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Abstract

This is the first of two papers devoted to the proof of Zilber’s
dichotomy for the case of difference-differential fields of characteristic
zero. In this paper we use the techniques exposed in [9] to prove
a weaker version of the dichotomy, more precisely, we prove the
following: in DCFA the canonical base of a finite-dimensional type
is internal to the fixed field of the field of constants. This will imply
a weak version of Zilber’s dichotomy: a finite-dimensional type of
SU -rank 1 is either 1-based or non-orthogonal to the fixed field of
the field of constants.

Resumen

El presente es el primero de dos art́ıculos dedicados a la de-
mostración de la dicotomı́a de Zilber para el caso de los campos
difernciales de diferencia de caracteŕıstica cero. En éste art́ıculo uti-
lizamos las técnicas desarrolladas en [9] para demostrar una versión
débil de la dicotomı́a: un tipo de dimensión finita y de rango SU
igual a 1 es modular o no ortogonal al campo fijo del campo de
constantes.

1 Introduction and preliminaries

The theory of differentially closed fields (DCF) is the model companion of
the theory of differential fields. Among the properties of DCF we find that
it is ω-stable, it eliminates quantifiers and imaginaries. An axiomatization
for DCF is the following.

Definition 1.1 Let (K,D) be a differential field. K is differentially closed
if and only if K is an algebraically closed field and for every irreducible
algebraic variety V , if W is an irreducible algebraic subvariety of τ1(V )
such that the projection of W onto V is dominant, then there is a ∈ V (K)
such that (a,Da) ∈ W .

This axiomatization is not the original and most known, but this version,
due to Pierce and Pillay ([7]), has a more geometric spirit which will be
useful in this paper.

A consequence of ω-stability is Zilber’s dichotomy for DCF: A type of
U -rank 1 is either one-based or nonorthogonal to the field of constants.
Proofs and details about DCF can be found in [6] and [5].

The theory of difference-differential fields of characteristic zero also has
a model-companion, (ACFA). It is supersimple, quantifier-free ω-stable
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and it eliminates imaginaries. It does not eliminate quantifiers and it is
not a complete theory, but its completions are easily described. Since
ACFA is supersimple, its complete types are ranked by the SU -rank. As
DCF, ACFA satisfies Zilber’s dichotomy: a type of SU -rank 1 is either
1-based or non-orthogonal to the fixed field. See [3] for proofs of these
facts.

The original proofs of these two dichotomies have a heavy use of sta-
bility (or simplicity), but recently Pillay and Zigler found more geometric
proofs using algebraic jet spaces. One important fact which is key to both
proofs is that having finite transcendence degree and having finite rank
are equivalent in both DCF and ACFA.

Hrushovski proved that the theory of difference-differential fields of
characteristic zero has a model-companion. We denote it DCFA. This
theory is supersimple, quantifier-free ω-stable, and it eliminates imaginar-
ies. Proofs of these facts are found in [1]. As DCFA is supersimple its
types are ranked by the SU -rank, in [2] the author proved that the SU -
rank of a model of DCFA (that is, the SU -rank of a difference-differential
transcendental element) is ω2, and gives an example (3.1) of a set whose
SU -rank 1 but has infinite transcendence degree.

2 Algebraic jet spaces

We list the main properties of jet spaces over algebraically closed fields
of characteristic zero. We will suppose all varieties to be absolutely irre-
ducible.

Definition 2.1 Let K be an algebraically closed field , and let V ⊆ An

be a variety over Kn; let a be a non singular point of V . Let OV,a be the
local ring of V at a and let MV,a be its maximal ideal.

Let m > 0. The m-th jet space of V at a, Jm(V )a, is the dual space
of the K-vector space MV,a/M

m+1
V,a .

Notation 2.2 If the variety V is An, we write Ma instead of MV,a.

The following is proved in [9] (Fact 1.2).

Fact 2.3 Let U, V be irreducible varieties of Kn, a ∈ V ∩ U . If
Jm(V )a = Jm(U)a for all m > 0, then V = U .

Proposition 2.4 Let V be an variety, a a non-singular point of V . Let
Oa be the local ring of V at a, and MV,a its maximal ideal. Let
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MV,a = {f ∈ K[V ] : f(a) = 0} be the maximal ideal of the coordinate
ring of K[V ] of V . Then, for all m ∈ N, MV,a/Mm

V,a and MV,a/M
m
V,a are

isomorphic K-vector spaces .

proof:
This is a consequence from the fact that Mi

a,V ∩ K[V ] = Mi
a,V for all

i. (cf Proposition 2.2 in [4]) . 2

The following fact is proved in [10], Chapter II, section 5.

Fact 2.5 Let U, V be two irreducible varieties defined over L ⊆ K. Let
f : U → V be a finite morphism, and let b ∈ V . If f is unramified at b,
then, for any a ∈ f−1(b) and for any positive integer m, the homomor-
phism f̄ : OV,b/M

m
V,b → OU,a/M

m
U,a induced by f is an isomorphism.

Proposition 2.6 Let U, V be two irreducible varieties defined over
L ⊆ K. Let f : U → V be a dominant generically finite-to-one mor-
phism. Let a be a generic of U over L. Then f induces an isomorphism
of K-vector spaces between Jm(U)a and Jm(V )f(a).

proof:
Since f is separable (as we work in characteristic zero), and since f

is dominant and f−1(f(a)) is finite, U and V are irreducible and their
dimensions are equal, thus f is unramified at f(a). By 2.5, f induces
an isomorphism between OV,f(a)/M

m+1
V,f(a) and OU,a/M

m+1
U,a ; whose restric-

tion to MV,f(a)/M
m+1
V,f(a) is an isomorphism between MV,f(a)/M

m+1
V,f(a) and

MU,a/M
m+1
U,a . Then, by 2.1, f induces an isomorphism between Jm(U)a

and Jm(V )f(a). 2

The following lemma (2.3 of [9]) allows us to consider jet spaces as alge-
braic varieties.

Lemma 2.7 Let K be an algebraically closed field and V a subvariety of
Kn , let m ∈ N and let D be the set of operators

1
s1! · · · sn!

∂s

∂xs1
1 · · · ∂xsn

n

where 0 < s < m + 1 and s = s1 + · · · + sn, si ≥ 0.
Let a = (a1, · · · , an) ∈ V ; and let d = |D|.
Then we can identify Jm(V )a with

{(ch)h∈D ∈ Kd :
∑

h∈D
DP (a)ch = 0, P ∈ I(V )}.
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proof:

Let p : K[X] −→ K[V ] such that Ker(p) = I(V ) ; then
p−1(Ma,V ) = Ma, and p−1(Mm+1

a,V ) = Mm+1
a + I(V ). This gives us

the following short exact sequence:

0 −→ (I(V ) + Mm+1
a )/Mm+1

a −→ Ma/Mm+1
a −→ Ma,V /Mm+1

a,V −→ 0

We proceed to describe the dual space of Ma/Mm+1
a : The monomials

(X − a)s = (X − a1)s1 · · · (X − an)sn with 1 ≤ s1 + · · ·+ sn = s ≤ m form
a basis for Ma/Mm+1

a , and for each s we have a K-linear map us which
assigns 1 to (X − a)s and 0 to the other monomials. The maps us form a
basis for the dual of Ma/Mm+1

a .
Thus, the dual Jm(V )a of Ma,V /Mm+1

a,V , consists of those linear maps
u : Ma/Mm+1

a −→ K that take the value 0 on (I(V ) + Ma,V )/Mm+1
a,V .

Let f(X) ∈ K[X]; applying Taylor’s formula we can write, modulo
Mm+1

a,V ,

f(X) = f(a) +
∑

1≤|s|≤m

Dsf(a)(X − a)s,

where

Ds =
1

s1! · · · sn!
∂s

∂Xs1
1 · · · ∂Xsn

n

If u =
∑

s csus, then u vanishes on (I(V )+Mm+1
a )/Mm+1

a if and only
if for every P (X) ∈ I(V ), we have

∑

1≤|s|≤m

DsP (a)cs = 0.

2

3 Jet spaces in differential and difference fields

We study jet spaces of varieties over differential fields and difference fields.
We recall the concepts of D–modules and σ-modules (see [9]).

Definition 3.1 Let (K,D) be a differential field, and let V be a finite-
dimensional K-vector space. We say that (V,DV ) is a D-module over K
if DV is an additive endomorphism of V such that, for any v ∈ V and
c ∈ K, DV (cv) = cDV (v) + (Dc)v.
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Lemma 3.2 ([9], 3.1) Let (V,DV ) be a D-module over the differential
field (K,D). Let (V,DV )] = {v ∈ V : DV v = 0} . Then (V,DV )] is
a finite-dimensional C-vector space. Moreover, if (K,D) is differentially
closed, then there is a C-basis of (V,DV )] which is a K-basis of V . (Thus
every C-basis of (V,DV )] is a K-basis of V )

Definition 3.3 A D-variety is an algebraic variety V ⊆ An with an al-
gebraic section s : V → τ1(V ) of the projection π : τ1(V ) → V . Then, by
1.1, (V, s)] = {x ∈ V : Dx = s(x)} is Zariski-dense in V . We shall write
V ] when s is understood.

Proposition 3.4 A finite-dimensional affine differential algebraic variety
is differentially birationally equivalent to a set of the form
(V, s)] = {x ∈ V : Dx = s(x)} where (V, s) is a D-variety.

Remark 3.5 Let V ⊆ An be a variety defined over K.

1. Given a D-variety (V, s) , we can extend the derivation D to the
field of rational functions of V as follows:

If f ∈ U(V ), then we define Df =
∑ ∂f

∂Xi
si + fD.

2. If a ∈ V ] and f ∈ MV,a, then Df(a) =
∑ ∂f

∂Xi
si(a) + fD(a) =

Jf (Da) + fD(a) = D(f(a)) = 0. Thus MV,a and Mm+1
V,a are dif-

ferential ideals of OV,a, so it gives MV,a/M
m+1
V,a a structure of D-

module over U . Defining D∗ : Jm(V )a → Jm(V )a by D∗(v)(F ) =
D(v(F )) − v(D(F )) for v ∈ Jm(V )a and F ∈ MV,a/M

m+1
V,a , gives

Jm(V )a a structure of D-module.

Definition 3.6 Let (K,σ) be a difference field. A σ-module over K is a
finite-dimensional K-vector space V together with an additive automor-
phism Σ : V → V , such that, for all c ∈ K and v ∈ V , Σ(cv) = σ(c)Σ(v).

Lemma 3.7 ([9], 4.2) Let (V,Σ) be a σ-module over the difference field
(K,σ). Let (V,Σ)[ = {v ∈ V : Σ(v) = v}. Then (V,Σ)[ is a finite-
dimensional Fixσ-vector space. Moreover, if (K,σ) is a model of ACFA,
then there is a Fixσ-basis of (V,Σ)[ which is a K-basis of V .(Thus every
Fixσ-basis of (V,Σ)[ is a K-basis of V )

Remark 3.8 Let (K,σ) be a model of ACFA. Let V,W be two irreducible
algebraic affine varieties over K such that W ⊆ V × V σ, and assume
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that the projections from W to V and V σ are dominant and generically
finite-to-one. Let (a, σ(a)) be a generic point of W over K. Then, by
2.6, Jm(W )(a,σ(a)) induces an isomorphism f of K-vector spaces between
Jm(V )a and Jm(V )σ(a). We have also that (Jm(V )a, f−1σ) is a σ-module
over K.

4 Jet spaces in difference-differential fields

We describe the jet spaces of finite-dimensional varieties defined over
difference-differential fields, and we state the results needed to prove our
main theorem 4.8. Finally we give two corollaries: the first is the weak
dichotomy, and the second is an application to quantifier-free definable
groups.

We start with the definition of a (σ,D)-module.

Definition 4.1 Let (K,σ,D) be a difference-differential field. A (σ,D)-
module over K is a finite-dimensional K-vector space V equipped with
an additive automorphism Σ : V → V and an additive endomorphism
DV : V → V , such that (V,DV ) is a D-module over K, (V,Σ) is a σ-
module over K and for all v ∈ V we have Σ(DV (v)) = DV (Σ(v)).

The key point of our proof of 4.8 is the following lemma.

Lemma 4.2 Let (V,Σ,DV ) be a (σ,D)-module over the difference-differen-
tial field (K,σ,D). Let (V,Σ,DV )\ = {v ∈ V : DV (v) = 0∧Σ(v) = v} (we
shall write V \ when DV and Σ are understood). Then V \ is a (Fixσ∩C)-
vector space. Moreover, if (K,σ,D) is a model of DCFA, there is a
(Fixσ ∩ C)-basis of V \ which is a K-basis of V . (Thus every (Fixσ) ∩ C-
basis of (V )\ is a K-basis of V )

proof:
It is clear that V \ is a (Fixσ ∩ C)-vector space. By 3.2 and 3.7 it is

enough to prove that there is a (Fixσ ∩ C)-basis of V \ which is a C-basis
of V ].

Let {v1, · · · , vk} be a C-basis of V ], then {Σ(v1), · · · ,Σ(vk)} is a C-
basis of V ]. Let A be the invertible k × k C-matrix such that
[Σ(vi)]t = A[vi]t.

Let {u1, · · · , uk} be a C-basis of V ]. Then there exists an invertible k×
k C-matrix B such that [ui]t = B[vi]t; applying Σ we get
[Σ(ui)]t = σ(B)[Σ(vi)]t = σ(B)A[vi]t. Thus {u1, · · · , uk} is in V \ if and
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only if B = σ(B)A. Since (C, σ) |= ACFA, the system X = σ(X)A,
where X is an invertible k × k matrix, has a solution in C. So we can
suppose that {u1, · · · , uk} is in V \.

Let v ∈ V \, and let λ1, · · · λk ∈ C such that v = λ1u1 + · · · + λkuk.
Then v = σ(λ1)u1 + · · ·+σ(λk)uk, thus λi ∈ Fixσ for i = 1, · · · , k. Hence
{u1, · · · , uk} is a (Fixσ ∩ C)-basis of V \. 2

Notation 4.3 Let (U , σ,D) be a saturated model of DCFA. Let
K = acl(K) be a difference-differential subfield of U , and let a ∈ Un

such that K(a)D = K(a) and σ(a) ∈ K(a)alg.
Let V be the locus of a over K, and let W be the locus of (a, σ(a)) over

K. Then V σ is the locus of σ(a) over K and the projections π1 : W −→ V
and π2 : W −→ V σ are generically finite-to-one and dominant.

We set:
π∗

1 : K[V ] −→ K[W ], F 7−→ F ◦ π1.
π∗

2 : K[V σ] −→ K[W ], G 7−→ G ◦ π2.
π∗

1 : MV,a/M
m+1
V,a −→ MW,(a,σ(a))/M

m+1
W,(a,σ(a)) the map induced by π∗

1

π∗
2 : MV σ,σ(a)/M

m+1
V σ,a −→ MW,(a,σ(a))/M

m+1
W,(a,σ(a)) the map induced by

π∗
2

π′
1 : Jm(W )(a,σ(a)) −→ Jm(V )a, w 7−→ w ◦ π∗

1.
π′

2 : Jm(W )(a,σ(a)) −→ Jm(V σ)σ(a), w 7−→ w ◦ π∗
2.

With respect to the extension of D to the coordinate rings, π∗
1 and π∗

2

are differential homomorphisms. By 2.6 π′
1 and π′

2 are isomorphisms of
U-vector spaces.

Let f : Jm(V )a −→ Jm(V σ)σ(a) be the U-isomorphism defined by
f = π′

2 ◦ (π′
1)

−1.
Since Da ∈ K(a) there is a rational map s : V → Un such that

s(a) = Da and (V, s) is a D-variety. By construction (V σ, sσ) and
(W, (s, sσ)) are also D-varieties.

Lemma 4.4 (Jm(V )a, f−1σ,D∗) is a (σ,D)-module.

proof:

All we need to prove is that D∗ commutes with f−1σ. Since
f = π′

2 ◦ (π′
1)

−1 and π′
1, π

′
2 are isomorphisms, and since σ commutes with

D∗, it is enough to prove that D∗ commutes with π′
1 and π′

2.
Let w ∈ Jm(W )(a,σ(a)) and F ∈ MV,a/M

m+1
V,a .

We want to prove that D∗(π′
1(w))(F ) = (π′

1 ◦ D∗(w))(F ). We have
D∗(π′

1(w))(F ) = D∗(w ◦ π∗
1)(F ) = D((w ◦ π∗

1)(F )) − w ◦ π∗
1(D(F )).
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On the other hand π′
1(D

∗(w))(F ) = (D∗(w)◦π∗
1)(F ) = D(w(π∗

1(F )))−
w(DW (π∗

1(F )).
But clearly D((w ◦ π∗

1)(F )) = D(w(π∗
1(F ))) and w ◦ π∗

1(DV (F )) =
w(DV (π∗

1)(F )).
The proof is similar for π′

2. 2

Lemma 4.5 Let K ⊆ K1 = acl(K1). Let V1 be the (σ,D)-locus of a over
K1, and let c be the field of definition of V1. Then c ⊆ Cb(qftp(a/K1)) ⊆
acl(K, c).

proof:
Clearly c ⊆ Cb(qftp(a/K1)). We know that a |̂

K,cK1 in DCF , also
σi(Dja) ⊆ K(a)alg; then aclσ,D(K, a) |̂

K,cK1 in ACF, thus
Cb(qftp(a/K1)) ⊆ acl(K, c). 2

Remark 4.6 If we replace a by (a, σ(a), · · · , σm(a)) for m large enough,
c and Cb(qftp(a/K1)) will be interdefinable over K(choose m for which
the Morley rank of tpDCF (σm(a)/K(a, · · · , σm−1(a))) is minimal and for
which the Morley degree of tpDCF (σm(a)/K(a, · · · , σm−1(a))) is minimal)
.

Lemma 4.7 Let K ⊆ K1 = acl(K1). Let V1 be the locus of a over K1.
Then Jm(V1)a is a (σ,D)-submodule of Jm(V )a.

proof:
Clearly J(V1)a is a D-submodule of Jm(V )a. Let W1 be the locus

of (a, σ(a)) over K1. Let f1 be the isomorphism between Jm(V1)a and
Jm(V σ

1 )σ(a) induced by the projections from W1 onto V1 and (V1)σ ; since
these projections are the restrictions of the projections from W onto V
and V σ, f1 ⊆ f . So Jm(V1)a is a σ-submodule of Jm(V )a. 2

Theorem 4.8 Let (U , σ,D) be a saturated model of DCFA and let K =
acl(K) ⊆ U . Let tp(a/K) be finite-dimensional (i.e. tr.dg(K(a)σ,D/K) <
∞). Let b be such that b = Cb(qftp(a/acl(K, b))). Then tp(b/acl(K, a))
is almost-internal to Fixσ ∩ C.

proof:
By assumption, trdg(K(a)σ,D/K) is finite. Enlarging a, we may as-

sume that a contains a transcendence basis of K(a)σ,D over K. Then
σ(a),Da ∈ K(a)alg and D2(a) ∈ K(a,Da). Hence we may assume that
Da ∈ K(a).
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Let V be the locus of a over K , W the locus of (a, σ(a)) over K, thus
V σ is the locus of σ(a) over K.

Let V1 be the locus of a over acl(K, b); let b1 be the field of definition
of V1. By 4.5 b ∈ acl(K, b1).

By 4.2 for each m > 1 there is a (Fixσ∩C)-basis of Jm(V )\a which is a
U-basis of Jm(V )a. Choose such a basis dm such that d = (d1, d2, · · · ) |̂

K,ab.
Then for each m we have an isomorphism between Jm(V )\a and
(C ∩ Fixσ)rm for some rm. Thus the image of Jm(V1)

\
a in (Fixσ ∩ C)rm

is a (Fixσ ∩ C)-subspace of (Fixσ ∩ C)rm and therefore it is defined over
some tuple em ⊆ Fixσ∩C; let e = (e1, e2, · · · ). If τ is an automorphism of
(U , σ,D) fixing K, a, d, e, then Jm(V1)a = τ(Jm(V1)a); on the other hand,
τ(Jm(V1)a) = Jm(τ(V1))a, thus for all m > 1, Jm(V1)a = Jm(τ(V1))a and
by 2.3 τ(V1) = V1, thus τ(b1) = b1 which implies that b1 ∈ dcl(K, a, d, e).
Hence b ∈ acl(K, a, d, e). Since e ⊆ Fixσ ∩ C and d |̂

Kab, this proves our
assertion. 2

As in [8], we deduce the dichotomy theorem.

Corollary 4.9 If tp(a/K) is of SU -rank 1 and finite-dimensional, then
it is either 1-based or non-orthogonal to Fixσ ∩ C.

Proof:
We suppress the set of parameters. Let p = tp(a). If p is not 1-

based there is a tuple of realizations d of p and a tuple c such that
c = Cb(qftp(d/c)) 6⊆ acl(d). Then tp(c/d) is non-algebraic and by 4.8 it is
almost-internal to Fixσ∩C. As tp(c/d) is p-internal we have p 6⊥ Fixσ∩C.
2

We conclude with an application to definable groups of DCFA. We
need the following lemmas on quantifier-free stable groups.

Lemma 4.10 Let M be a simple quantifier-free stable structure which
eliminates imaginaries. Let G be a connected group, quantifier-free de-
finable in M defined over A = acl(A) ⊆ M . Let c ∈ G and let H be
the left stabilizer of p(x) = qftp(c/A). Let a ∈ G and b realize a non-
forking extension of p(x) to acl(Aa). Then aH is interdefinable over A
with Cb(qftp(a·b/A, a)). Likewise with right stabilizers and cosets in place
of left ones, and b · a instead of a · b.

proof:

Let q be the quantifier-free type over M which is the non-forking exten-
sion of p. Then aq is the non-forking extension to M of qftp(a · b/Aa). So
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we must prove that for every automorphism τ ∈ Aut(M/A), τ(aH) = aH
if and only if τ(aq) = aq.

Since q is A-definable, τ(q) = q, and τ(aq) = τ(a)τ(q) = τ(a)q. Thus
τ(aq) = aq if and only if a−1τ(a)q = q. But H = {x ∈ G : xq = q},
then a−1τ(a) ∈ H if and only if τ(a)H = aH, and as H is Aa-definable,
τ(aH) = τ(a)H. 2

Lemma 4.11 Let M be a simple quantifier-free stable structure which
eliminates imaginaries. Let G be a connected group, quantifier-free defin-
able in M defined over A = acl(A) ⊆ M . Let c ∈ G, let H be the left
stabilizer of qftp(c/A) and let a ∈ G be a generic over A∪ {c}. Then Hc
is interdefinable with Cb(qftp(a/A, c · a)) over A ∪ {a}

proof:
We may assume A = ∅. Let p = qftp(c/A). We know that H is the

right stabilizer of p−1, on the other hand, since a is a generic of G we have
c |̂ c · a. By 4.10, Hc · a is interdefinable with Cb(qftp(c−1(c · a)/c · a)).
Since H is ∅-definable, Hc · a is interdefinable with Hc over a. 2

Corollary 4.12 Let (U , σ,D) be a model of DCFA, and let K = acl(K) ⊆
U . Let G be a finite-dimensional quantifier-free definable group, defined
over K. Let a ∈ G and let p(x) = qftp(a/K). Assume that p has trivial
stabilizer. Then p is internal to Fixσ ∩ C.

proof:
Let b ∈ G be a generic over K ∪ {a}. By 4.11 a is interdefinable with

Cb(qftp(b/K, a · b)) over K ∪{b} and by 4.8, tp(Cb(qftp(b/K, a · b))/K, b)
is internal to C ∩Fixσ. Thus tp(a/K, b) is internal to Fixσ∩C; and since
a |̂

Kb, tp(a/K) is internal to Fixσ ∩ C. 2
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