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Abstract

When cash becomes available in a company, there are several strategies that allow
us to benefit from it. The problem is how much to invest, for how long, and using which
of the investment options in order to get the maximum profit out of it. A common
problem in business administration is that we do not want to keep the money idle in
the checking account, neither to over-invest. When the cash function becomes negative
an analogous scheme is used as we want to pay as little interests as possible. In this
paper we are reporting the experiments and implementation of several heuristics that
can be used with the greedy algorithm and how well they behave. Finally we develop
a hybrid algorithm that takes the best of the greedy algorithm and performs a very
limited search. We find in this work that with the greedy algorithm we use, in general
is not possible to optimize the profit for a given function; nevertheless the algorithm
we use can find profits that are very close to the optimum and in some cases it gets
the optimum. The proposed algorithm use a heuristic search based on the greedy
scheme and greedy selection criteria to find profits close to the optimum. A software
application was developed in order to show that the proposed strategy really works.
Although this algorithm is suboptimal, it is very efficient in terms of time.
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Resumen

Cuando se tiene disponibilidad de dinero en efectivo en una compañ́ıa, existen
varias estrategias que nos permiten obtener beneficios de éste. El problema es deter-
minar cuanto invertir, por cuanto tiempo y que opciones de inversión usar para obtener
la máxima utilidad. Un problema común en la administración de negocios es que no se
quiere mantener el efectivo ocioso en la cuenta de cheques, ni tampoco sobre invertir.
Cuando la función de dinero disponible es negativa, se utiliza un esquema análogo, en
este caso se busca pagar la menor cantidad de dinero por intereses generados. En este
art́ıculo estamos reportando los experimentos e implementación de varias heuŕısticas
que pueden ser usadas con el algoritmo voraz, donde analizamos su desempeño. Fi-
nalmente se desarrolla un algoritmo h́ıbrido que toma el mejor resultado de varias
heuŕısticas utilizando el algoritmo voraz y hace una búsqueda muy limitada. En este
trabajo encontramos que con el algoritmo voraz utilizado, no es posible optimizar en
general la utilidad para un problema dado; sin embargo, el procedimiento utilizado
puede encontrar utilidades muy cercanas al óptimo y en ocasiones conseguir el óptimo.
Se desarrolló una aplicación computacional para mostrar que la estrategia propuesta
realmente funciona. Aunque el algoritmo propuesto es subóptimo, es muy eficiente en
tiempo de procesamiento.

Palabras clave: Razonamiento de sentido común, representación de conocimiento, toma
de decisiones, algoritmos voraces, análisis financiero.

Mathematics Subject Classification: 00A72, 90C27, 90C90, 68W25

1 Introduction

In the real world there are several problems that are very difficult in its essence because
the number of possible solutions fall in the combinatory field; that is the case of the
problem we are tackling in this paper. To find the best combination of investment or
credit assignment options among all that can occur is not an easy task.

When cash becomes available in a company there is a problem of major interest for
managers. A good example of it is to find the best mix of investment assignment options
in order to get the maximum profit out of it.

If you are not to invest in real estate or other assets, you may choose a different
investment option; fixed interest can be an important part of everyone’s asset allocation
strategy with low risk where the money you are handling earns some interests through
time. The main problem in this case is to find how much to invest, for how long, and
using which of the available investment options. You do not want to keep the money in
the checking account, because it would not produce any profits; neither do you want to
invest too much, because you will need that money to operate your company.

On the other hand, if you run out of money, you need to get a loan to keep your
business working until the money becomes available again; that means you have to find
the best mix of credit assignment options in order to minimize the cost of the money.
In this case, you do not want to borrow more than necessary and pay interests for idle
money; neither do you want to borrow less, or you will run out of cash.
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Section 2 defines the problem we are assessing. Section 3 presents a recursive solution
to the problem and its selection criteria. Section 4 reports the results of the heuristics used
with the greedy approach and implementation. Finally, section 5 gives the conclusions and
discusses possible extensions to the present work.

2 Problem statement

Our problem starts with a cash availability time series, where F (ti) represents available
cash at time ti, for i = 1, 2, ..., n, which will be called F from now on. F can be obtained
using the total amount of cash available at any moment, those quantities result from
planning the incomes and expenses that the company will have during the exercise.

Figure 1: Cash Availability Function F .

Figure 1 represents an example of F that will be used to illustrate the different concepts
and algorithms exposed throughout this paper.

As mentioned in the introduction, we do not want the available cash to sit idle, not
producing any profits. On the contrary, our aim is to find the best mix of investment
assignment options in order to get the maximum profit out of it. Figure 2 shows the
investment options used in our example. Each option have a name, a minimum time to
invest, a minimum amount of money, and an annual percentage rate APR for every option.
The investment options are ordered by monotonically decreasing APR. Also, each option
is assigned a color, that will be useful in the visualization of the solution.

When F becomes negative, we have a situation where we need to spend money that
is not available. In such cases, we need to use a loan. Similarly to investments, we do not
want to run short and use a smaller loan than needed. Neither do you want to use a larger
loan and have to pay interest for money you are not going to use. For this particular case,
it occurs the opposite in an available loan options scheme, as we borrow more money at a
longer time, we will have an annual percentage rate that falls.
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Figure 2: Available Investment Options.

An investment optimization problem, by the above definitions, is represented as a
triplet (F, I, L), where F is the cash availability time series as mentioned before, I and L
are the available investment and loan options, respectively.

2.1 Investment options assignment

An assignment is a triplet (inv, interval, amount), meaning we are going to invest an
amount of money for a period of time interval, using an investment option inv; interval
is given by the initial and final times of the investment assignment. The investment option
inv is given by the available investment options AIO where each element of the list has
(see figure 2):

• An investment name inv.

• Minimum time to invest MTI.

• Minimum amount to invest MAI.

• Annual percentage rate APR.

An assignment A, given by (inv, interval, amount), is considered feasible if it satisfies
the following constraints:

inv ∈ AIO (1)

|interval| ≥ MTI (2)

amount ≥ MAI (3)

where
|interval| = tfinal − tinitial (4)
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amount = mint∈interval(F (t)) (5)

An assignment A is represented by a rectangular area made up of amount (height)
and interval (width); each assignment has an investment option inv and a specific annual
percentage rate APR, associated to option inv.
The value of a rectangular object i is the profit or return that our investment yields and
is given by (6):

valuei = |intervali|amountiAPRi
1

(12)(100)
(6)

We define the weight of each object as in (7)

weighti = |intervali|amounti (7)

2.2 Loan options assignment

Each assignment A is represented by an interval that is the loan time, an amount of
cash we need to borrow using a loan option loan. An assignment is thus a triplet
(loan, interval, amount), meaning we are going to borrow an amount of money for a
period of time interval, using a loan option loan. Interval is given by an initial and final
time of the loan assignment. The loan option loan is given by the available loan options
ALO where each element of the list has:

• A loan name loan.

• Minimum time to borrow MTL.

• Minimum amount for the loan MAL.

• Annual percentage rate APR.

An assignment A given by (loan, interval, amount) is considered feasible if it satisfies
the following constraints:

loan ∈ ALO (8)

|interval| ≥ MTL (9)

amount ≥ MAL (10)

where
|interval| = tfinal − tinitial (11)

amount = min(F (tinitial), F (tfinal)) (12)

An assignment A is represented by a rectangular area made up of amount (height) and
interval (width), each assignment has a loan option loan and a specific annual percentage
rate APR.
The value of a rectangular object i is the cost of the loan and is given by (13):

valuei = |intervali|(−amounti)APRi
1

(12)(100)
(13)
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We define the weight of each object as in (14)

weighti = |intervali|amounti (14)

2.3 Objective function and constraints

Our objective is to find the possible assignments set that maximize the profit of invest-
ments, and minimize the cost of the credits.

For an investment scheme, the problem could be seen as a total area under a discrete
curve that is equals to the total weight W , to be filled by rectangular objects Oi for
i = 1, 2, ..., n. The ith object should have a positive weighti and a positive valuei where
the total sum of its values be maximized and the total sum of its weights be less than or
equal to W .

maximize

n∑

i=1

valuei (15)

For a loan scheme, where F becomes negative, everything remains the same but the total
sum of its values should be minimized.

minimize
n∑

i=1

valuei (16)

(15) and (16) are subject to the following constraint

n∑

i=1

weighti ≤ W (17)

where valuei > 0, weighti > 0 for 1 ≤ i ≤ n

3 A recursive solution

We have an optimization problem, is a computational problem where the goal is to find
the best of all possible solutions. More formally, we need to find a solution in the search
space defined by the problem which maximizes Eq. 15 or minimizes Eq. 16.

The available investment or credit options yield a value given by Eqs. 6 and 13 respec-
tively, to the different money assignments in a given period of time. These assignments
could be seen as rectangular objects that fit under the curve F with a specific value and
weight defined in Eqs. 7 and 14.

Next, we give the definition of a basic greedy assignment:

A = (F [ti..tf ], I, L) (18)

which takes as a parameter an array F [ti..tf ] containing a sequence of length n that is to
be evaluated, where ti is the initial time, tf is the final time and represents the available
cash for a given problem, I is an assignment for investments and L is an assignment
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for loans; an assignment is thus a triplet (inv|loan, interval, amount) as defined in the
previous section; given the basic greedy assignment the three subproblems are defined as
follows:

Figure 3: Plot of function F with the first basic assignment.

LEFT = (F [t ≤ ti], I, L) (19)

TOP = (F [ti..tf ] − amount, I, L) (20)

RIGHT = (F [t ≥ tf ], I, L) (21)

Given the above definitions and those in the preceding section, the problem reduces to
determine a set of assignments that patch the area under the function F . We can start the
patching by determining a basic greedy assignment. Once this basic greedy assignment
is selected by one of the selection criteria listed in the following section, the problem
reduces to three similar subproblems of lower complexity. The subproblems are identified
as LEFT , RIGHT and TOP . Figure 3 shows the first basic assignment for our example.

The definitions given in Eqs. 18, 19, 20 and 21 are basis for the algorithm GIA
proposed by Flores et al. in [3].

Algorithm GIA (Greedy Investment Assignment) takes a problem and returns a set of
investment (or loan) assignments. Algorithm GIA is the general strategy used to obtain
investment or loan assignments, where A is the basic assignment and LEFT , TOP and
RIGHT contain the assignments that provide solutions for their respective subproblems.
LEFT , TOP and RIGHT subproblems are solved recursively, and then their solutions
combined to solve the original problem (see figure 4).

Figure 5 shows a complete solution for the example problem corresponding to the best
solution found by our procedure.
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GIA(F, I, L)
if(F 6= ∅) then
A = basic assignment(F [ti..tf ], I, L)
LEFT = GIA(F [t ≤ ti], I, L)
TOP = GIA(F [ti..tf ] − amount, I, L)
RIGHT = GIA(F [t ≥ tf , I, L])
return A + LEFT + TOP + RIGHT

Figure 4: Greedy Investment Assignment Algorithm.

Figure 5: Complete solution for the example problem.

The following subsections mention the greedy strategies used to make the choice from
a set of feasible assignments. How do we choose our basic greedy assignment from all
possible feasible assignments? Here, the greedy algorithm chooses the basic assignment
using one of the selection criteria and then recursively makes the choices in the LEFT ,
RIGHT and TOP subproblems. A greedy algorithm obtains an optimal solution to a
problem by making a sequence of choices. For each decision point in the algorithm, the
choice that seems best at the moment is chosen [2]. This heuristic strategy does not always
produce an optimal solution, but sometimes it does.

In the algorithm proposed in this paper, the choice is done by selection criteria func-
tions to maximize the total sum of all the feasible assignments values for investments or
minimize the total sum of all the feasible assignments values for loans. In order to get the
best results using the greedy strategy, algorithm GIA (see figure 4) was implemented and
tested with a set of randomly generated problems.
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3.1 APR

Select the most valuable item per unit weight is a strategy used in the fractional knapsack
problem. The fractional knapsack problem is defined as: Given materials of different
values per unit weight and maximum amounts, find the most valuable mix of materials
which fit in a knapsack of fixed weight. Since we may take pieces (fractions) of materials,
a greedy algorithm finds the optimum. Take as much as possible of the material that
is most valuable per unit weight. If there is still room, take as much as possible of the
next most valuable material. Continue until the knapsack is full [1, 4]. We can map the
knapsack problem to our problem, as we have rectangular objects with a value defined in
Eqs. 6 and 13, and a weight given by Eqs. 7 and 14.

We give the ith item its weight by the product intervali times amounti, corresponding
to an area, since we have to patch the area under the discrete function curve F with the
rectangular objects. So we could make the choice by selecting the objects in decreasing
order of valuei/weighti that is by its APR.

It is therefore not surprising that if we choose the rectangular object with the largest
APR is like taking as much as possible of the material that is most valuable per unit
weight. In the long run, this strategy yields very good results, as we can fill up the total
area under the curve with the best APR available in each step of the algorithm, resulting
in a high value of the total sum of its values; according to Eqs. 6 and 19, the APR times
the object weight yields its value. A problem arise when there are more than one objects
with the same largest possible APR, in this case we use a limited search algorithm.

3.2 Interval

Another element used as selection criteria is the length of the interval (i.e. duration of
the investment), which is very important as we can fill the total area of a given F choosing
the objects by the largest possible interval; this strategy yields very good results as we
can find large APR values and cover a space that allows to fill the remaining available
area by large rectangles instead of small ones.

3.3 Interval multiplied by powers of APR

The selection criterion used in this greedy strategy is to choose the item with the largest
value of interval multiplied by APR raised to the ith power, where i = 0, 1, ..., 15. This
way, our recursive algorithm GIA computes a solution to every integer i. The greedy
algorithm GIA computes 16 possible solutions to a given problem and takes the solution
with the maximum value. This is the best strategy used; its importance is based on trying
different assignments, from the widest item to a tallest one, all of them with a high value
of APR and not necessarily with the highest one.

3.4 APR using a limited search

A problem arise when there are more than one objects with the same largest possible
APR, in this case we use a limited search algorithm. First choose one of the objects with
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the same largest APR, solve the LEFT , RIGHT and TOP subproblems with the greedy
strategy choosing the object with the largest value of APR and the longest interval,
keeping the sum of values of all the objects picked at each step of the algorithm until the
total area is full. Then try with the next object and if the total sum per unit weight is
greater than the one we have, the object is marked and continue until there is no more
objects with the same APR. The next step is to run the algorithm once more, but now
the marked object is selected as the basic greedy assignment and continue with the next
level at the TOP subproblem. This way we build an implicit tree where the root is the
main problem, then the nodes at the first level are the objects with the largest possible
APR, once we choose one of those objects, the next level is constructed by the largest
possible APR objects at the TOP subproblem. This procedure is done until there is no
room for more objects.

3.5 APR and longest Interval

From the set of items with the largest APR choose the item with the longest interval.

3.6 First and last largest APR

This greedy strategy choose the first found item with the largest APR from a set of items
with the largest APR, then run the algorithm once more and choose the last found item
from the same set. Usually, the first formed rectangle with the largest APR value has a
point in the left part of the function and the last formed rectangle has a point in the right
part of the function. At the end of the procedure we just take the best of both results.

In order to get better results, the greedy algorithm GIA was modified as follows. When
a subproblem has a sequence of points either monotonically increasing or monotonically
decreasing, the algorithm GIA changes the greedy selection strategy and solves the sub-
problem with the best of strategies presented in subsections 3.2 and 3.6, test both and
takes the one which yields the best results.

4 Results

Computation of the optimal investment assignments set for a given problem is a non-
trivial task for managers, specially if the number of points in F is large and the available
investment or loan options grow in size.

Since we are proposing an approximation algorithm, its performance is measured
through a ratio between the solution value found by the algorithm GIA and the opti-
mal solution value from the brute force procedure; this ratio is represented in percent,
showing how close our solution is to the optimal and will be called optimality ratio.

In order to test our procedure performance, we developed an implementation (Java
applet available at http://lsc.fie.umich.mx/∼javila/g-applet.html) of the proposed algo-
rithm and greedy strategies mentioned in this paper. As we could not find a similar work
to compare our results, we run a search with the brute force approach to get the optimum
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from a set of 1000 randomly generated test problems. To date the brute force implemen-
tation presented in this paper has solved 416 from all test problems; as problems grow in
size its complexity increases and an exponential-time to solve them appears.

For an example of this, the solution of a function with 24 points and 2 peaks using
semi-exhaustive search, explores 11,776’527,164 nodes and generates 3,589’656,852 possi-
ble solutions. In terms of time, exploring this amount of nodes represents a computational
time of 71 days in a PC with a Pentium III processor at 797 MHz. in a LINUX plat-
form and a software programmed in Lisp, using the same hardware, our greedy approach,
programmed in Java takes just 1.41 seconds and the optimality ratio is 99.997%. The
statistics for the results are shown in table 1, and the performance of heuristic strategies
in table 2.

Optimality Ratio Average µ 99.89%
Standard Deviation σ of Optimality Ratio 0.307
µ ± 1σ 94.9%
µ ± 2σ 97.3%
µ ± 3σ 98.5%
Optimal Solutions 40%

Table 1: Statistical Results from Data.

Heuristic as Optimality Contribution
selection criterion ratio average (%) to solution (%)

Interval multiplied by powers of APR 99.84 81.2
APR using a limited search 98.12 15.5
APR and longest interval 97.68 1.3
First and last largest APR 97.37 2.0

The best of the above 99.89 100.0

Table 2: Performance of Heuristic Strategies.

The efficiency of each heuristic (see table 2), is measured through a ratio between the
contribution to solution and the time it takes to produce its results. According to the
contribution to solution is the efficiency of the presented heuristics.

We plotted the optimality ratio vs. explored nodes and is shown in figure 6. This
plot gives us a clue on the procedure performance. Note that our results are very explicit
and the trend does not fall as the number of explored nodes increases. Figure 7 shows
a histogram with the optimality percentage frequency in the 416 solved problems by the
semi-exhaustive procedure.



136 J. Flores – J. Avila – F. González – B. Flores Rev.Mate.Teor.Aplic. (2006) 13(2)

Figure 6: Optimality Ratio Vs. Explored Nodes in Experimental Data.

Figure 7: Optimality Ratio Frequency in Experimental Data.
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5 Conclusions

In our problem, the number of objects or items of each type is unbounded, there could
be as many objects as feasible assignments could fit the available area of a problem or
subproblem at each step of the recursion. There is an analogy between our problem and
the unbounded knapsack problem (an NP-hard combinatorial optimization problem [4]),
in both problems, given items of different values and weights we have to find the most
valuable set of items that fit a container with a fixed weight. In the former not just the
items weight has to be considered but the shape to fit. Then we could see our problem as
a puzzle instead as a knapsack or a bag, where the objects to fill the puzzle are items of
different values, weights and shapes.

A brute force approach was used in order to solve the experimental randomly generated
problems. This brute force search finds the optimum value trying every possible solution
and is exponential in the input length.

The best heuristic used as selection criterion is Interval multiplied by powers of APR
(see table 2), this heuristic has the best optimality ratio average, the greatest contribution
to solution and, as one might expect, is the most efficient, as mentioned in the previous
section. Note that for very large-size problems the number of powers must be modified to
a greater number (see subsection 3.3).

To evaluate the performance in the search strategy and greedy functions used in the
procedure to find the best mix of investment options, we cite some criteria used by [5]:

Completeness: is the strategy guaranteed to find a solution when there is one? The
procedure presented in this work did find a solution in all 1000 randomly generated test
problems.

Processing time: how long does it take to find a solution? The estimated time our
procedure takes to find a solution to all experimental functions is around 5 minutes.

Optimality: does the strategy find the highest-quality solution when there are several
different solutions? In a sample of 416 randomly generated test problems of different sizes,
our strategy finds an optimality ratio average of 99.89%.

An extension of this paper will be to deal with uncertainty; in this paper we assume
a crisp planning horizon, we are aware that this limitation could be improved by using
fuzzy mathematical techniques [6].
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