RELATIONS OF K-TH DERIVATIVE OF DIRAC DELTA IN HYPERCONE WITH ULTRAHYPERBOLIC OPERATOR

Manuel A. Aguirre T.*

Received: December 3, 1998

Abstract

In this paper we prove that the generalized functions $\delta^{(k)}\left(P_{+}\right)-\delta^{(k)}(P), \delta^{(k)}\left(P_{-}\right)-$ $\delta^{(k)}(-P)$ and $\delta_{1}^{(k)}(P)-\delta_{2}^{(k)}(P)$ are concentrated in the vertex of the cone $P=0$ and we find their relationship with the ultrahyperbolic operator iterated $\left(k+1-\frac{n}{2}\right)$ times under condition $k \geq \frac{n}{2}-1$.

Keywords: distributions, generalized functions, distributions spaces, properties of distributions.

Resumen

En este trabajo se prueba que las funciones generalizadas $\delta^{(k)}\left(P_{+}\right)-\delta^{(k)}(P)$, $\delta^{(k)}\left(P_{-}\right)-\delta^{(k)}(-P)$ y $\delta_{1}^{(k)}(P)-\delta_{2}^{(k)}(P)$ están concentradas en el vértice del cono $P=0$ y encontramos sus relaciones con el operador ultrahiperbólico iterado ($k+1-\frac{n}{2}$) veces bajo la condición $k \geq \frac{n}{2}-1$.

Palabras clave: distribuciones, functiones generalizadas, espacios de distribuciones, propiedades de distribuciones.

AMS Subject Classification: 46F.

1 Introduction

Let $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be a point of the n-dimensional Euclidean space R^{n}.
Consider a quadratic form in n variables defined by

$$
\begin{equation*}
P=P(x)=x_{1}^{2}+\ldots+x_{p}^{2}-x_{p+1}^{2}-\ldots-x_{p+q}^{2} \tag{1}
\end{equation*}
$$

[^0]where $p+q=n$ is the dimension of the space.
We call $\varphi(x)$ the C^{∞} functions with compact support defined from \mathbb{R}^{n} to \mathbb{R} ([2],page 4).

From [1], page 253, formula (2), the distribution P_{+}^{λ} is defined by

$$
\begin{equation*}
\left(P_{+}^{\lambda}, \varphi\right)=\int_{P>0}(P(x))^{\lambda} \varphi(x) d x \tag{2}
\end{equation*}
$$

where λ is a complex number and $d x=d x_{1} d x_{2} \ldots d x_{n} . \operatorname{For} \operatorname{Real}(\lambda) \geq 0$, this integral converges and is analytic function of λ. Analytic continuation to $\operatorname{Real}(\lambda)<0$ can be used to extend the definition of $\left(P_{+}^{\lambda}, \varphi\right)$. Further from [1], page 254, we have,

$$
\begin{equation*}
\left(P_{+}^{\lambda}, \varphi\right)=\int_{0}^{\infty} u_{q}^{\lambda+\frac{p+q}{2}-1} \Phi_{\lambda}(u) d u \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
{ }_{q} \Phi_{\lambda}(u) & =\frac{1}{4} \int_{0}^{\infty} t^{\frac{q-2}{2}}(1-t)^{\lambda} \phi_{1}(u, t u) d t \tag{4}\\
\phi(r, s) & =\phi_{1}(u, v) \tag{5}\\
\phi(r, s) & =\int \varphi d \Omega_{p} d \Omega_{q} \tag{6}\\
r & =\sqrt[2]{x_{1}^{2}+\cdots+x_{p}^{2}} \tag{7}\\
s & =\sqrt[2]{x_{p+1}^{2}+\ldots x_{p+q}^{2}} \tag{8}
\end{align*}
$$

$d \Omega_{p}$ and $d \Omega_{q}$ are elements of surface are on the unit sphere in \mathbb{R}^{p} and \mathbb{R}^{q} respectively.
Similarly we can also defined the generalized P_{-}^{λ} by

$$
\begin{equation*}
\left(P_{-}^{\lambda}, \varphi\right)=\int_{-P>0}(-P(x))^{\lambda} \varphi(x) d x \tag{9}
\end{equation*}
$$

Further we obtain

$$
\begin{equation*}
\left(P_{-}^{\lambda}, \varphi\right)=\int_{0}^{\infty} v_{p}^{\lambda+\frac{p+q}{2}-1} \Phi_{\lambda}(v) d v \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
{ }_{p} \Phi_{\lambda}(u)=\frac{1}{4} \int_{0}^{\infty} t^{\frac{p-2}{2}}(1-t)^{\lambda} \phi_{1}(v t, v) d t . \tag{11}
\end{equation*}
$$

From (1) the $P=0$ hypersurface is a hypercone with a singular point (the vertex) at the origin.

On the other hand, from [1], page 249, we have,

$$
\begin{equation*}
\left(\delta^{(k)}(P), \varphi\right)=\int_{0}^{\infty}\left[\left(\frac{\partial}{2 s \partial s}\right)^{k}\left\{s^{q-2} \frac{\phi(r, s)}{2}\right\}\right]_{s=r} r^{p-1} d r \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\delta^{(k)}(P), \varphi\right)=(-1)^{k} \int_{0}^{\infty}\left[\left(\frac{\partial}{2 r \partial r}\right)^{k}\left\{r^{p-2} \frac{\phi(r, s)}{2}\right\}\right]_{r=s} s^{q-1} d s \tag{13}
\end{equation*}
$$

where $\phi(r, s)$ is defined by the equation (6).
Also from [1], page 250, the generalized functions $\delta_{1}^{(k)}(P)$ and $\delta_{2}^{(k)}(P)$ are defined by

$$
\begin{equation*}
\left(\delta_{1}^{(k)}(P), \varphi\right)=\int_{0}^{\infty}\left[\left(\frac{\partial}{2 s \partial s}\right)^{k}\left\{s^{q-2} \frac{\phi(r, s)}{2}\right\}\right]_{s=r} r^{p-1} d r \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\delta_{2}^{(k)}(P), \varphi\right)=(-1)^{k} \int_{0}^{\infty}\left[\left(\frac{\partial}{2 r \partial r}\right)^{k}\left\{r^{p-2} \frac{\phi(r, s)}{2}\right\}\right]_{r=s} s^{q-1} d s \tag{15}
\end{equation*}
$$

where $\phi(r, s)$ is $r^{1-p} s^{1-q}$ multiplied by the integral of φ over the surface $x_{1}^{2}+x_{2}^{2}+\cdots x_{p}^{2}=r^{2}$ and $x_{p+1}^{2}+x_{p+2}^{2}+\cdots x_{p+q}^{2}=s^{2}$.

The integrals converges and coincide for

$$
\begin{equation*}
k<\frac{p+q-2}{2} . \tag{16}
\end{equation*}
$$

If, on the other hand,

$$
\begin{equation*}
k \geq \frac{p+q-2}{2} \tag{17}
\end{equation*}
$$

these integrals must be understood in the sen se of their regularization (see [1], page 250).
Now in general $\delta_{1}^{(k)}(P)$ and $\delta_{2}^{(k)}(P)$ may not be the same generalized function.
Note that the definition of these generalized functions implies that in any case

$$
\begin{equation*}
\delta_{2}^{(k)}(P)=(-1)^{k} \delta_{1}^{(k)}(-P) \tag{18}
\end{equation*}
$$

From [1], page 278, the following formulae are valid,

$$
\begin{equation*}
\left.\delta^{(k)}\left(P_{+}\right)=(-1)^{k} k!\mathcal{R}\right\rceil s_{\lambda=-k-1} P_{+}^{\lambda} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\delta^{(k)}\left(P_{-}\right)=(-1)^{k} k!\mathcal{R}\right\rceil s_{\lambda=-k-1} P_{-}^{\lambda} . \tag{20}
\end{equation*}
$$

On the other hand, from [1], page 278, for odd n, as well as for even n and $k<\frac{n}{2}-1$ we have,

$$
\begin{equation*}
\delta^{(k)}\left(P_{+}\right)=\delta_{1}^{(k)}(P)=\delta^{(k)}(P) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta^{(k)}\left(P_{-}\right)=\delta_{1}^{(k)}(-P) \tag{22}
\end{equation*}
$$

While in the case of even dimension and $k \geq \frac{n}{2}-1$

$$
\begin{equation*}
\delta^{(k)}\left(P_{+}\right)-\delta_{1}^{(k)}(P) \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta^{(k)}\left(P_{-}\right)-\delta_{1}^{(k)}(-P) \tag{24}
\end{equation*}
$$

are generalized functions concentrated at the vertex of the $P=0$ cone ([1], page 279).
From [1], page 279 we have:
If p and q are both even and if $k \geq \frac{n}{2}-1$, then

$$
\begin{equation*}
(-1)^{k} \delta^{(k)}\left(P_{+}\right)-\delta^{(k)}\left(P_{-}\right)=a_{q, n, k} L^{k+1-\frac{n}{2}}\{\delta(x)\} \tag{25}
\end{equation*}
$$

while in all other cases

$$
\begin{equation*}
\delta^{(k)}\left(P_{-}\right)=(-1)^{k} \delta^{(k)}\left(P_{+}\right) \tag{26}
\end{equation*}
$$

In (25)

$$
\begin{equation*}
a_{q, n, k}=\frac{(-1)^{\frac{q}{2}} \pi^{\frac{n}{2}}}{4^{k-\frac{n}{2}+1}\left(k-\frac{n}{2}+1\right)!} \tag{27}
\end{equation*}
$$

and L^{j} is a linear homogeneous diferential operation iterated j times defined by the following formula

$$
\begin{equation*}
L^{j}=\left\{\frac{\partial^{2}}{\partial x_{1}^{2}}+\ldots \frac{\partial^{2}}{\partial x_{p}^{2}}-\frac{\partial^{2}}{\partial x_{p+1}^{2}}-\cdots-\frac{\partial^{2}}{\partial x_{p+q}^{2}}\right\}^{j} \tag{28}
\end{equation*}
$$

The operator $L=\left\{\frac{\partial^{2}}{\partial x_{1}^{2}}+\ldots \frac{\partial^{2}}{\partial x_{p}^{2}}-\frac{\partial^{2}}{\partial x_{p+1}^{2}}-\cdots-\frac{\partial^{2}}{\partial x_{p+q}^{2}}\right\}$ is often called ultahyperbolic.
From [1], page $255,\left(P_{+}^{\lambda}, \varphi\right)$ has two sets of singularities namely

$$
\begin{equation*}
\lambda=-1,-2,-3, \ldots \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda=-\frac{n}{2},-\frac{n}{2}-1, \ldots \tag{30}
\end{equation*}
$$

and from [1], pages 256-269 and page 352 we have ([4], page 139 , formula (2.27)):

$$
\begin{align*}
\mathcal{R}\rceil s_{\lambda=-k-1} P_{+}^{\lambda} & =\frac{(-1)^{k}}{k!} \delta_{1}^{(k)}(P) \text { if } p \text { is even and } q \text { odd } \tag{31}\\
\mathcal{R}\rceil s_{\lambda=-k-1} P_{+}^{\lambda} & =\frac{(-1)^{k}}{k!} \delta_{1}^{(k)}(P) \text { if } p \text { is odd and } q \text { even } \tag{32}\\
\mathcal{R}\rceil s_{\lambda=-\frac{n}{2}-k} P_{+}^{\lambda} & =0 \text { if } p \text { is even and } q \text { odd } \tag{33}
\end{align*}
$$

and

$$
\begin{equation*}
\mathcal{R}\rceil s_{\lambda=-\frac{n}{2}-k} P_{+}^{\lambda}=\frac{(-1)^{\frac{q}{2}} \pi^{\frac{n}{2}}}{4^{k} k!\Gamma\left(\frac{n}{2}+k\right)} L^{k}\{\delta(x\} \text { if } p \text { is odd and } q \text { even. } \tag{34}
\end{equation*}
$$

where L^{k} is defined by the formula (28).
Similarly $\left(P_{-}^{\lambda}, \varphi\right)$ has singularities in the same points that $\left(P_{+}^{\lambda}, \varphi\right)$ and taking into account all that we have above about P_{+}^{λ} remains true also for P_{-}^{λ} except that p and q must interchanged, and in all the formulae $\delta_{1}^{(k)}(P)$ must be peplaced by

$$
\begin{equation*}
\delta_{1}^{(k)}(-P)=(-1)^{k} \delta_{2}^{(k)}(P) \tag{35}
\end{equation*}
$$

and (L) by $(-L)$ (see $([1])$, pages 279 and 352$)$ we have,

$$
\begin{align*}
\mathcal{R}\rceil s_{\lambda=-k-1} P_{-}^{\lambda} & =\frac{(-1)^{k}}{k!} \delta_{1}^{(k)}(-P) \text { if } p \text { is odd and } q \text { even } \tag{36}\\
\mathcal{R}\rceil s_{\lambda=-k-1} P_{-}^{\lambda} & =\frac{(-1)^{k}}{k!} \delta_{1}^{(k)}(-P) \text { if } p \text { is even and } q \text { odd } \tag{37}\\
\mathcal{R}\rceil s_{\lambda=-\frac{n}{2}-k} P_{-}^{\lambda} & =0 \text { if } p \text { is odd and } q \text { even } \tag{38}
\end{align*}
$$

and

$$
\begin{equation*}
\mathcal{R}\rceil s_{\lambda=-\frac{n}{2}-k} P_{-}^{\lambda}=\frac{(-1)^{\frac{p}{2}} \pi^{\frac{n}{2}}}{4^{k} k!\Gamma\left(\frac{n}{2}+k\right)}(-L)^{k}\{\delta(x\} \text { if } p \text { is even and } q \text { odd. } \tag{39}
\end{equation*}
$$

If the dimension n of the space is even and p and q are even, P_{+}^{λ} has simple poles at $\lambda=-\frac{n}{2}-k$, where k is non-negative integer, and the residues are given by ([1], p. 268 and [4], p.141)

$$
\begin{align*}
\mathcal{R}\rceil s_{\lambda=-\frac{n}{2}-k, k=0,1,2, . .} P_{+}^{\lambda}= & \frac{(-1)^{\frac{n}{2}+k-1}}{\Gamma\left(\frac{n}{2}+k\right)} \delta_{1}^{\left(\frac{n}{2}+k-1\right)}(P)+ \tag{40}\\
& +\frac{(-1)^{\frac{q}{2}} \pi^{\frac{n}{2}}}{4^{k} k!\Gamma\left(\frac{n}{2}+k\right)} L^{k}\{\delta(x\} \tag{41}
\end{align*}
$$

where L^{k} is defined by (28).
If, on the other hand, p and q are odd, P_{+}^{λ} has pole of order 2 at $\lambda=-\frac{n}{2}-k$ and from [1], p. 269 and [4], p.143, we have

$$
\begin{equation*}
\mathcal{R}\rceil s_{\lambda=-\frac{n}{2}-k} P_{+}^{\lambda}=\frac{(-1)^{\frac{n}{2}+k-1}}{\Gamma\left(\frac{n}{2}+k\right)} \delta_{1}^{\left(\frac{n}{2}+k-1\right)}(P)++\frac{(-1)^{\frac{q+1}{2}} \pi^{\frac{n}{2}-1}}{2^{2 k} k!\Gamma\left(\frac{n}{2}+k\right)}\left[\psi\left(\frac{p}{2}\right)-\psi\left(\frac{n}{2}\right)\right] \cdot L^{k}\{\delta(x)\} \tag{42}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)} \tag{43}
\end{equation*}
$$

and $\Gamma(x)$ is the function gamma defined by

$$
\begin{equation*}
\Gamma(x)=\int_{0}^{\infty} e^{-z} z^{x-1} d z \tag{44}
\end{equation*}
$$

([3], Vol.I, p.344).
For integral and half-integral values of the argument, $\psi(x)$ is given by

$$
\begin{align*}
\psi(k) & =-\gamma+1+\frac{1}{2}+\cdots+\frac{1}{k-1} \tag{45}\\
\psi\left(k+\frac{1}{2}\right) & =-\gamma-2 \ln (2)+2\left(1+\frac{1}{3}+\cdots+\frac{1}{2 k-1}\right) \tag{46}
\end{align*}
$$

where γ is Euler's constant.

Similarly

$$
\begin{equation*}
\mathcal{R}\rceil s_{\lambda=-\frac{n}{2}-k} P_{-}^{\lambda}=\frac{(-1)^{\frac{n}{2}+k-1}}{\Gamma\left(\frac{n}{2}+k\right)} \delta_{1}^{\left(\frac{n}{2}+k-1\right)}(-P)++\frac{(-1)^{\frac{p}{2}} \pi^{\frac{n}{2}}}{4^{k} k!\Gamma\left(\frac{n}{2}+k\right)}(-L)^{k}\{\delta(x\} \tag{47}
\end{equation*}
$$

if p and q are even, and

$$
\begin{equation*}
\mathcal{R}\rceil s_{\lambda=-\frac{n}{2}-k} P_{-}^{\lambda}=\frac{(-1)^{\frac{n}{2}+k-1}}{\Gamma\left(\frac{n}{2}+k\right)} \delta_{1}^{\left(\frac{n}{2}+k-1\right)}(-P)++\frac{(-) 1^{\frac{p+1}{2}} \pi^{\frac{n}{2}-1}}{2^{2 k} k!\Gamma\left(\frac{n}{2}+k\right)} \cdot\left[\psi\left(\frac{q}{2}\right)-\psi\left(\frac{n}{2}\right)\right](-L)^{k}\{\delta(x)\} \tag{48}
\end{equation*}
$$

if p and q are odd

2 Relations of k-th derivative of Dirac delta in hypercone with ultrahyperbolic operator

In this paragraph we prove that generalized functions $\delta^{(k)}\left(P_{+}\right)-\delta_{1}^{(k)}(P)$ and $\delta^{(k)}\left(P_{-}\right)-$ $\delta_{1}^{(k)}(-P)$ are concentrated in the vertex of the cone $P=0$.

Theorem 1 Let k be non-negative integer and n even dimension of the space then the following formulae are valid,

$$
\begin{equation*}
\delta^{(k)}\left(P_{+}\right)-\delta_{1}^{(k)}(P)=B_{k, p, q} L^{k-\frac{n}{2}+1} \text { if } k \geq \frac{n}{2}-1 \tag{49}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{k, p, q}=\frac{(-1)^{k}(-1)^{\frac{q}{2}} \pi^{\frac{n}{2}}}{4^{k-\frac{n}{2}+1}\left(k-\frac{n}{2}+1\right)!} \text { for } p \text { and } q \text { are both even, } \tag{50}
\end{equation*}
$$

and

$$
\begin{gather*}
B_{k, p, q}=\frac{(-1)^{k}(-1) \frac{q+1}{2} \pi^{\frac{n}{2}-1}}{4^{k-\frac{n}{2}+1}\left(k-\frac{n}{2}+1\right)!} \tag{51}\\
{\left[\psi\left(\frac{p}{2}\right)-\psi\left(\frac{n}{2}\right)\right] \cdot L^{k-\frac{n}{2}+1}\{\delta(x)\} \text { for } p \text { and } q \text { are both odd. }}
\end{gather*}
$$

PROOF: From (41),(47) and considering the formulae (19) and (20) under conditions $k \geq$ $\frac{n}{2}-1$,and when p and q are even, we have

$$
\begin{equation*}
\delta^{(k)}\left(P_{+}\right)-\delta_{1}^{(k)}(P)=(-1)^{k} a_{q, n, k} L^{k-\frac{n}{2}+1}\{\delta(x)\} . \tag{52}
\end{equation*}
$$

where $a_{q, n, k}$ is defined by (27).
Similarly from (42), (48) and considering the formulae (19) and (20) under conditions $k \geq \frac{n}{2}-1$,and when p and q are odd, we have

$$
\begin{equation*}
\delta^{(k)}\left(P_{+}\right)-\delta_{1}^{(k)}(P)=\frac{(-1)^{k}(-1)^{\frac{q+1}{2}} \pi^{\frac{n}{2}-1}}{4^{k-\frac{n}{2}+1}\left(k-\frac{n}{2}+1\right)!} \tag{53}
\end{equation*}
$$

$\left[\psi\left(\frac{p}{2}\right)-\psi\left(\frac{n}{2}\right)\right] . L^{k-\frac{n}{2}+1}\{\delta(x)\}$ for p and q are both odd.

From (52) and (53) we obtain the formula (49),(50) and (51) which proves the theorem.
The formula (49) represent a relation between $\delta^{(k)}\left(P_{+}\right)-\delta_{1}^{(k)}(P)$ and the ultrahyperbolic operator iterated $k-\frac{n}{2}+1$ times under condition $k \geq \frac{n}{2}-1$.

Theorem 2 Let k be non-negative integer and n even dimension of the space, then the following formulae are valid:

$$
\begin{equation*}
\delta^{(k)}\left(P_{-}\right)-\delta_{1}^{(k)}(-P)=D_{k, p, q} L^{k-\frac{n}{2}+1}\{\delta(x)\} \tag{54}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{k, p, q}=\frac{(-1)(-1)^{\frac{q}{2}} \pi^{\frac{n}{2}}}{4^{k-\frac{n}{2}+1}\left(k-\frac{n}{2}+1\right)!} \text { for } p \text { and } q \text { are both even, } \tag{55}
\end{equation*}
$$

and

$$
\begin{gather*}
D_{k, p, q}=\frac{(-1) \frac{q+1}{2} \pi^{\frac{n}{2}-1}}{4^{k-\frac{n}{2}+1}\left(k-\frac{n}{2}+1\right)!} \tag{56}\\
{\left[\psi\left(\frac{q}{2}\right)-\psi\left(\frac{n}{2}\right)\right] \cdot L^{k-\frac{n}{2}+1}\{\delta(x)\} \text { for } p \text { and } q \text { are both odd }}
\end{gather*}
$$

Proof: From (41),(47) and considering the formulae (19) and (20) under conditions $k \geq$ $\frac{n}{2}-1$,and when p and q are even, we have:

$$
\begin{equation*}
\delta^{(k)}\left(P_{-}\right)-\delta_{1}^{(k)}(-P)=(-1) a_{q, n, k} L^{k-\frac{n}{2}+1}\{\delta(x)\} \tag{57}
\end{equation*}
$$

where $a_{q, n, k}$ is defined by (27)
Similarly from (42), (48) and considering the formulae (19) and (20) under conditions $k \geq \frac{n}{2}-1$, and when p and q are odd, we have:

$$
\begin{gather*}
\delta^{(k)}\left(P_{-}\right)-\delta_{1}^{(k)}(-P)=\frac{(-1) \frac{q+1}{2} \pi^{\frac{n}{2}-1}}{4^{k-\frac{n}{2}+1}\left(k-\frac{n}{2}+1\right)!} \tag{58}\\
{\left[\psi\left(\frac{q}{2}\right)-\psi\left(\frac{n}{2}\right)\right] \cdot L^{k-\frac{n}{2}+1}\{\delta(x)\} \text { for } p \text { and } q \text { are both odd }}
\end{gather*}
$$

From the formulae (57) and (58) we obtain the formulae (54),(55) and (56) which proves the theorem.

The formula (54) represents a relation between $\delta^{(k)}\left(P_{-}\right)-\delta_{1}^{(k)}(-P)$ with the ultrahyperbolic operator iterated $k-\frac{n}{2}+1$ times under condition $k \geq \frac{n}{2}-1$.

Theorem 3 Let k be non-negative integer and n even dimension of the space then the following formulae are valid,

$$
\begin{equation*}
\delta_{1}^{(k)}(P)-\delta_{2}^{(k)}(P)=A_{k, p, q} L^{k-\frac{n}{2}+1}\{\delta(x)\} \tag{59}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{k, p, q}=\frac{(-1)(-1)^{k}(-1)^{\frac{q}{2}} \pi^{\frac{n}{2}}}{4^{k-\frac{n}{2}+1}\left(k-\frac{n}{2}+1\right)!} \text { for } p \text { and } q \text { are both even, } \tag{60}
\end{equation*}
$$

and

$$
\begin{gather*}
D_{k, p, q}=\frac{\left(-1 \frac{q+1}{2} \pi^{\frac{n}{2}-1}\right.}{4^{k-\frac{n}{2}+1}\left(k-\frac{n}{2}+1\right)!} . \tag{61}\\
{\left[\psi\left(\frac{q}{2}\right)-\psi\left(\frac{p}{2}\right)\right] \cdot L^{k-\frac{n}{2}+1}\{\delta(x)\} \text { for } p \text { and } q \text { are both odd }}
\end{gather*}
$$

Proof: From (49) and (54) using (25), (50) and (60) under conditions $k \geq \frac{n}{2}-1$, and when p and q are even, we have,

$$
\begin{gather*}
\frac{(-1)(-1)^{k}(-1)^{\frac{q}{2}} \frac{n}{2}_{4^{k-\frac{n}{2}+1}\left(k-\frac{n}{2}+1\right)!} L^{k-\frac{n}{2}+1}\{\delta(x)\}=\delta^{(k)}\left(P_{+}\right)-(-1)^{k} \delta^{(k)}\left(P_{-}\right)=}{\delta_{1}^{(k)}(P)-\delta_{2}^{(k)}(P)+\frac{(-1)^{k}(-1)^{\frac{q}{\pi}} \frac{n}{2}}{4^{k-\frac{n}{2}+1}\left(k-\frac{n}{2}+1\right)!} L^{k-\frac{n}{2}+1}\{\delta(x)\}+} \\
\frac{(-1)^{k}(-1)^{\frac{q}{2} \pi^{\frac{n}{2}}}}{4^{k-\frac{n}{2}+1}\left(k-\frac{n}{2}+1\right)!} L^{k-\frac{n}{2}+1}\{\delta(x)\} \tag{62}
\end{gather*}
$$

therefore

$$
\begin{equation*}
\delta_{1}^{(k)}(P)-\delta_{2}^{(k)}(P)=\frac{(-1)(-1)^{k}(-1)^{\frac{g}{2}} \pi^{\frac{n}{2}}}{4^{k-\frac{n}{2}+1}\left(k-\frac{n}{2}+1\right)!} L^{k-\frac{n}{2}+1}\{\delta(x)\} . \tag{63}
\end{equation*}
$$

Similarly from (49) and (54) using (26), (51) and (56) under conditions $k \geq \frac{n}{2}-1$, and when p and q are odd, we have

$$
\begin{gather*}
\delta_{1}^{(k)}(P)-\delta_{2}^{(k)}(P)=\delta^{(k)}\left(P_{+}\right)-(-1)^{k} \delta^{(k)}\left(P_{-}\right)+ \\
+\frac{(-1)^{k}(-1) \frac{q+1}{2} \pi^{\frac{n}{2}-1}}{4^{k-\frac{n}{2}+1}\left(k-\frac{n}{2}+1\right)!} \cdot\left[\psi\left(\frac{n}{2}\right)-\psi\left(\frac{p}{2}\right)+\psi\left(\frac{q}{2}\right)-\psi\left(\frac{n}{2}\right)\right] \cdot L^{k-\frac{n}{2}+1}\{\delta(x)\}= \tag{64}\\
=\frac{(-1)^{k}(-1) \frac{q+1}{2} \pi^{\frac{n}{2}-1}}{4^{k-\frac{n}{2}+1}\left(k-\frac{n}{2}+1\right)!} \cdot\left[\psi\left(\frac{q}{2}\right)-\psi\left(\frac{p}{2}\right)\right] \cdot L^{k-\frac{n}{2}+1}\{\delta(x)\}
\end{gather*}
$$

From the formulae (63) and (64) we obtain the formulae (59), (60) and (61) which proves the theorem.

The formula (59) represent a relation between $\delta_{1}^{(k)}(P)-\delta_{2}^{(k)}(P)$ with the ultrahyperbolic operator iterated $k-\frac{n}{2}+1$ times under condition $k \geq \frac{n}{2}-1$.

References

[1] Gelfand, I.M.; Shilov, G.E. (1964) Generalized Functions, Vol.I. Academic Press, New York.
[2] Ram Shankar Pathak (1997) Integral Transforms of Generalized Functions and their Applications. Gordon and Breach Science Publishers, Amsterdam.
[3] Erdelyi, A. (Ed). (1953) Higher Trascendental Functions,Vol. I and II. McGraw-Hill, New York.
[4] Aguirre Téllez, M.A. (1994) The distributional Hankel transform of Marcel Riesz's ultrahyperbolic kernel, Studies in Applied Mathematics 93: 133-162.

[^0]: * Núcleo Consolidado de Matemática Pura y Aplicada, Facultad de Ciencias Exactas-UNcentro, Pinto 399-C.P. (7000)-Tandil-Provincia de Buenos Aires, Argentina.

