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Abstract

The notions “regularity index” and “randomness index” previously introduced for
binary strings (2-ary) have been modified slightly and generalized for m-ary strings
(m = 2, 3, 4, . . .). These notions are complementary and the regular/random di-
chotomy has been replaced by a gradation of values of regularity and of randomness.
With this approach, the more regular an m-ary string, the less random it is, and vice
versa. The distributions of frequencies of different length strings —2-ary and 3-ary
strings— according to their indices of randomness, are shown by histograms.
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Resumen

Las nociones de ı́ndice de regularidad y de ı́ndice de aleatoriedad previamente in-
troducidas para cadenas binarias (2-arias) son modificadas ligeramente y generalizadas
para cadenas m-arias (m = 2, 3, 4, . . .). Dichas nociones resultan complementarias y la
dicotomı́a regular-aleatorio es sustituida por una gradación de valores de regularidad
y de aleatoriedad. Con el enfoque utilizado, cuanto más regular es una cadena m-aria
menos aleatoria debe ser considerada y viceversa. Las distribuciones de frecuencias
de cadenas —de diversas longitudes— 2-arias y 3-arias en función de sus ı́ndices de
aleatoriedad son presentadas mediante histogramas.
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1 Introduction

The notions of regularity index and randomness index were previously introduced for
binary strings [4]. The objective of this article is to generalize these notions for m-ary
strings.

The term binary string is used to refer to a succession of digits, each of which can be a
0 (zero) or a 1 (one). Although here by convention it is accepted that each element of the
binary string is a zero or a one, this choice is irrelevant; using any two types of elements
whatsoever, such as “a” and “b”, would be equivalent.

The increasing order of digits in a binary string will also be established, by convention,
from left to right. Thus, for instance, 0 0 1 0 1 is a binary string whose first digit is 0,
the second is also 0, the third 1, the fourth 0 and the fifth 1.

An m-ary string will refer to a succession of elements each of which can be one of m

different numbers. Thus, for example, if m = 6, then 0, 1, 2, 3, 4 and 5 will be the possible
constituents of that string. In place of those numbers, other types of elements could be
used, such as “a”, “b”, “c”, “d”, “e” and “f”.

Of course, a binary string can be considered a particular case of an m-ary string: that
in which m = 2.

The increasing order of the elements in an m-ary string will be established by conven-
tion from left to right. Therefore, for example, 2 0 0 1 2 2 0 is a 3-ary string whose
first digit is 2, the second is 0, the third is also 0, the fourth 1, the fifth 2, the sixth is
also 2 and the seventh is 0.

The length of an m-ary string will be denoted by lstr (i.e., the number of elements in
that string); for example, lstr = 7, for the 4-ary string 0 1 3 3 2 0 3.

Suppose that a scientist is asked how random the binary string 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 is. He might respond that in order to answer that question, he first
requires a criterion to be able to assess the randomness of a binary string quantitatively.
Second, he might add that this specific string – all of whose elements are “ones” – does
not appear random but actually quite regular. The same answer could apply if reference
is made, for example, to a binary string whose lstr = 500, and all of whose elements are
“zeros”. Although to a somewhat lesser extent than in the above binary strings, others
may also be considered “quite regular”, or “not too random”, such as

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

or

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1.

The concepts of randomness and regularity will be considered complementary in the
sense that the more regular the m-ary string, according to a criterion to be indicated
below, the less random it will be. Similarly, as seen below, if an m-ary string is considered
to be highly random (in näıve but intuitive terms, for now), it will not be too regular. For
an alternative and clearly dichotomic approach, see [2] and [1], for example.
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2 Review of the notions of regularity index and randomness

index for binary strings

For those familiar with [4], it is important to clarify that several indices of regularity
and their corresponding indices of randomness were introduced in that article. One of
these regularity indices was that called “index of maximum regularity”. For the present
proposal, however, it was deemed more suitable, first of all, to modify the characterization
of the “index of maximum regularity”, and second, to use the term “index of regularity”
to refer to this “enhanced” version of the “index of maximum regularity”.

For reasons of expository simplicity, attention will be given first to binary strings such
that lstr = 4n, where n = 1, 2, 3, . . .; in other words, initially, the lengths of the strings
considered will be multiples of 4.

Thus, let a string of the type specified above i1, i2, i3 . . . ilstr
(such that each element ij,

where j = 1, 2, . . . , lstr) be equal to either 0 or 1. This is the string for which the regularity
index and the randomness index should be determined. In the first place, consideration will
be given to another binary string written under it, obtained with the following algorithm:

(a) for j 6= lstr, the j-th element of the new string will be the same as the (j + 1)-th
element of the given string, and

(b) for j = lstr, the j-th element of the new string will be the same as the first element
of the given string.

As an example, consider the following string for which lstr = 8: 0 1 1 0 1 0 0 1.
Below we find the same string, and the new one obtained from the given one by applying
the rule indicated above is written right under it.

The arrows illustrate again, graphically, the rule applied to obtain the new string. If
the arrows (used for explanatory purposes only) are eliminated, the two strings would be
specified as follows:

0 1 1 0 1 0 0 1

1 1 0 1 0 0 1 0.

Together these two strings can be considered a set of dyads – 8 in this case – such
that the first element of each dyad belongs to the given string and the second to the new
string. The specific dyads to which reference was made are enclosed below.
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Hence these dyads are:

(0,1), (1,1), (1,0), (0,1), (1,0), (0,0), (0,1), (1,0).

It is obvious that each of the preceding dyads must be one of the following four possible
types of dyads: (0,0), (0,1), (1,0) and (1,1).

The new string was obtained from the given string by a shift (i.e., by generating a
“displacement” d) of only one element in the given string (d = 1). What new string would
have been obtained by generating a displacement of two elements (d = 2)? The answer is
indicated below, with the first string being the given one and the second string the new
one generated by displacing two elements:

0 1 1 0 1 0 0 1

1 0 1 0 0 1 0 1.

It is evident that one way of specifying the string obtained by displacing two elements
is by taking the string which was previously generated from the original and shifting one
element to generate another from it – the one desired – using a displacement of one more
element.

Below we have, once more, the two results obtained and others which have not yet
been presented:

0 1 1 0 1 0 0 1: given string

1 1 0 1 0 0 1 0: string generated by displacing one element (d = 1)

0 1 1 0 1 0 0 1: given string

1 0 1 0 0 1 0 1: string generated by displacing two elements (d = 2)

0 1 1 0 1 0 0 1: given string

0 1 0 0 1 0 1 1: string generated by displacing three elements (d = 3)

0 1 1 0 1 0 0 1: given string

1 0 0 1 0 1 1 0: string generated by displacing four elements (d = 4)

0 1 1 0 1 0 0 1: given string

0 0 1 0 1 1 0 1: string generated by displacing five elements (d = 5)

0 1 1 0 1 0 0 1: given string
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0 1 0 1 1 0 1 0: string generated by displacing six elements (d = 6)

0 1 1 0 1 0 0 1: given string

1 0 1 1 0 1 0 0: string generated by displacing seven elements (d = 7)

A shift of eight elements (i.e., equal to lstr) would again generate the given string.

A second procedure used to obtain dyads from a given binary string will be described
below.

Again let the same string, lstr = 8, be that to which reference was made above: 0 1 1

0 1 0 0 1. Written below it there will be another binary string which is obtained from
the first using the following algorithm:

The element ij , where j = 1, 2, . . . , lstr, of the new string is the same as the symbol
i(lstr−j+1) of the original string.

Therefore, the first symbol of the new string will be the same as the last symbol of the
original string, the second symbol of the new string will be the same as the next to the
last symbol of the original string, the third symbol of the new string will be the same as
the third symbol from the end of the original binary string, etc. In other words, the new
string has been obtained from the given string by using an operation of “spatial inversion”
– or rather a “mirrored reflection” – of the given string. Hence, the original string and
that obtained from it may be specified as follows:

0 1 1 0 1 0 0 1

1 0 0 1 0 1 1 0.

It will be considered that, in this situation, there is a null displacement (d′ = 0) between
the original string and that obtained from it using the procedure indicated above. Once
again, these two strings (i.e., the given string and the “given inverted string”) can be
considered a set of dyads:

Likewise, other sets of dyads can be obtained if the second string is subjected to suc-
cessive displacements: d′ = 1, 2, 3, . . . , 7. Thus, for example, if d′ = 1, the following result
is obtained:

0 1 1 0 1 0 0 1: given string

0 0 1 0 1 1 0 1: string generated from the “inverted” string by displacing one ele-
ment (d′ = 1).

When operating with the original string and the “inverted string”, note that:
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(a) there is no reason why only dyads like (0,0) y (1,1) can be obtained from d′ = 0, and

(b) for d′ = lstr, the situation corresponding to d′ = 0 can again be obtained.

With the first of the procedures described to obtain pairs of strings, seven pairs of
strings were generated. With the second procedure, eight pairs of strings were obtained.
For any of these fifteen pairs of binary strings, the following question may be asked: What
are the probabilities that a dyad chosen at random will correspond to one of four existing
types of dyads? In other words, what is the probability that for any of the fifteen pairs
of strings, one dyad, chosen at random, will be (0,0)? And what is the probability that
it will be (0,1)?; and so forth. These questions can be answered only if a certain amount
of information is available regarding the original string. Suppose that this information
leads us to accept the hypothesis that the probability that any element of that randomly
chosen string will be 0 is equal to 1

2 , independently of the values of all the other elements
in the string. In this case, the probability that the element will be 1 is also equal to 1

2 ,
without the value of each one of the other elements of the string having any relevance for
that purpose. The following notation will be used:

p(0): probability that the first element of any dyad will be 0

p(1): probability that the first element of any dyad will be 1

p(0, 0), p(0, 1), p(1, 0) and p(1, 1): probabilities that any dyad will be (0,0), (0,1), (1,0)
and (1,1) respectively

p(0|0): conditional probability that the second digit of any dyad will be 0, admitting
that the first is a 0

p(0|1): conditional probability that the second digit of any dyad will be 0, admitting
that the first is a 1

p(1|1): conditional probability that the second digit of any dyad will be 1, admitting
that the first is a 1

Hence, the previously formulated questions about the probabilities of the different
dyads may be answered as follows:

p(0, 0) = p(0) · p(0|1) =
1

2
·
1

2
=

1

4

p(0, 1) = p(0) · p(1|0) =
1

2
·
1

2
=

1

4

p(1, 0) = p(1) · p(0|1) =
1

2
·
1

2
=

1

4

p(1, 1) = p(1) · p(1|1) =
1

2
·
1

2
=

1

4
.

The essential features required to characterize the notions of regularity index and ran-
domness index corresponding to any binary string such that lstr = 4n, where
n = 1, 2, 3, . . ., have now been defined.

For each of the pairs of strings obtained with the first procedure specified above,
n0,0;d, n0,1;d, n1,0;d, n1,1;d will denote the numbers of dyads (0,0), (0,1), (1,0) and (1,1),
respectively, with d = 1, 2, . . . , lstr−1. Likewise, for each one of the pairs of strings obtained
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with the second procedure indicated above, n0,0;d′ , n0,1;d′ , n1,0;d′ , n1,1;d′ will denote the
numbers of dyads (0,0), (0,1), (1,0) and (1,1), respectively, with d′ = 0, 1, 2, . . . , lstr − 1.

It is obvious that the following equalities should be satisfied:

n0,0;d + n0,1;d + n1,0;d + n1,1;d = lstr, (d = 1, 2, . . . , lstr − 1)

and

n0,0;d′ + n0,1;d′ + n1,0;d′ + n1,1;d′ = lstr, (d
′ = 0, 1, 2, . . . , lstr − 1)

The symbol Dd will be used to refer to the square root of the sums of the squares
specified below, corresponding to the different possible displacements d (d = 1, 2, . . . , lstr−
1):

Dd =

((

n0,0;d −
lstr

4

)2

+

(

n0,1;d −
lstr

4

)2

+

(

n1,0;d −
lstr

4

)2

+

(

n1,1;d −
lstr

4

)2
) 1

2

.

Similarly, the symbol D∗
d′ will be used to refer to the square root of the sums of squares

indicated below, corresponding to the different possible displacements d′

(d′ = 0, 1, 2, . . . , lstr − 1):

D∗
d′ =

((

n0,0;d′ −
lstr

4

)2

+

(

n0,1;d′ −
lstr

4

)2

+

(

n1,0;d′ −
lstr

4

)2

+

(

n1,1;d′ −
lstr

4

)2
) 1

2

.

Each of the terms of the radicands of the right-hand members of the last two equalities
is equal to the square of a certain expression. What exactly is this expression? It consists
of the difference between a value obtained by counting and a value which is the most
probable of those expected for binary strings for which the hypotheses specified are valid.
In fact, for any of the displacements d or d′ considered, lstr

4 is the most probable of the
expected values for the numbers of dyads of any type. Thus, for example, p(0, 0) = 1

4
and given that the number of dyads for any displacement d o d′ is equal to lstr, it is
found that the most probable value for the number of dyads of the type (0,0) is equal to
p(0, 0) · lstr = 1

4 · lstr. And as specified above

(a) n0,0;d, n0,1;d, n1,0;d, and n1,1;d are the numbers of dyads effectively generated, and
counted, for each of the lstr − 1 pairs of the strings obtained with the displacements
d; and

(b) n0,0;d′ , n0,1;d′ , n1,0;d′ , and n1,1;d′ are the numbers of dyads effectively generated, and
counted, for each of the lstr pairs of the strings obtained with the displacements d′.

The index of regularity ireg corresponding to the binary string is defined as:

ireg =
max

{
D1,D2, . . . ,Dlstr−1,D

∗
0 ,D

∗
1 , . . . ,D

∗
lstr−1

}

((
lstr −

lstr

4

)2
+ 3

(
lstr

4

)2
) 1

2

.
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The right-hand member of the preceding equality is a fraction. Its numerator is the
maximum value of the elements belonging to the set {D1,D2, . . . ,Dlstr−1,D

∗
0 ,D

∗
1, . . . ,

D∗
lstr−1}. Its denominator is any Dd, where d = 1, 2, . . . , lstr − 1, or any D∗

d′ , where
d′ = 0, 1, 2, . . . , lstr − 1, corresponding to a binary string of length lstr and the maximum
possible regularity. (For this string all instances of Dd and D∗

d′ are the same.) There are
two of these strings:

0 0 0 0 . . . 0
︸ ︷︷ ︸

lstr zeros

and 1 1 1 1 . . . 1
︸ ︷︷ ︸

lstr ones

.

If the definition given for ireg is taken into account, it is obvious that its greatest
possible value is 1. This value – 1 – is obtained by calculating ireg for any of the two
strings described above.

The corresponding index of randomness – irnd – is defined as follows:

irnd = 1 − ireg.

Reference will be made below to how to determine the regularity index and the ran-
domness index for any binary string such that its lstr is not a multiple of 4.

Suppose, for example, that one has a binary string for which lstr = 4n + k, where
n = 1, 2, . . . and k = 1, 2 or 3. One would proceed as follows: Consideration must first
be given to the binary string composed of the elements of the original string which go
from the first element to that of 4n, inclusive. The regularity index is determined for that
string and is denoted as ireg,1. Then attention is given to the binary string composed of
the elements of the original string which go from the second element to that of 4n+1 and
the regularity index is found for that string: ireg,2. If k = 1, then the regularity index of
the original string is computed as follows:

ireg =
ireg,1 + ireg,2

2
.

If k = 2, then consideration should also be given to the binary string composed of all the
elements of that string from the third element to that of 4n + 2, inclusive. The regularity
index ireg,3 is then found for this string. The index of regularity of the original string is
defined, therefore, as:

ireg =
ireg,1 + ireg,2 + ireg,3

3
.

If k = 3, attention must also be given to the binary string composed of all the elements
of the original string that go from the fourth element to that of 4n + 3, inclusive. The
regularity index of the original string is thus defined as:

ireg =
ireg,1 + ireg,2 + ireg,3 + ireg,4

4
.

The corresponding index of randomness of the original string irnd is defined in all cases
as follows:

irnd = 1 − ireg.
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Several binary strings mentioned in sections 1 and 2 are presented below with their
corresponding indices of randomness specified on the right.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 irnd = 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 irnd = 0.4226

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 irnd = 0.4226

0 1 1 0 1 0 0 1 irnd = 0.3578.

3 Characterization of the notions of regularity index and

randomness index for m-ary strings

As described above, binary strings are a particular case of m-ary strings, where
m = 2, 3, 4 . . .: that in which m = 2.

If m = 3, and if the same procedures are used for 3-ary strings as those described in
section 2 to obtain two lstr − 1 pairs of strings, then 32, or 9, different types of dyads will
be generated: (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1) and (2,2). In general, for
any value m, where m = 2, 3, 4, . . . , the number of different types of dyads to be generated
is m2.

The generalization for m-ary strings arising from the notions and definitions given in
section 2 is quite natural and direct. For reasons of expository clarity, consideration will
be given first of all to m-ary strings such that

lstr = n · m2 n = 1, 2, 3 . . .

The symbols Dd y D∗
d′ will be used to refer to the square root of the sums of the

squares specified as follows:

Dd =





m∑

i=1

m∑

j=1

(

ni,j;d −
lstr

m2

)2




1
2

d = 1, 2, . . . , lstr − 1.

D∗
d′ =





m∑

i=1

m∑

j=1

(

ni,j;d′ −
lstr

m2

)2




1
2

d′ = 0, 1, 2, . . . , lstr − 1.

The index of regularity ireg of an m-ary string such that its lstr = n · m2, where
n = 1, 2, 3, . . ., is defined as follows:

ireg =
max {D1,D2, . . . ,Dlstr−1,D

∗
0,D

∗
1 , . . . ,Dlstr−1}

((
lstr −

lstr

m2

)2
+ (m2 − 1)

(
lstr

m2

)2
) 1

2

.

The corresponding index of randomness irnd is defined as follows:

irnd = 1 − ireg.
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It is very important to understand the following idea clearly. It may be admitted that
the ireg computed for an m-ary string provides a quantitative estimation of the degree of
“separation” of that string with respect to another which is supposed to show the greatest
lack possible of regularities, or patterns, in its structure. However, this fact does not at
all imply that any hypothesis has been deemed valid with regard to the procedure used to
obtain the string whose ireg was computed. In effect, the ireg of an m-ary string provides
information only about how regular the structure of the string is and not about its genesis.
One must recall why the hypothetical string H from which the above-mentioned shifting
is estimated lacks patterns. The reason is that if any particular one of the lstr elements of
H is chosen at random, the probability 1

m
that the specific element will be one of the m

possible elements composing the string is the same as the probability that it will be any
other of the remaining (m − 1) elements.

Indications are provided below about how to compute the ireg of an m-ary string such
that lstr = n · m2 + k, where n = 1, 2, 3, . . . and k = 1, 2, . . . ,m2 − 1.

In the first place, it is necessary to compute the regularity index of the substring of
that string extending from the first element to element n · m2, inclusive; this regularity
index is denoted by ireg,1. In the second place, the regularity index must be computed for
the substring extending from the second to element (n ·m2) + 1, inclusive; this regularity
index is denoted by ireg,2. And so forth successively, until the regularity index of the
substring extending from element (k + 1) to element (n ·m2)+ k, inclusive; this regularity
index is denoted by ireg,k+1.

The index of regularity of the given m-ary string is defined as:

ireg =
ireg,1 + ireg,2 + · · · + ireg,k+1

k + 1
.

The corresponding index of randomness irnd is defined as:

irnd = 1 − ireg.

4 Numerical results of particular interest

Below we will present some of the results regarding binary strings with lengths of 8, 12,
16 and 24; and 3-ary strings with lstr = 9.

Tables 1 and 2 show, for all of the binary strings with the lengths specified, the numbers
of those strings which have randomness indices between the ranges of values indicated in
the first column of those tables.

Tables 3 and 4 show, for all of the 3-ary strings with lstr = 9, the numbers of those
strings which have randomness indices between the ranges of values indicated in the first
column of those tables.

For all of the binary strings with lstr = 24, the numbers n of those strings which
have randomness indices between the ranges of values indicated on the x-axis have been
specified graphically in histogram 1.

Given the relatively small numbers of binary strings with lstr = 24 which have ran-
domness indices between the ranges of values 0 ≤ iirnd ≤ 0.2 or 0.8 ≤ iirnd ≤ 1.0, the
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lstr = 8 lstr = 12 lstr = 16 lstr = 24

0 ≤ irnd ≤ 0.1 2 2 34 50

0.1 < irnd ≤ 0.2 16 24 240 1048

0.2 < irnd ≤ 0.3 56 236 1048 28124

0.3 < irnd ≤ 0.4 48 318 3376 181294

0.4 < irnd ≤ 0.5 70 1116 13350 1477420

0.5 < irnd ≤ 0.6 0 1920 31616 5864064

0.6 < irnd ≤ 0.7 64 480 10752 6020832

0.7 < irnd ≤ 0.8 0 0 5120 3148704

0.8 < irnd ≤ 0.9 0 0 0 55680

0.9 < irnd ≤ 1 0 0 0 0

Table 1: m = 2.

lstr = 8 lstr = 12 lstr = 16 lstr = 24

0 ≤ irnd ≤ 0.2 18 26 274 1098

0.2 < irnd ≤ 0.4 104 554 4424 209418

0.4 < irnd ≤ 0.6 70 3036 44966 7341484

0.6 < irnd ≤ 0.8 64 480 15872 9169536

0.8 < irnd ≤ 1 0 0 0 55680

Table 2: m = 2.

existence of the strings corresponding to those ranges of values is not perceptible in the
preceding histogram. Thus, to be able to observe their presence, the same information
corresponding to that histogram is shown in histogram 2, in which the y-axis corresponds
to log n (and not to n).

For all of the 3-ary strings with lstr = 9, the numbers n of those strings which have
randomness indices between the ranges of values indicated on the x-axis have been specified
graphically in histogram 3.

Given the relatively small number of 3-ary strings with lstr = 9 which have randomness
indices between the range of values 0 ≤ iirnd ≤ 0.2, the existence of the strings correspond-
ing to that range of values is not perceptible in the preceding histogram. Therefore, to be
able to observe their presence, the same information corresponding to that histogram is
shown in histogram 4, in which the y-axis corresponds to log n (and not to n).
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lstr = 9

0 ≤ irnd ≤ 0.1 3

0.1 < irnd ≤ 0.2 54

0.2 < irnd ≤ 0.3 612

0.3 < irnd ≤ 0.4 864

0.4 < irnd ≤ 0.5 7674

0.5 < irnd ≤ 0.6 8208

0.6 < irnd ≤ 0.7 2268

0.7 < irnd ≤ 0.8 0

0.8 < irnd ≤ 0.9 0

0.9 < irnd ≤ 1 0

Table 3: m = 3.

lstr = 9

0 ≤ irnd ≤ 0.2 57

0.2 < irnd ≤ 0.4 1476

0.4 < irnd ≤ 0.6 15882

0.6 < irnd ≤ 0.8 2268

0.8 < irnd ≤ 1 0

Table 4: m = 3.

Figure 1: Histogram 1.
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Figure 2: Histogram 2.

Figure 3: Histogram 3.

Figure 4: Histogram 4.
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Note that for the 3-ary strings with lstr = 9, there are no strings whose randomness
indices are within the range of values 0.8 < irnd ≤ 1.0.

Although it is true that we have just begun to study the distribution of the numbers
of m-ary strings of different lengths according to the ranges of values in which the values
of the randomness indices of the different strings are found, one of our most outstanding
results noted so far will be described below. If a distinction is made between a “lower
portion” of the ranges of values of the randomness indices such that they are less than
or equal to 0.5 (i.e., such that irnd ≤ 0.5) and an “upper portion” of ranges of values of
these indices such that they are greater than 0.5 (i.e., such that irnd > 0.5), then there is
a larger number of strings belonging to the “upper portion” than to the “lower portion”.
Thus, for example, for binary strings of lstr = 24, there are 1,687,936 strings in the “lower
portion” of the randomness index and 15,089,280 strings in the “upper portion” of the
index.

5 Relations between approaches addressing the notions of

randomness and regularity introduced by other authors

and the approach presented here

Our objective is not, in the least, to make an exhaustive, comparative study between
the approach described here regarding the notions of index of regularity and the index
of randomness for finite-length m-ary strings and other approaches concerning the notion
of randomness which can be found in the technical literature on the topic. However, the
comments in this section may provide a useful initial orientation to those interested in this
issue.

In S. B. Volchan’s interesting, precise text “What is a Random Sequence?”, he has
stated the following [5, p. 48]:

“But now the question becomes: What does it mean to say that an individual infinite
sequence of 0s and 1s is random? Historically, three main notions were proposed:

– stochasticness or frequence stability, due to von Mises, Wald, and Church;

– incompressibility, due to Solomonoff, Kolmogorov and Chaitin;

– typicality, due to Martin-Löf”.

Regarding the first of these approaches, that of “randomness as stochasticness”, the
same author adds [5, p. 54]:

“Many criticisms were directed at von Mises’s proposals. Not only were his arguments
based on gambling-house notions, considered inexact or at best semimathematical, but
also the central notion of ‘admissible’ selections was not clarified at all”.

We believe that the serious objections made with respect to the approach developed
by von Mises are correct. The approach presented in this paper is not based on that of von
Mises. No use has been made, for example, of the notions of “collectives” or of “frequence
stability”.

Regarding the other two approaches considered by S. B. Volchan, that author rightly
states that they are equivalent [5, p. 61]:
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“The notion of Martin-Löf random sequences is mathematically consistent, and unex-
pectedly coincides with an apparently very different notion of randomness, namely, that
of incompressibility”. This equivalence is recognized by G. Chaitin, the main architect
of algorithmic information theory (AIT), based on the notion of “randomness as incom-
pressibility”, and on its applications in the field of metamathematics. Those interested
in that equivalence may read, for example, the second section (pp. 129-133), “Proof that
Martin-Löf randomness is equivalent to Chaitin randomness” in Part III of Chaitin’s book
cited above [1].

Although it is true that Chaitin’s approach is essentially oriented toward infinite-length
strings, it can be applied to finite-length m-ary strings. Informally, an idea of his approach
will be given below, using binary strings for reasons of simplicity and expository clarity.
Let a binary string be comprised of 106 digits such that each of them is equal to 1. It
is obvious that this string could be generated by a very simple computer program whose
objective is to print the number one 106 times. In computing terms, the string made up
of 106 ones has a length of 106 bits. In contrast, this program designed to generate it is
– also in computational terms – much shorter than 106 bits. The same occurs with other
binary strings such as the string with a length of 106 composed of 5 ·105 repetitions of the
following sequence of two digits: 0 1. Likewise in this case, a program designed to print
5 · 105 times the sequence 0 1 is much shorter, in bits, than 106.

Any string for which there exists a program to generate it and whose length, in bits,
is shorter than that string, also in bits, is considered nonrandom, according to the AIT
approach. In contrast, if the shortest program that can generate a string has a length
which is approximately the same as that of the string (since it is a program that should
include the string considered), then it is found to be random. In other words, in the case of
a random string, the shortest program that can generate it is, essentially, the same string.
It can thus be noted that, according to this approach, a string may be considered random if
an effect of “compression” cannot be achieved – that is, if it is not possible to generate that
string using a program whose length is less than the length of the string. This approach,
which is applicable not only to m-ary strings but also to other mathematical objects, is
dichotomic; accordingly, an m-ary string is either random or not random. Therefore, using
the AIT approach, it is not possible to make a quantitative estimate of something which
may be considered the degree of randomness of an m-ary string. The approach described
in the present article does make this estimation possible.

S. Pincus and B. H. Singer have developed an approach which varies, partially, from
the dichotomic conception “random strings – nonrandom strings” [3]. According to these
authors, “...there appears to be a critical need to develop a (computable) formulation of
‘closer to random’, to grade the large class of decidedly nonrandom sequences”. They
accept the existence of a “large class of decidedly nonrandom sequences” and consider it
appropriate to distinguish in that class between various levels of nearness to truly random
sequences. This approach is different from ours, where for binary strings of a given length,
there are only two of them (and not a “large class”) which can be considered definitely
regular (or nonrandom): that comprised only of ones and that comprised only of zeroes.
For these two strings, the index of regularity is equal to 1 and the index of randomness
is equal to 0. The remaining strings are not considered to be either definitely random or
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definitely regular. For each of these strings, it is feasible to compute an index of regularity
(ireg) and an index of randomness (irnd), such that ireg + irnd = 1. It is obvious that,
following our approach, the higher the regularity index of a binary string, the lower its
randomness index, and vice versa. With this approach there are as many classes of degrees
of randomness as there are different indices of randomness computed. The higher the index
of randomness of a string, the more it can be considered random. Of course, for m-ary
strings (with m = 3, 4, 5, . . . ) of a given length, there are m strings for each of which
ireg = 1 and irnd = 0.

6 Discussion and prospects

Suppose that a scientist is consulted whether it is reasonable to accept that the binary
string of lstr = 20 comprised of ten repetitions of the two elements 1 and 0 (i.e., the string 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0) has been generated by a device whose main
operational characteristic can be described as follows: This device generates one digit,
for example, every millisecond, and there is the same probability – 1

2 – that each one of
the digits generated will be a 0 or a 1. In other words, for each digit generated by that
device, the following will be satisfied: p(0) = p(1) = 1

2 . The person consulted would
undoubtedly not feel very inclined to accept the above-mentioned genesis of the particular
string. On the other hand, if that person were asked the same question with regard to
the binary string 1 0 0 0 1 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0, it probably would be
considered feasible that the above-mentioned way of generating the string had been used.
Nonetheless, it must be noted that if that device was used, there is exactly the same
probability – (1

2 )20 – that each one of them will be generated. Actually, the probability
that the device will generate any of the 220 possible binary strings is the same: (1

2 )20.
The difference in the answers of the person consulted about these two situations would
certainly be related to the fact that human beings have the ability to determine intuitively
which strings have certain types of regularities. What types of regularities? The types
that can be considered, metaphorically, to just “pop out”. Let there be a binary string
with a length of 20. One can immediately distinguish, for example, a. whether that string
is made up of 20 ones, or 20 zeroes; b. if it is composed of 10 reiterations of the sequence of
the two elements 1 and 0 (that is, of the sequence 1 0); c. if it is comprised of 5 reiterations
of the sequence 1 1 0 0; and so forth. All the strings of this type – and among them,
the first binary string specified in this section – appear to be very regular; i.e., not very
random. It is reasonable to suppose, then, that the first string could belong to the “lower
portion” of the randomness index (according to the terms used in section 4). In contrast,
the second binary string to which reference was made does not appear to be too regular;
that is, it looks quite random. It is thus reasonable to suppose that this last string could
belong to the “upper portion” of the randomness index. And as mentioned in section 4,
the number of strings corresponding to the “upper portion” of the randomness index is
greater than the number of strings pertaining to the “lower portion” of the randomness
index. Therefore, whereas the probability of the device generating any particular binary
string is the same, there is a greater probability of generating a string belonging to the
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“upper portion” of the randomness index than there is of generating one corresponding to
the “lower portion”. Thus, we can conclude that the answers given to those consultations
are reasonable.

In this paper the notions of index of regularity and index of randomness have been
defined for finite-length m-ary strings. These definitons make it possible to evaluate more
precisely than could be done with a simple intuitive reaction to the degrees of regularity and
randomness of those mathematical objects which are essential for fields such as computer
science and the physical sciences.

According to the approach introduced here, the notion of “randomness” is equivalent
to that of “lack of regularity”. In fact, the “index of randomness” could have been called
“index of irregularity”. The notions of “regularity” and “randomness” (or “irregularity”)
are, according to this approach, complementary. The more regular an m-ary string, the
less random it is considered; likewise, the more random an m-ary string, the less regular
it is considered. It should be stressed that the approach presented here for finite-length
m-ary strings is not the same as other approaches which have been described in technical
literature on the topic.

Those who need to evaluate the degree of randomness of finite-length m-ary strings
to solve problems in different scientific and technological disciplines will decide which
approach is the most suitable and the most pertinent for their specific requirements, as
well as the most efficient and the easiest to implement.

In forthcoming work diverse types of fluctuations will be analyzed, thus making it
possible to justify even more soundly and in greater depth than feasible here, the relevance
and usefulness of the definitions introduced in this paper.
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