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Abstract

A new numerical scheme for solving transient pressure in a confined aquifer is
presented. It is based on the fundamental solution method (FSM) and it combines
free Green functions, superposition principle, and singular value decomposition (SVD)
method to obtain an efficient computational algorithm to approximate unsteady pres-
sure in general two dimensional groundwater problems. Its mathematical formulation
avoids integral equations, is meshfree, and its new multistep approach provides very
accurate approximation of full transient aquifer pressure along any period of time.
The new scheme was validated with synthetic aquifers problems with constant and
variable well rates. Its applications to arbitrary shaped aquifer with multiple wells
is developed and analyzed. Numerical results gave evidence that the new scheme
is a versatile tool and an alternative choice to boundary element methods to solve
groundwater problems.

Keywords: multistep, meshless, fundamental solution method, free Green function, sin-
gular value decomposition.

Resumen

Se presenta un nuevo esquema numérico para resolver presión transitoria en un
acúıfero confinado. Está basado en el método de soluciones fundamentales (FSM) y
combina funciones libres de Green el método de descomposición en valores singunlares
(SVD) para obtener un algoritmo computacional eficiente para aproximar presión no
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estática en problemas generales bidimensionales de aguas subterráneas. La formu-
lación matemática evita el uso de ecuaciones integrales, es libre de malla, y su nuevo
enfoque multipaso brinda aproximaciones muy precisas de presión transitoria en el
acúıfero a lo largo de cualquier periodo de tiempo. El nuevo esquema ha sido validado
con problemas de acúıferos sintéticos con tasas de pozo constantes y variables. Sus
aplicaciones a formas arbitrarias de acúıferos con múltiples pozos han sido desarrolla-
das y analizadas. Resultados numéricos han dado evidencia que el nuevo esquema es
una herramienta versátil y una escogencia alternativa a los métodos de elementos de
frontera para simular problemas de agua subterránea.

Palabras clave: multipaso, libre de malla, método de soluciones fundamentales, función
de Green libre, descomposición en valores singulares.

Mathematics Subject Classification: 81T75, 81T80, 65C20.

1 Introduction

Groundwater constitutes an important component in many water systems. In particular,
aquifers are one of the main sources of groundwater and their correct management is
a key factor in their exploitation or conservation. In our days, numerical simulation
of aquifers is a standard management tool to obtain optimum decisions or policies for
these water resources [1, 2]. Simulation of groundwater flow is based on the numerical
solutions of partial differential equations. Many numerical techniques have been tested
and used on these equations in this context. However, most of them can be collected
in four categories. They are: finite differences, finite elements, boundary elements, and
analytic methods [2]. Each one of these methods has its advantages and disadvantages, the
selection of the best method is problem dependent. Consequently, the introduction of new
numerical techniques is a topic of current interest. This article presents a new numerical
scheme for the solution of groundwater equations for aquifers simulation. It combines the
FSM, the superposition principle, and the SVD method into a single algorithm for solving
transient pressure equation in groundwater modeling. The new scheme is meshless and its
approximations are semianalytic, so it can be classified as an hybrid between boundary
and analytic methods. Applications of FSM has been reported for elliptic and parabolic
problems [3, 4]. In the case of elliptic equations the FSM has been studied in a wide range
of scientific problems with excellent results. It is wellknown that FSM has very illposed
linear system, which produces numerical difficulties in its implementation. However, this
problem has been eliminated with the use of SVD solvers [5] and it can be said that FSM
is mature technique for solving elliptic equations. In the case of time dependent problems
the FSM has been studied in the diffusion equation as a model. In general, there are two
techniques for applying FSM to time dependent problems. They are the Laplace transform
and finite difference discretizations in time. Both techniques reduce the time dependent
problem to a finite set of elliptic equations, which are solved by the FSM. In this article a
new and original multistep scheme for solving time dependent diffusion equation with the
FSM is developed. It is based on the general free Green function for the transient diffusion
equation and the superposition principle. Therefore, it does not rely on the solution of
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elliptic problems. The new scheme is tested in the context of groundwater problems, in
which our approach has some advantages on traditional boundary methods.

The rest of this article is divided in four sections. First section presents the groundwa-
ter equations. Second section describes the FSM. Third section analyzes the tests problems
and the numerical results. Finally, section four gives the conclusions and discussion.

2 Groundwater equations

Our work will be restricted to the modeling of groundwater flow in a confined aquifer.
This type of aquifer is bounded from above and below by impervious formation. Aquifer’s
water is extracted through wells. Since water’s level will rise above the upper confining
formation inside the wells then the main variable modelled in the aquifer is its pressure.
Sometimes this type of aquifer is also known as pressure aquifer. In general, the flow in any
porous medium is three dimensional, but geometry of most aquifers is such that they are
thin relative to their horizontal dimensions. This characteristic is usually included in the
equations which neglects the vertical flow components and the water flow is essencially two
dimensional. Moreover, it will be assumed that the aquifer is homogeneous and isotropic.
Under all these assumptions the groundwater equation for the aquifer pressure is given by
the following expression [2].

φµc
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− (

∂2p

∂2x
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∂2p

∂2y
) =

n∑

k=1

µ

Kh
qk(t)δ(x − xk)δ(y − yk) (1)

In this equation p is the aquifer’s pressure, K is the hydraulic conductivity or permeability,
φ is porosity, µ is water viscosity, h is the aquifer thickness,qk is the k well rate, δ is the
Dirac’s delta function, t is time and letters x, y are generic coordinates of an aquifer’s
point. The Dirac’s delta functions represent the wells positions and a singular behavior in
pressure is expected near them. Sometimes equations (1) is also called pressure equation
and it is of parabolic type. Consequently, its solution needs an initial condition

p(x, y, 0) = p0 (2)

and a boundary condition

∂np(x, y) = 0. (3)

The initial condition is a known aquifer pressure at a reference time that we have designed
by zero. In most applications p0 is constant. The boundary condition is called Neumann’s
condition and it represents a sealed boundary. No flow boundary condition indicates
that all water is extracted by the wells. Aquifer’s pressure equation (1) plus its initial and
boundary conditions is a mathematically well posed problem and it does not have a general
analytic solution [6]. Therefore, the study of numerical methods for approximations of its
solutions is well motivated task.
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3 Fundamental solution method (FSM)

This section will be subdivided in three parts. First part describes the free Green function
associated to equation (1). Second part provides a brief description of a single time step
of our new approach, and in the third part the new multistep scheme is explained.

3.1 The free Green function

In this work a free Green function is a solution of the initial value problem for the pressure
equation with one well at a constant rate q. Under such condition the free Green function
has an explicit formula

G(−→x ,−→x0, t) = p0 +
qµ

4πKh
Ei(

cφµ|−→x −−→x0|2

4Kt
) (4)

where −→x0 is the well’s position in the aquifer and the exponential integral function Ei(r) is
defined by

∫ ∞
r (e−η/η)dη. In general, the free Green function contains an integral in time

when the well’s rate is not constant. This representation is more complete than equation
(4), but its computational implementation is more complex and inefficient. Therefore,
its use in the formulation of our multistep scheme has been avoided. The most general
representation can always be approximated by a finite sum of simpler free Green functions
given by (4). In this sense equation (4) is the best possible expression for computational
and mathematical purposes. It is worth to mention that free Green functions are sometimes
called fundamental solutions in the mathematical literature. In this work both names are
synonymous.

3.2 One step FSM

The FSM assumes that pressure distribution can be approximated by a finite linear com-
bination of fundamental solutions. Each fundamental solution is associated to a well.
There are two types of wells in the FSM approximations: real and imaginary wells. Real
wells, {−→xk}, are those representing the aquifer‘s wells and their rates, {qk}, are given by
field data. Imaginary wells is a set of artificial wells, {−→xj},surrounding the aquifer and
their rates, {Qi}, must be determined by the FSM. In the case of equation (1) the FSM
approximation to the pressure is given by the next expression.

p(−→x , t) = p0 + Σn
k=1

qkµ
4πKhEi( cφµ|−→x −−→xk|2

4Kt )+ (5)

+Σniw
j=1

Qjµ
4πKhEi( cφµ|−→x −−→xj |2

4Kt )

In this approximation the first term is the initial condition. The second and third terms
are finite linear combinations associated to real wells and imaginary wells, respectively.
The number of imaginary wells is niw. It is assumed that the fundamental solutions in the
summation terms have null initial conditions. Moreover, all rates are constant, because
they are frozen for one time step. In order to obtain the imaginary wells rates the FSM
approximation (5) is substituted in the boundary condition (3). The resulting expression is
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Figure 1: Well’s and collocations points distributions in an irregular aquifer.

evaluated along ncp collocation points placed along the aquifer boundary. Time variable
is set at the end of the time step. Each evaluation produces a linear equation for the
imaginary wells rates. They are collect in a linear system

A · −→Q = −→
b (6)

whose matrix A has dimension ncp×niw, vector −→
Q represents imaginary wells rates, and

vector −→
b is obtained from real wells fundamental solutions. Figure 1 shows imaginary

wells, real wells, and collocation points distributions in a two dimensional irregular aquifer.
Imaginary wells and collocation points are uniformly distributed. In our implementations,
imaginary wells distribution follows the aquifer shape and its distance to the boundary
can not be determined before hand. The number of collocation points is always greater
or equal than the number of imaginary wells. This implies that linear systems (6) is
overdeterminated. Very often normal equations associated to (6) are singular. This type
of linear system are usually solved by QR factorizations or SVD methods [7]. In our work
SVD method is used for solving (6) because it is the most robust in the FSM context [5].
SVD is applied directly to (6) and it factorizes matrix A into U · S · V T . Matrices U and
V are square and orthogonal. Matrix S is a rectangular matrix and its no null entries,
{s(i, i)}, are ordered in a decreasing sequence along the main diagonal. These entries
are the singular values of matrix A and they are all no negatives. Matrix S allows us to
compute a pseudo inverse rectangular matrix S−1. This pseudo inverse is a rectangular
matrix whose no null entries are 1/s(i, i) if s(i, i) 6= 0 and its remaining entries are zero.
A key point in the definition of S−1 is the criteria of a null entry in S. In our work null
entries are those less than 10−6. Solution of (6) is given by

−→
Q =

(
V · S−1 · UT

)−→
b (7)

after SVD factorization. It should be noted that −→
Q is a least square solution, which is

the best possible choice for an overdetermined system. With the imaginary well rates
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computed by (7) then all terms in the FSM approximation (5) are completely determined.
Such approximation represents a single time step in our numerical scheme. In has been
found that the most important parameter in the accuracy of this approximations is the
number of imaginary wells and their distance to the boundary. The higher the number of
imaginary wells, the better is FSM approximation. This observation is well known in the
technical literature. A point of research or discussion is the optimum distance of imaginary
wells to the aquifer boundary. Our tests for one time step indicates that imaginary wells
should be placed at a distance less or equal to the smallest real wells distance to the
boundary [8].

3.3 Multistep FSM

One time step scheme described in previous sections is only valid for constant rates and
very short values of time t. These limitations are too strong and a new multistep scheme
was designed to eliminate them. Without lost of generality it will be assumed that a
numerical solution of groundwater pressure equation is desired on a time interval [0, t] and
real wells rates are time dependent. In the worst case these rates are piecewise continuous.
Therefore, there exist a partition {tm} of [0, t] such that for each real rate qk there is a
piecewise constant function {qm

k } approximation [9]. These approximations replace the
real rates in the new algorithm. This means that qk ≡ qm

k on intervals [tm−1, tm]. This
is not a problem because there is a finite number of real wells, so it is always possible to
find a partition such that differences among approximated and real rates are negligible.
The partition {tm} obtained in this way is uniform, tm − tm−1 = ∆t is constant for all
m, and each interval [tm−1, tm] is a time step. In analogy to the real rates, the partition
{tm} generates an associated piecewise constant rate {Qm

j } for each imaginary well, whose
values must be computed by the FSM. The superposition principle and Ei properties on
an uniform partitions allows us to propose the following multistep FSM approximations
for the pressure determined by groundwater equations (1),(2),(3) on the time interval [0, t].

p(−→x , tf ≡ t) = p0+

+ µ
4πKhΣnts−1
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m
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+ µ
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This expression contains five terms and nts denotes the number of time steps. First term
contains the initial condition. Second and fourth terms represent cumulative terms which
keeps track of the imaginary and real well’s rates from old time steps. Fifth and fourth
terms are identical to those in equation (5), they are unknown imaginary well’s rates and
real well’s rates associated to the last time step. Expression (8) changes the number of
terms in its summations for each time steps. Application of FSM to (8) produces a finite
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sequence of overdeterminated linear systems

A(m) ·
−−−→
Q(m) =

−−→
b(m) (9)

associated to each time step. There are many possible approaches for this finite sequence
of linear system. In this work the so called implicit approach is implemented. It consists
in setting up a global system.




A(1) 0 · · · 0 0
A(1) A(2) · · · 0 0

...
...

. . .
...

...
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
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−→
b(1)

−→
b(2)

...
−−−−→
b(nts−1)

−−−→
b(nts)




(10)

and solving it by blocks with SVD. This approach has the advantage that global system’s
right hand side has identical expressions and its computer implementation is easier. More-
over, direct application of SVD to the global system matrix and computing a global pseudo
inverse is a possible alternative, which provides correct solutions, but it is not efficient due
to redundancies.

4 Numerical results

Our numerical results present the analysis of two test problems. They will evaluate differ-
ent aspects of the new mutltistep scheme which could not be solved by the one time step
FSM.

4.1 First test problem

This problem consist of solving pressure equation (1) in a one dimensional aquifer with one
well and variable rate. The aquifer’s geometry is a long two dimensional areal rectangle
whose length was one hundred times its width. This configurations produces a pressure
behavior similar to a one dimensional aquifer whose length is unitary and its initial pressure
is two units of pressure. The well was placed at a distance equal 0.001 from the left
boundary. Its rate was given by the piecewise constant function

q(t) = H(t) + (0.003 − 1)H(t − 1/3) + (1.4 − 0.003)H(t − 2/3) (11)

where H(t) is a step function equal to one if t > 0 and zero elsewhere. Aquifer’s pressure
was computed with the FSM on the time interval [0, 1]. Analytic solution for this test
problem was calculated by separation of variables. This solution was used to evaluate
the accuracy of the numerical approximations obtained by FSM. Imaginary wells were
placed at outside the aquifer, they have distance of 0.001 to their nearest aquifer’s side.
This distance was determined by reflection of the real well to its nearest boundary. One
special characteristic of this test problem is that its number of imaginary wells is not a
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Figure 2: Analytic and numerical pressures near the well.

variable. Only two imaginary wells are possible. Therefore, numerical solution behavior
is only function of the number of times steps in our new multistep scheme. Figure 2
represents a set four different pressure solutions computed with the mutistep scheme FSM
for different number of time steps. Pressures are measure at a very close point to the
well and their behavior are showed as function of time. Analytic solution is displayed in a
strong black line. Its shape has the correct physical behavior associated with the variable
rate q(t). At initial times there is a constant rate of 1 and pressure decreases its value
with time. As time reaches the value 1/3 the rate changes to 0.003, so pressure stars
to increase its value. This increment in pressure is expected because there is almost no
withdraw of water from the aquifer. Next, at time 2/3 the well increases it rate to 1.4,
so the pressure decreases its value due to withdraw of water. Pressure compute with a
single time step of size 1 is unable to approximate analytic solution. In fact this numerical
solution is completely wrong for all time. Numerical pressure computed with five time
steps of size 1/5 shows some of the behaviors in the analytic solution. However, it missed
the depression between at time 1/3. Next numerical pressure was obtained with ten times
steps of size 1/10 and it reproduces the three behaviors of the analytic solution, but it is
not enough accurate. Finally a numerical pressure computed with fifty time steps provides
enough resolution to match the analytic pressure along the time interval. Comparison of
numerical and analytic pressures provides a strong evidence of the convergence of the new
scheme. Moreover, it shows that the new multistep scheme is a necessary extension for
dealing with time dependent problems.

4.2 Second test problem

This test consists of determining the drainage are of each well in a two dimensional irregular
reservoirs as described in figure 1. Aquifer properties are showed table 1.
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Table 1: Aquifer’s properties
Property Value
Area 578160 ft2

Thickness 150 ft
Porosity 23 percent
Viscosity 0.72 cp
Compressibility 10−5 1/psi
Permeability 100 mDarcys
Initial pressure 3000 psi
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Figure 3: Pressure head evolution at wells as a function of time.

Imaginary wells were placed 200 ft outside of the aquifer, this value was found by
tuning. It is assumed that all wells in the aquifer are extracting water. Their constant
rates are q1 = q2 = q6 = q7 = 100 stb/day, q3 = q6 = 200 stb/d, and q4 = 600 stb/d.
The new multistep scheme for FSM was used to compute the pressure distribution as
a function of time. This solution was on an interval of time long enough to obtain an
steady state pressure in the aquifer. The steady state condition is observed at the wells
because their pressure head as function of time is an inclined straight line. Figure 3 shows
the numerical pressure heads for each well. After time t = 0.07 d all these pressures
have a linear behaviors, which means that a steady state condition has been reached in
the aquifer. Under steady state condition the Laplacian in equation (1) is zero and the
following relations results around each well.

∂p

∂t
= − qk

cAkhφ
(12)

In this equation Ak is the drainage area associated to the k real well and pressure derivative
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Figure 4: Streamline distribution obtained from steady state FSM pressure approximation.

is the straight line slope in the pressure head . Since all the other variables in that
equation are known then it is possible to obtain an exact value for the drainage area
for each well. These areas were computed with the pressure slopes from figure 3. The
pressure slope was -0.802690 for all wells. It was found that drainage areas for wells
p1, p2, p5, p6, p7 was 36110.42ft2; for wells p3, p8 was 72215.22ft2 ; and for well p4 was
216638.94ft2. There is not a simple form to validate this results because no analytic
solution exist for it. However, an analysis of the drainage areas computed shows that well
p4 drains an area six time bigger than those drained by wells p1, p2, p5, p6, p7 and three
times bigger than the area of wells p3, p8. This observation was expected because same
relation is observe in the real wells rates. Moreover, addition of drained areas is equal
to the aquifer’s area. Therefore, the drainage areas obtained from the pressure slopes
computed with the multistep scheme are physical correct and consistent. In order to
appreciate the global behavior of the pressure and ratify the correct value and proportions
of drainage areas, then an streamline distribution of the aquifer was obtained from the
steady state FSM’s pressure approximation. Streamline distributions is represented in
figure 4. It provides a global and qualitative evidence that drainage areas obtained by the
well head pressure slopes are correct. Consequently, it may be concluded that pressure
approximations obtained from the new multistep scheme for FSM are correct.

5 Conclusions and discussion

A new mutlistep scheme for FSM was presented and developed for the pressure equation
in groundwater modeling. The new scheme is based on diffusion equation fundamental
solution and it does not need auxiliary elliptic equations in its formulation. Since the
scheme is truly meshfree or meshless then it needs to keep track of all it rates values
from previous time steps. Linear system generated by the scheme were analyzed and two
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possible computational strategies for its solution were elaborated. The scheme was tested
in two different problems. One of them gave strong evidence that the new scheme is able to
solve transient problems with variable rate. Second test problem evaluated the capability
of the scheme of computing reliable pressure at long times when aquifer reaches steady
state conditions. An important area of research, in which there is not a general theory,
is the optimum position of imaginary wells around the aquifer. Also extensions of the
scheme to heterogenous problems is necessary as well as its convergence analysis.
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