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Abstract

In this paper we prove that the generalized functions δ(k)(P+)−δ(k)(P ), δ(k)(P−)−
δ(k)(−P ) and δ

(k)
1 (P ) − δ

(k)
2 (P ) are concentrated in the vertex of the cone P = 0 and

we find their relationship with the ultrahyperbolic operator iterated (k +1− n
2 ) times

under condition k ≥ n
2 − 1.

Keywords: distributions, generalized functions, distributions spaces, properties of distri-
butions.

Resumen

En este trabajo se prueba que las funciones generalizadas δ(k)(P+) − δ(k)(P ),
δ(k)(P−)−δ(k)(−P ) yδ

(k)
1 (P )−δ

(k)
2 (P ) están concentradas en el vértice del cono P = 0

y encontramos sus relaciones con el operador ultrahiperbólico iterado (k+1− n
2 ) veces

bajo la condición k ≥ n
2 − 1.

Palabras clave: distribuciones, functiones generalizadas, espacios de distribuciones, propiedades
de distribuciones.
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1 Introduction

Let x = (x1, x2, · · · , xn) be a point of the n-dimensional Euclidean space Rn.
Consider a quadratic form in n variables defined by

P = P (x) = x2
1 + . . .+ x2

p − x2
p+1 − . . . − x2

p+q (1)
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where p+ q = n is the dimension of the space.
We call ϕ(x) the C∞ functions with compact support defined from Rn to R ([2],page

4).
From [1], page 253, formula (2), the distribution P λ

+ is defined by

(
P λ

+, ϕ
)

=
∫

P>0
(P (x))λϕ(x)dx (2)

where λ is a complex number and dx = dx1dx2 . . . dxn . For Real(λ) ≥ 0, this integral
converges and is analytic function of λ. Analytic continuation to Real(λ) < 0 can be used
to extend the definition of

(
P λ

+, ϕ
)
. Further from [1], page 254, we have,

(
P λ

+, ϕ
)

=
∫ ∞

0
u

λ+ p+q
2

−1
q Φλ(u)du (3)

where

qΦλ(u) =
1
4

∫ ∞

0
t

q−2
2 (1 − t)λφ1(u, tu)dt (4)

φ(r, s) = φ1(u, v) (5)

φ(r, s) =
∫
ϕdΩpdΩq, (6)

r = 2

√
x2

1 + · · · + x2
p , (7)

s = 2

√
x2

p+1 + . . . x2
p+q , (8)

dΩp and dΩq are elements of surface are on the unit sphere in Rp and Rq respectively.
Similarly we can also defined the generalized Pλ

− by

(
P λ
−, ϕ

)
=

∫

−P>0
(−P (x))λϕ(x)dx. (9)

Further we obtain (
P λ
−, ϕ

)
=

∫ ∞

0
v

λ+ p+q
2

−1
p Φλ(v)dv (10)

where

pΦλ(u) =
1
4

∫ ∞

0
t

p−2
2 (1 − t)λφ1(vt, v)dt. (11)

From (1) the P = 0 hypersurface is a hypercone with a singular point (the vertex) at the
origin.

On the other hand, from [1], page 249, we have,

(
δ(k)(P ), ϕ

)
=

∫ ∞

0

[(
∂

2s∂s

)k {
sq−2φ(r, s)

2

}]

s=r

rp−1dr (12)
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and (
δ(k)(P ), ϕ

)
= (−1)k

∫ ∞

0

[(
∂

2r∂r

)k {
rp−2φ(r, s)

2

}]

r=s

sq−1ds (13)

where φ(r, s) is defined by the equation (6).
Also from [1], page 250, the generalized functions δ(k)

1 (P ) and δ(k)
2 (P ) are defined by

(
δ
(k)
1 (P ), ϕ

)
=

∫ ∞

0

[(
∂

2s∂s

)k {
sq−2φ(r, s)

2

}]

s=r

rp−1dr (14)

and (
δ
(k)
2 (P ), ϕ

)
= (−1)k

∫ ∞

0

[(
∂

2r∂r

)k {
rp−2φ(r, s)

2

}]

r=s

sq−1ds (15)

where φ(r, s) is r1−ps1−q multiplied by the integral of ϕ over the surface x2
1+x

2
2+· · · x2

p = r2

and x2
p+1 + x2

p+2 + · · · x2
p+q = s2.

The integrals converges and coincide for

k <
p+ q − 2

2
. (16)

If, on the other hand,

k ≥ p+ q − 2
2

(17)

these integrals must be understood in the sen se of their regularization (see [1], page 250).
Now in general δ(k)

1 (P ) and δ(k)
2 (P ) may not be the same generalized function.

Note that the definition of these generalized functions implies that in any case

δ
(k)
2 (P ) = (−1)kδ(k)

1 (−P ). (18)

From [1], page 278, the following formulae are valid,

δ(k)(P+) = (−1)kk!Resλ=−k−1P
λ
+ (19)

and
δ(k)(P−) = (−1)kk!Resλ=−k−1P

λ
− . (20)

On the other hand, from [1], page 278, for odd n, as well as for even n and k < n
2 − 1 we

have,
δ(k)(P+) = δ

(k)
1 (P ) = δ(k)(P ) (21)

and
δ(k)(P−) = δ

(k)
1 (−P ). (22)

While in the case of even dimension and k ≥ n
2 − 1

δ(k)(P+) − δ
(k)
1 (P ) (23)
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and
δ(k)(P−) − δ

(k)
1 (−P ) (24)

are generalized functions concentrated at the vertex of the P = 0 cone ([1],page 279).
From [1], page 279 we have:
If p and q are both even and if k ≥ n

2 − 1, then

(−1)kδ(k)(P+) − δ(k)(P−) = aq,n,kL
k+1−n

2 {δ(x)} (25)

while in all other cases
δ(k)(P−) = (−1)kδ(k)(P+) . (26)

In (25)

aq,n,k =
(−1)

q
2π

n
2

4k−n
2
+1(k − n

2 + 1)!
(27)

and Lj is a linear homogeneous diferential operation iterated j times defined by the
following formula

Lj =

{
∂2

∂x2
1

+ . . .
∂2

∂x2
p

− ∂2

∂x2
p+1

− · · · − ∂2

∂x2
p+q

}j

. (28)

The operator L =
{

∂2

∂x2
1

+ . . . ∂2

∂x2
p
− ∂2

∂x2
p+1

− · · · − ∂2

∂x2
p+q

}
is often called ultahyperbolic.

From [1], page 255,
(
P λ

+, ϕ
)

has two sets of singularities namely

λ = −1,−2,−3, . . . (29)

and
λ = −n

2
,−n

2
− 1, . . . (30)

and from [1], pages 256-269 and page 352 we have ([4], page 139, formula (2.27)):

Resλ=−k−1P
λ
+ =

(−1)k

k!
δ
(k)
1 (P ) if p is even and q odd, (31)

Resλ=−k−1P
λ
+ =

(−1)k

k!
δ
(k)
1 (P ) if p is odd and q even, (32)

Resλ=−n
2
−kP

λ
+ = 0 if p is even and q odd (33)

and

Resλ=−n
2
−kP

λ
+ =

(−1)
q
2π

n
2

4kk!Γ(n
2 + k)

Lk {δ(x} if p is odd and q even. (34)

where Lk is defined by the formula (28).
Similarly

(
P λ
−, ϕ

)
has singularities in the same points that

(
P λ

+, ϕ
)

and taking into
account all that we have above about P λ

+ remains true also for P λ
− except that p and q

must interchanged, and in all the formulae δ(k)
1 (P ) must be peplaced by

δ
(k)
1 (−P ) = (−1)kδ(k)

2 (P ) (35)
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and (L) by (−L) (see ([1]), pages 279 and 352) we have,

Resλ=−k−1P
λ
− =

(−1)k

k!
δ
(k)
1 (−P ) if p is odd and q even, (36)

Resλ=−k−1P
λ
− =

(−1)k

k!
δ
(k)
1 (−P ) if p is even and q odd, (37)

Resλ=−n
2
−kP

λ
− = 0 if p is odd and q even (38)

and

Resλ=−n
2
−kP

λ
− =

(−1)
p
2π

n
2

4kk!Γ(n
2 + k)

(−L)k {δ(x} if p is even and q odd. (39)

If the dimension n of the space is even and p and q are even, Pλ
+ has simple poles at

λ = −n
2 − k,where k is non-negative integer, and the residues are given by ([1], p.268 and

[4], p.141)

Resλ=−n
2
−k,k=0,1,2,..P

λ
+ =

(−1)
n
2
+k−1

Γ(n
2 + k)

δ
(n

2
+k−1)

1 (P ) + (40)

+
(−1)

q
2π

n
2

4kk!Γ(n
2 + k)

Lk {δ(x} , (41)

where Lk is defined by (28).
If, on the other hand, p and q are odd, P λ

+ has pole of order 2 at λ = −n
2 − k and from

[1], p.269 and [4], p.143, we have

Resλ=−n
2
−kP

λ
+ =

(−1)
n
2
+k−1

Γ(n
2 + k)

δ
(n

2
+k−1)

1 (P ) + +
(−1)

q+1
2 π

n
2
−1

22kk!Γ(n
2 + k)

[
ψ(
p

2
) − ψ(

n

2
)
]
· Lk {δ(x)} ,

(42)
where

ψ(x) =
Γ‘(x)
Γ(x)

. (43)

and Γ(x) is the function gamma defined by

Γ(x) =
∫ ∞

0
e−zzx−1dz. (44)

([3], Vol.I, p.344).
For integral and half-integral values of the argument, ψ(x) is given by

ψ(k) = −γ + 1 +
1
2

+ · · · + 1
k − 1

, (45)

ψ(k +
1
2
) = −γ − 2 ln(2) + 2

(
1 +

1
3

+ · · · + 1
2k − 1

)
, (46)

where γ is Euler’s constant.
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Similarly

Resλ=−n
2
−kP

λ
− =

(−1)
n
2
+k−1

Γ(n
2 + k)

δ
(n

2
+k−1)

1 (−P ) + +
(−1)

p
2 π

n
2

4kk!Γ(n
2 + k)

(−L)k {δ(x} (47)

if p and q are even, and

Resλ=−n
2
−kP

λ
− =

(−1)
n
2
+k−1

Γ(n
2 + k)

δ
(n

2
+k−1)

1 (−P )++
(−)1

p+1
2 π

n
2
−1

22kk!Γ(n
2 + k)

·
[
ψ(
q

2
) − ψ(

n

2
)
]
(−L)k {δ(x)}

(48)
if p and q are odd

2 Relations of k-th derivative of Dirac delta in hypercone

with ultrahyperbolic operator

In this paragraph we prove that generalized functions δ(k)(P+) − δ
(k)
1 (P ) and δ(k)(P−) −

δ
(k)
1 (−P ) are concentrated in the vertex of the cone P = 0.

Theorem 1 Let k be non-negative integer and n even dimension of the space then the
following formulae are valid,

δ(k)(P+) − δ
(k)
1 (P ) = Bk,p,qL

k−n
2
+1 if k ≥ n

2
− 1 (49)

where

Bk,p,q =
(−1)k(−1)

q
2π

n
2

4k−n
2
+1(k − n

2 + 1)!
for p and q are both even, (50)

and

Bk,p,q = (−1)k(−1)
q+1
2 π

n
2 −1

4k−n
2 +1(k−n

2
+1)!

.

[
ψ(p

2 ) − ψ(n
2 )

]
.Lk−n

2
+1 {δ(x)} for p and q are both odd.

(51)

proof: From (41),(47) and considering the formulae (19) and (20) under conditions k ≥
n
2 − 1,and when p and q are even, we have

δ(k)(P+) − δ
(k)
1 (P ) = (−1)kaq,n,kL

k−n
2
+1 {δ(x)} . (52)

where aq,n,k is defined by (27).
Similarly from (42), (48) and considering the formulae (19) and (20) under conditions
k ≥ n

2 − 1,and when p and q are odd, we have

δ(k)(P+) − δ
(k)
1 (P ) = (−1)k(−1)

q+1
2 π

n
2 −1

4k−n
2 +1(k−n

2
+1)!

.

[
ψ(p

2 ) − ψ(n
2 )

]
.Lk−n

2
+1 {δ(x)} for p and q are both odd.

(53)
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From (52) and (53) we obtain the formula (49),(50) and (51) which proves the theorem.

The formula (49) represent a relation between δ(k)(P+) − δ
(k)
1 (P ) and the ultrahyper-

bolic operator iterated k − n
2 + 1 times under condition k ≥ n

2 − 1.

Theorem 2 Let k be non-negative integer and n even dimension of the space, then the
following formulae are valid:

δ(k)(P−) − δ
(k)
1 (−P ) = Dk,p,qL

k−n
2
+1 {δ(x)} (54)

where

Dk,p,q =
(−1)(−1)

q
2π

n
2

4k−n
2
+1(k − n

2 + 1)!
for p and q are both even, (55)

and

Dk,p,q = (−1)
q+1
2 π

n
2 −1

4k− n
2 +1(k−n

2
+1)!

[
ψ( q

2 ) − ψ(n
2 )

]
.Lk−n

2
+1 {δ(x)} for p and q are both odd

(56)

proof: From (41),(47) and considering the formulae (19) and (20) under conditions k ≥
n
2 − 1,and when p and q are even, we have:

δ(k)(P−) − δ
(k)
1 (−P ) = (−1)aq,n,kL

k−n
2
+1 {δ(x)} (57)

where aq,n,k is defined by (27)
Similarly from (42), (48) and considering the formulae (19) and (20) under conditions
k ≥ n

2 − 1, and when p and q are odd, we have:

δ(k)(P−) − δ
(k)
1 (−P ) = (−1)

q+1
2 π

n
2 −1

4k−n
2 +1(k−n

2
+1)!

[
ψ( q

2 ) − ψ(n
2 )

]
.Lk−n

2
+1 {δ(x)} for p and q are both odd

(58)

From the formulae (57) and (58) we obtain the formulae (54),(55) and (56) which proves
the theorem.

The formula (54) represents a relation between δ(k)(P−) − δ
(k)
1 (−P ) with the ultrahy-

perbolic operator iterated k − n
2 + 1 times under condition k ≥ n

2 − 1.

Theorem 3 Let k be non-negative integer and n even dimension of the space then the
following formulae are valid,

δ
(k)
1 (P ) − δ

(k)
2 (P ) = Ak,p,qL

k−n
2
+1 {δ(x)} (59)

where

Ak,p,q =
(−1)(−1)k(−1)

q
2π

n
2

4k−n
2
+1(k − n

2 + 1)!
for p and q are both even, (60)
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and

Dk,p,q = (−1)
q+1
2 π

n
2 −1

4k− n
2 +1(k−n

2
+1)!

.

[
ψ( q

2 ) − ψ(p
2 )

]
.Lk−n

2
+1 {δ(x)} for p and q are both odd

(61)

proof: From (49) and (54) using (25), (50) and (60) under conditions k ≥ n
2 − 1, and

when p and q are even, we have,

(−1)(−1)k(−1)
q
2 π

n
2

4k−n
2 +1(k−n

2
+1)!

Lk−n
2
+1 {δ(x)} = δ(k)(P+) − (−1)kδ(k)(P−) =

δ
(k)
1 (P ) − δ

(k)
2 (P ) + (−1)k(−1)

q
2 π

n
2

4k−n
2 +1(k−n

2
+1)!

Lk−n
2
+1 {δ(x)}+

(−1)k(−1)
q
2 π

n
2

4k−n
2 +1(k−n

2
+1)!

Lk−n
2
+1 {δ(x)}

(62)

therefore

δ
(k)
1 (P ) − δ

(k)
2 (P ) =

(−1)(−1)k(−1)
q
2π

n
2

4k−n
2
+1(k − n

2 + 1)!
Lk−n

2
+1 {δ(x)} . (63)

Similarly from (49) and (54) using (26), (51) and (56) under conditions k ≥ n
2 − 1,and

when p and q are odd, we have

δ
(k)
1 (P ) − δ

(k)
2 (P ) = δ(k)(P+) − (−1)kδ(k)(P−)+

+ (−1)k(−1)
q+1
2 π

n
2 −1

4k−n
2 +1(k−n

2
+1)!

.
[
ψ(n

2 ) − ψ(p
2 ) + ψ( q

2 ) − ψ(n
2 )

]
.Lk−n

2
+1 {δ(x)} =

= (−1)k(−1)
q+1
2 π

n
2 −1

4k−n
2 +1(k−n

2
+1)!

.
[
ψ( q

2 ) − ψ(p
2 )

]
.Lk−n

2
+1 {δ(x)}

(64)

From the formulae (63) and (64) we obtain the formulae (59), (60) and (61) which proves
the theorem.

The formula (59) represent a relation between δ(k)
1 (P )−δ(k)

2 (P ) with the ultrahyperbolic
operator iterated k − n

2 + 1 times under condition k ≥ n
2 − 1.
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