-
condicionador útil para resolver en forma eficiente sistemas lineales obtenidos de la
discretización por medio de elementos finitos de problemas de valor inicial 2D eĺıpticos

∗Department of Mathematics, Universidad Nacional, Heredia, Costa Rica. E-Mail:
oscar.salas@unipv.it.

†Department of Mathematics, Politecnico di Milano, Milan, Italy. E-Mail:
daniele.marazzina@polimi.it.

‡IMATI-CNR, Pavia, Italy. E-Mail: sergio.rovida@imati.cnr.it.
§IMATI-CNR, Pavia, Italy. E-Mail: gianni.sacchi@imati.cnr.it.
¶Department of Mathematics, University of Milano, Milan, Italy. E-Mail: simone.scacchi@unimi.it.

148

the bps preconditioner on beowulf cluster 149

de segundo orden. El método numérico implementado fue propuesto por Bramble, Pas-
ciak and Schatz, y en él se utiliza la técnica de Descomposición de Dominio, la cual se
basa en una división del dominio computacional en subregiones de dimensiones siem-
pre más pequeñas, las cuales cumplen con condiciones apropiadas de compactibilidad.
El código fue implementado en Fortran usando la libreŕıa PETSC: una colección de es-
tructuras y funciones, desarrolladas para el Cálculo Cient́ıfico en Paralelo y basada en
el estándar MPI para administrar la comunicación y el cambio de mensajes. Nuestro
objetivo en este trabajo es demostrar la eficiencia y portabilidad del código cuando
se emplea en la solución de grandes sistemas y además analizar cuál es la influencia
que tiene la arquitectura del cluster en las prestaciones del algoritmo considerado.
Nosotros presentamos una análisis de los tiempos de ejecución obtenidos aśı como
de la escalabilidad, usando como problema test la ecuación clásica de Poisson con
condiciones de Dirichlet en la frontera.

Palabras clave: Descomposición de Dominio, Paralelización, Ecuaciones a las Derivadas
Parciales, Precondicionador, Beowulf Cluster.

Mathematics Subject Classification: 65Y05.

1 Introduction

The “grand challenge” problems and the development in the last two decades of paral-
lel computing platforms have determined a considerable increase of interest in Domain
Decompositions methods (DD), which offer the possibility to exploit their intrinsic ma-
thematical parallelism in a very natural manner. They are flexible and efficient methods,
i.e. they provide a localized treatment of complex geometries and, in general, optimal
convergence rates. The main idea of DD methods is to split a differential problem stated
on a computational domain into coupled subproblems stated on smaller and simpler sub-
domains forming a partition of the original domain. Much of the work in Domain Decom-
position relates to the selection of subproblems in order to build a fast iterative procedure
to solve the original problem: this means that DD methods provide efficient and scalable
preconditioners (for further details see [7]).

The BPS (Bramble, Pasciak and Schatz) algorithm, proposed in [2], provides an opti-
mal preconditioner for the linear systems arising from the finite element discretization of
two dimensional second order elliptic boundary value problems.

The aim of this work is to present a parallel implementation on Beowulf clusters of
the BPS method, discussing both the implementation strategies and the performance of
the code. Cluster is a widely-used term meaning independent computers, combined into a
unified system through software and networking, and typically used for High Performance
Computing (HPC) to provide greater computational power than a single computer. Be-
owulf Clusters are scalable performance clusters based on commodity hardware, on a
private system network, with open source software (Linux) infrastructure.

Our implementation allows to use the code on a wide range of cluster platforms for
solving large-scale linear systems, avoiding the need of more complex and difficult to
program HPC architectures. The parallelization and the portability of the code are based
on the PETSc library (see [1]).

150O.Salas - D.Marazzina - S.Rovida - G.Sacchi - S.Scacchi Rev.Mate.Teor.Aplic. (2009) 16(1)

2 The BPS preconditioner

We summarize the construction of the BPS preconditioner, choosing as model problem
the Laplacian operator on a 2D polygonal region and the Conjugate Gradient method
as iterative solver. A full description and analysis of the algorithm can be found in the
original paper [2].

2.1 The model problem

Let Ω ⊂ R2 be a polygonal domain and let f ∈ L2(Ω) be a given function, we consider
the classical model problem

−∆u = f in Ω, u = 0 on ∂Ω. (1)

A finite element approximation (see [4]) of this problem leads to the solution of the asso-
ciated linear system

A u = b. (2)

Iterative methods are widely used to solve systems of linear equations coming from
large-scale problems of engineering and scientific computing. Such methods are partic-
ularly suitable for large sparse matrices, like those arising in the finite element or finite
difference approximations of partial differential equations. For the solution of (2), we
choose the most popular iterative scheme: the Conjugate Gradient (CG) algorithm (see
[6]).

In general the coefficient matrix A is not well-conditioned, so the application of the
CG algorithm will not be a very efficient choice. In fact an iterative solver is much more
efficient and competitive when it is associated with an appropriate preconditioner which
improves the condition number of the matrix and provides a satisfactory convergence
rate. Preconditioning techniques consist of choosing a positive-definite symmetric matrix
M that approximate A, but which is easier to invert. Thus the idea is to solve (2) by
solving M 1Au = M 1b.

We consider the BPS algorithm proposed in [2], that can be interpreted (see [3]) as
a generalized block Jacobi preconditioner for the Schur system associated to (2). At
each Preconditioned Conjugate Gradient (PCG) iteration, the preconditioning step is per-
formed with a matrix-free approach, without fully assembling the matrix M or its inverse.
The following sections describe the BPS preconditioner introducing its associated bilinear
form.

2.2 The preconditioner

Let Ω be a rectangular domain, we consider a Cartesian grid ΩH (coarse mesh, see Figure
1) and we denote with {Ωk}N

k=1 its elements. We also denote with vi the vertices and with
Γij the side of the grid with endpoints vi and vj. Furthermore we consider a structured
triangulation T (fine mesh, see Figure 1) such that the sides of ΩH are also mesh-lines
of T . The triangulation Tk :={T ∈ T s.t. T ⊂ Ωk} clearly is a structured triangulation of

the bps preconditioner on beowulf cluster 151

Ω1 Ω2

Ω3 Ω4

Figure 1: Coarse (left) and Fine (right) Mesh

Ωk.
We now consider the following finite-dimensional spaces:

Sh =
{
vh ∈ H1(Ω) such that vh|T ∈ P1(T) ∀ T ∈ T

}
,

S0
h =

{
vh ∈ H1

0 (Ω) such that vh|T ∈ P1(T) ∀ T ∈ T
}

,

and, for each k = 1, · · · , N , we define

Sh(Ωk) =
{
vh ∈ H1(Ωk) such that vh|T ∈ P1(T) ∀ T ∈ Tk

}
,

S0
h(Ωk) =

{
vh ∈ H1

0 (Ωk) such that vh|T ∈ P1(T) ∀ T ∈ Tk

}
,

where P1 denotes the polynomial functions of degree 1.
The idea proposed in [2] is the following:
1. First of all we introduce the bilinear form Ak(U, V) :=

∫
Ωk

∇U · ∇V dx ∀U, V ∈ S0
h

and we decompose the functions in S0
h as follows:

W = Wp + Wh ∀ W ∈S0
h,

such that Wp ∈ ⊕N
k=1S

0
h(Ωk) and satisfies

Ak(Wp, φ) = Ak(W,φ), ∀ φ ∈ S0
h(Ωk), k = 1, · · · , N.

Notice that Wp is determined on Ωk by the values of W on Ωk. It is clear that

Ak(Wh, φ) = 0, ∀ φ ∈ S0
h(Ωk), k = 1, · · · , N.

Thus on each Ωk, W is decomposed into a function Wp which vanishes on ∂Ωk and a
function Wh ∈ Sh(Ωk) which satisfies the above homogeneous equations and has the same
boundary values as W.

2. For all k = 1, · · · , N , we decompose Wh ∈ Sh(Ωk) into Wh = We + Wv, with
We = 0 at all the vertices of Ωk and Wv|Γij

∈ P1(Γij) ∀ Γij ∈ ∂Ωk with the same
values as W at the vertices.

The bilinear form associated to the preconditioner M reads as follow

M(W,φ) = A(Wp, φp) + 2
∑

Γij

∫

Γij

l̃0
1/2

We φe ds

+ 2
∑

Γij

(Wv(vi) − Wv(vj))(φv(vi) − φv(vj)), (3)

152O.Salas - D.Marazzina - S.Rovida - G.Sacchi - S.Scacchi Rev.Mate.Teor.Aplic. (2009) 16(1)

with A(U, V) :=
∑N

k=1 Ak(U, V) and
∫
Γij

l̃0UV ds :=
∫
Γij

U ′V ′ds, where the prime denotes
differentiation with respect to arc length s along Γij.

2.3 The algorithm

We outline the steps in order to solve the following problem:

given g ∈ L2(Ω), find W ∈ S0
h : M(W,φ) =

∫

Ω
g φ dx ∀ φ ∈ S0

h. (4)

Due to the algorithm below, the action of M−1 (i.e., the value of M−1g for any given
vector g) could be evaluated, without forming explicitly the matrix M or its inverse.

STEP 1. If φ ∈ S0
h(Ωk), then from (3) we obtain

M(W,φ) = Ak(Wp, φp) = Ak(Wp, φ);

thus, if we consider (4), we can find Wp solving on each subdomain Ωk the following
homogeneous Dirichlet boundary problems

Ak(Wp, φ) =
∫

Ω
g φ dx ∀ φ ∈ S0

h(Ωk),

for any k = 1, · · · , N . These problems are independent and can be solved in parallel.
STEP 2. For any Γij , we denote with Se(Γij) the space of functions of S0

h(Ω) that
vanish on the interior mesh points of every Ωk, k = 1, · · · , N , and on all the other edges
Γrs and, in particular, at the endpoints of Γij. If φ ∈ Se(Γij), then

M(W,φ) = A(Wp, φ) + 2
∫

Γij

l̃0
1/2

We φe ds,

thus we find We|Γij
by solving

2
∫

Γij

l̃0
1/2

We φe ds =
∫

Ω
g φ dx − A(Wp, φ) ∀φ ∈ Se(Γij). (5)

In order to solve these problems we do not need to compute the operator l̃0
1/2

. In
fact, assume that there are n − 2 interior nodes on Γij and that φ̃l, l = 1, · · · , n − 2 are
the nodal basis functions for Se(Γij), then the eigenvalues and eigenvectors of the matrix

S = {Slm}n−2
l,m=1 with Slm :=

∫

Γij

l̃0
1/2

φ̃l φ̃m ds,

are well known (see [2]). Thus, if λ and Ψ are the eigenvalues and eigenvectors matrices,
respectively, it holds S−1 =Ψ−1λ−1Ψ and we can easily solve (5) and find We on Γij.

The one-dimensional problems on each edge are independent and can be solved in
parallel.

the bps preconditioner on beowulf cluster 153

STEP 3. We define Sv as the space of functions of S0
h which are linear polynomials

on each edge Γij and vanish on the interior nodes of Ωk, k = 1, · · · , N . If φ ∈ Sv, then

M(W,φ) = A(Wp, φ) + 2
∑

Γij

(Wv(vi) − Wv(vj))(φv(vi) − φv(vj)).

Therefore we find Wv on
⋃

Γij by solving for all φ ∈ Sv

2
∑

Γij

(Wv(vi) − Wv(vj))(φv(vi) − φv(vj)) =
∫

Ω
g φ dx − A(Wp, φ),

on the coarse mesh and then extending piecewise linearly to the edges.
This step and STEP 2 are independent, thus they could be done in parallel.
STEP 4. We find Wh by extending the values of Wv + We on

⋃
Γij to the whole

domain Ω solving

Ak(Wh, φ) = 0 ∀ φ ∈ S0
h(Ωk), Wh = Wv + We on ∂Ωk,

for any k = 1, · · · , N .
As in STEP 1, the Dirichlet boundary problems above can be solved in parallel.
STEP 5. We conclude computing W = Wp + Wh.

It has been shown in [2] that the preconditioned system has a condition number

K = O(1 + log2(H/h)), (6)

where H and h are the of the coarse mesh and the fine mesh, respectively. Therefore,
the BPS preconditioner is appropriate to solve large systems of equations on massively
parallel architectures, since the condition number depends weakly on the mesh spacing
and on the number of processors (see [3]).

3 Parallel implementation

We implement the BPS algorithm in Fortran90, using the PETSc library (see [1]), from
Argonne National Laboratory. This library, based on MPI, BLAS and LAPACK, offers
advanced data structures and routines well suited for parallel codes, from simple paral-
lel matrix and vector assembly routines, that allow the overlap of communication and
computation, to more complex linear and nonlinear equation solvers. The choice for the
numerical experiments of structured meshes allows us to take full advantage of the Dis-
tributed Arrays PETSc objects, which provide data structures suitable for the management
of communication between neighboring processors.

The algorithm massively involves scalar products and matrix-vector products. It is
therefore clear that the effectiveness of the code strongly depends on the way these al-
gebraic computations are carried out. For this reason and to benefit from the parallel
structure of the algorithm, we used PETSc library that optimally manages both the com-
munication among processors and the algebraic computational kernels [1].

154O.Salas - D.Marazzina - S.Rovida - G.Sacchi - S.Scacchi Rev.Mate.Teor.Aplic. (2009) 16(1)

We remind that the adopted strategy is to assign one processor to each subdomain.
The algorithm shows a high degree of parallelism, which can be described more in detail
as follows (see also Figure 2):

STEP 1 exhibits a parallelism of degree N equal to the number of subdomains. Each
processor solves one Dirichlet problem, corresponding to the solution of a linear
system with size equal to the number of the internal nodes in the related subdomain.

STEPS 2-3: STEP 2 shows a degree of parallelism equal to the number of the internal
edges. Each processor solves the problem related to the internal north and east edges
of the subdomain. The size of the problems associated to each processor is less or
equal to two times the number of internal nodes on the edges of the subdomain. With
this choice, STEP 2 requires N − 1 processors; therefore the remaining allocated
processor can concurrently solve STEP 3.

STEP 4 exhibits again a degree of parallelism equal to N as it consists of solving N
independent Dirichlet problems.

SP
Step 1 − compute W

Step 2 − compute W

Step 4 − compute W = W + W

Step 5 − compute W + W

Step 3 − compute W

B
P

S
P

re
co

nd
iti

on
er

SP

SP

p

h

e

h e v

v

p

Figure 2: The BPS Flow Chart

According to the above analysis, the procedure shows three synchronization points (SP).

• The first one is at the end of STEP 1, when the global solution vector of this step
is reconstructed. This vector is required to assemble the right hand side associated
with the problems to be solved in STEPS 2-3.

• The second one is at the end of STEPS 2-3, when the global solution vectors of
these steps are reconstructed. These vectors will be used to assemble the Dirichlet
boundary condition associated to the problem to be solved in STEP 4.

• The third one is at the end of STEP 4, when the reconstruction of the global solu-
tion’s vector is performed.

For further details on our implementation see [5].

the bps preconditioner on beowulf cluster 155

4 Numerical experiments

In this section we discuss some numerical results obtained considering (1) with f = 1 and
Ω = [0, 1] × [0, 1]. Numerical experiments have been carried out on the Beowulf cluster
“Ulisse” at the Department of Mathematics of the University of Milan and the Beowulf
cluster “Topsy” at IMATI-CNR, Pavia.
The experiments on Ulisse have been performed using PETSc 2.1.6 compiled with mpif90
and installed on the top of both mpich 1.2.5 and BLAS and LAPACK implementations pro-
vided with the Linux distribution. The experiments on Topsy have been performed using
PETSc 2.3.2 compiled with mpif90 and installed on the top of both mvapich-0.9.5-mlx1.0.3
and BLAS and LAPACK implementations provided with the acml 3.6.0 distribution.

A detailed analysis of both the numerical behavior and execution time and some con-
siderations on the scalability are provided.

4.1 Numerical behavior

In this section we discuss the results derived from the following numerical tests:

• Case A: we fix the number of degrees of freedom (d.o.f.) equal to 81 × 81 for each
subdomain and we increase the number of subdomains, so that the total number of
d.o.f. for the global problem increases as reported in Table 1;

• Case B: we fix the total number of d.o.f. equal to 241 × 241 of the global problem
and we increase the number of subdomains so that the number of d.o.f. for each
subdomain decreases as reported in Table 1.

Table 1: Number of d.o.f. for the global problem (A) and per subdomain (B).
subdomains 4 9 16 25 36 64

Case A 25921 58081 103041 160801 231361 410881
Case B 14641 6561 3721 2401 1681 961

In Table 2 we report the number of PCG iterations considering as stopping criteria the
l2-norm of the residual and as fixed tolerance 10−7. We see that in both the cases A
and B the number of iterations initially increases of about a factor 2 moving from 9
to 16 subdomains, but then it seems to remain stable and it is almost independent of
the number of subdomains, in agreement with the theory of BPS, as expected from the
condition number presented in (6).

Table 2: Number of iterations vs number of subdomains.
subdomains 4 9 16 25 36 64

Case A 12 13 24 24 28 28
Case B 12 13 23 22 26 27

156O.Salas - D.Marazzina - S.Rovida - G.Sacchi - S.Scacchi Rev.Mate.Teor.Aplic. (2009) 16(1)

4.2 Parallel behavior

In this section, we discuss the parallel performance of the code when two allocation policies
of the MPI processes on the computational nodes are used. More in detail, we analyze two
different scheduling strategies: the first one is defined allocating only one MPI process per
node; the second one is defined allocating all the possible MPI processes on each node.

Considering cluster Ulisse, we present the execution time obtained running both one
MPI process per node (1ppn) and two MPI processes per node (2ppn). Using cluster
Topsy, we implement a very similar strategies: the first scheduling allocates one or two
MPI processes per node (since each node has 2 processors and each processor 2 core, hence
this strategy consists in allocating 1 process per processor, considering also Operating
System overhead). The second scheduling allocates four MPI processes per node (4ppn).
This way we can present in Tables 3-6 comparable numerical tests.

The performance of both these scheduling strategies is discussed referring to the nu-
merical experiments previously described. From now on Case A1 (A2) means: number of
d.o.f. as in Case A and first (second) scheduling strategy.

The first scheduling strategy (Case A1 and B1) allows to use the whole memory on the
node for a single subdomain, assuming that we are the only users of the system. Thus it
is possible to deal with larger local problems. In this case the remaining CPU of the node
remain idle. On the other hand (Case A2 and B2), the second strategy allows to fully
exploit all the available computational resources of the node. This way the node memory
is shared for the solution of more subproblems.

In Tables 3-6 we report the total wall clock time (in seconds) for all the cases on both
Ulisse and Topsy. The first column (“proc”) contains the number of processors (i.e., the
number of subdomains), “tot” shows the total execution time spent by the algorithm, while
“init”, corresponds mainly to the time in which the coarse mesh and the fine mesh are
fixed and local vectors and matrices are initialized and assembled. In the fourth column
(“PCG”) we report the total time spent in the PCG loop, while in “bps” we report the
time of a single BPS iteration. Finally, the last column contains the number of iterations:
notice that the different numbers of iterations performed by the algorithm on Ulisse and
Topsy is due to the different solvers for the local problem used (Cholesky on Ulisse and
GMRES on Topsy).

Table 3: Case A - Execution times in secs on Ulisse
Case A1 Case A2

proc tot init PCG bps iter tot init PCG bps iter
4 20.00 12.85 5.93 0.49 12 28.36 20.85 6.23 0.52 12
9 22.41 13.57 6.43 0.49 13 - - - - -
16 32.82 16.77 12.08 0.49 24 36.20 21.16 12.64 0.52 24
25 35.68 17.29 14.11 0.53 24 - - - - -
36 - - - - - 65.32 32.66 17.56 0.57 28
64 - - - - - 88.66 32.56 19.40 0.59 28

the bps preconditioner on beowulf cluster 157

Table 4: Case A - Execution times in secs on Topsy.

Case A1 Case A2
proc tot init PCG bps iter tot init PCG bps iter

4 11.95 9.39 2.17 0.16 13 7.75 5.48 1.93 0.14 13
9 12.30 9.38 2.53 0.21 13 - - - - -
16 14.05 9.46 4.14 0.17 24 14.05 9.46 4.14 0.17 24
25 14.19 9.45 4.21 0.18 24 - - - - -
36 - - - - - 15.30 9.46 5.18 0.18 28

Table 5: Case B - Execution times in secs on Ulisse.
Case B1 Case B2

proc tot init PCG bps iter tot init PCG bps iter
4 102.20 71.98 27.47 2.28 12 148.07 116.61 28.43 2.36 12
9 22.41 13.57 6.43 0.49 13 - - - - -
16 11.29 5.23 4.66 0.18 23 15.13 8.43 4.89 0.19 23
25 9.70 2.80 2.08 0.08 22 - - - - -
36 - - - - - 22.19 6.57 1.60 0.05 26
64 - - - - - 22.19 5.41 0.94 0.03 27

Table 6: Case B - Execution times in secs on Topsy.

Case B1 Case B2
proc tot init PCG bps iter tot init PCG bps iter

4 38.42 28.19 9.45 0.73 14 56.66 44.54 11.24 0.93 14
9 8.49 5.72 2.09 0.15 13 - - - - -
16 4.29 2.76 1.16 0.05 23 4.50 2.77 1.26 0.05 23
25 2.30 1.05 0.54 0.02 22 - - - - -
36 - - - - - 1.59 0.49 0.53 0.02 26

In Table 3, the BPS time per iteration seems not to be affected by the number of sub-
domains: the small increase when more than 25 processors are used is due to the increase
of the communication required in STEPS 2-3. Similarly in Table 4 the BPS time per
iteration seems to be stable. We only notice an increase when 9 CPUs are used. There-
fore, considering Case A, the times reported in Tables 3-4, columns “PCG” and “bps”,
allow us to observe the good parallel scalability of the implementations: for instance, the
“bps” time remains stable when the number of subdomains increases. Similarly the times
reported in Tables 5-6 (related to the Case B) exhibit the good scalability of the algorithm.

Considering the initialization time (“init”), obtained running the code on the IBM
cluster Ulisse (see Tables 3-5), a big difference between the two scheduling criteria (1ppn,
2ppn) is displayed. This behavior is due to the contentions in the memory and cache
resources when two processors per node are allocated. The first scheduling (1ppn) appears

158O.Salas - D.Marazzina - S.Rovida - G.Sacchi - S.Scacchi Rev.Mate.Teor.Aplic. (2009) 16(1)

to be a good choice even if all the computing resources available in the node are not
exploited.
The same initialization phase on cluster Topsy (see Tables 4-6) seems not to be affected by
the scheduling criteria. The initialization times are more stable and this fact is arguably
due to the small size of the problem (max. 14641 d.o.f.) on each subdomain, with respect
to the total amount of memory on the node (8GB RAM). Nevertheless, further tests
have shown that with large problems (more than 1000000 d.o.f. of the global problem)
performances are reduced also on Topsy cluster, when more than one MPI process per
node is implemented.

5 Conclusions and future prospects

In this paper, we have studied the behavior of the two-dimensional BPS preconditioner on
two different Beowulf clusters, illustrating the numerical scalability of the algorithm (in
terms of PCG iterations) and the parallel scalability of our implementation (in terms of
the execution times). The results show that our code is an efficient and portable tool for
the solution of large-scale linear systems arising from the finite element discretization of
elliptic problems.

Further experiments could also be done considering other kinds of meshes, different
right hand sides and diffusion coefficients in order to deal with anisotropy and discontinu-
ities. Another issue to take under consideration is to improve the data storing strategy,
in order to reduce as much as possible the communication time required in STEPS 2-3.
Moreover another parallelization approach, beside the intrinsic mathematical parallelism
of the algorithm, could be exploited using a parallel solvers for the local problems.

References

[1] Balay, S.; Buschelman, K.; Gropp, W.D.; Kaushik, D.; Knepley, M.; McInnes, L.C.; Smith,
B.F.; Zhang, H. (2002) “PETSc users manual”, Technical Report ANL-95/11 – Revision 2.1.5,
Argonne National Laboratory, USA.

[2] Bramble, J.H.; Pasciak, J.E.; Schatz, A.H. (1986) “The construction of preconditioners for
elliptic problems by substructuring I”, Mathematics of Computation 47: 103–134.

[3] Carvalho, L.M.; Giraud, L.; Le Tallec, P. (1998) “Algebric two-level preconditioners for the
Schur complement method”, Technical Report TR/PA/98/18, CERFACS, France.

[4] Johnson, C. (1987) Numerical solution of partial differential equations by the finite element
method. Cambridge University Press, Cambridge.

[5] Marazzina, D.; Rovida, S.; Sacchi, G.; Salas; O.; Scacchi, S. (2006) “A parallel preconditioner
for 2D elliptic boundary value problems”, Technical Report 32-PV 2006, IMATI-CNR, Pavia.

[6] Saad, Y. (2003) Iterative Methods for Sparse Linear Systems (2nd edition). SIAM, Philadelphia.

[7] Toselli, A.; Widlund, O. (2005) Domain Decomposition Methods – Algorithms and Theory.
Springer-Verlag, Berlin Heidelberg, Germany.

