Boletín de Matemáticas Vol. XIII, Nos 2,3,4 (1979), pags, 137 - 145.

EL TEOREMA DE PULLBACK

IVAN CASTRO CHADID +

Definición .

Diremos que la estructura algebraica $(A~;~\lambda_1~,\dots,~\lambda_n)~\text{está contenido algebraicamente en la estructura algebraica}~(E~;~\rho_1~,\dots,~\rho_n)~\text{si}~:$

- 1) A C E
- 2) $x \rho_i y = x \lambda_i y$; para todo i = 1, ..., ny para todo $x, y \in A$.

Observación:

En este caso , también se suele afirmar que la estructura algebraica (E ; ρ_1 ,..., ρ_n) contiene algebraicamente a la estructura algebraica (A ; λ_1 ,..., λ_n) .

Analicemos los siguientes problemas:

Problema 1.

Sea f(x) un polinomio no constante

sobre el cuerpo F . Demuestre que f(x) tiene por lo menos una raíz , en una extensión adecuada de F .

Problema 2.

Dado un dominio entero D, existe por lo menos un cuerpo extensión de D.

El método usual para resolverlos es el siguiente :
Solución del problema 1.

$$\phi : F \rightarrow \tilde{F}$$

$$a \rightarrow \phi(a) = a + (h(x))$$

es un isomorfismo .

Existe un cuerpo K, extensión de F, y un isomorfismo $\tilde{\phi}$ de K sobre $F \left(\overline{x} \right) / (h(x))$ que extiende a ϕ .

Sea $c = \tilde{\phi}^{-1}(x + (h(x)))$. El paso siguiente consiste en

demostrar que c es raíz de h(x) y por lo tanto de f(x).

- Solución del problema 2.

Sean (a,b), $(c,d) \in M = D \times (D-0)$ y la relación ~, definida por (a,b) ~(c,d), si y solo si ad = bc

La relación ~ es de equivalencia.

Sean \sqrt{a} , \sqrt{b} la clase de equivalencia de la pareja (a,b) por esta relación, y H el conjunto de los \sqrt{a} , \sqrt{b} con (a,b) en M.

Sobre H definimos las siguientes operaciones :

Suma : [a,b] + [c,d] = [ad+bc,bd]

Producto: [a,b] · [c,d] = [ac,bd]

(H, +, •) es un cuerpo y el conjunto $\tilde{\mathbb{D}}$ formado por los elementos $\sqrt{a}, \frac{1}{2}$ con a $\in \mathbb{D}$ es un subdominio de H. La aplicación

$$\phi: D \rightarrow \widetilde{D}$$

$$a \rightarrow \phi(a) = \overline{a}, \underline{17}$$

es un isomorfismo

Existe un cuerpo K, extensión de D, y un isomorfismo o de K sobre H que extiende a o .

Observación (x) d ob x as a composition

Como podemos ver , la clave para la solución de estos dos problemas , estriba en la justificación de las afirmaciones (1) y (2) . Más aún si demos
tramos que :

Dado un isomorfismo ϕ de la estructura algebraica $(A; \lambda_1, \dots, \lambda_n)$ sobre la estructura algebraica $(A'; \lambda_1', \dots, \lambda_n')$, contenida algebraica braicamente en la estructura algebraica $(E'; \rho_1', \dots, \rho_n')$; existe una estructura algebraica $(E; \rho_1, \dots, \rho_n)$ que contiene algebraica $(E; \rho_1, \dots, \rho_n)$ que contiene algebraicamente a la estructura $(A; \lambda_1, \dots, \lambda_n)$ y un isomorfismo $\tilde{\phi}$ de $(E; \rho_1, \dots, \rho_n)$ sobre $(E'; \rho_1', \dots, \rho_n')$ que extiende a ϕ .

tendremos , entre otras , la respuesta a las afirmaciones (1) y (2) .

Si demostramos (3) para n=1, fácilmente podremos demostrarlo para cualquier n>1 definiendo simplemente las operaciones ρ_i para todo $i=2,\ldots,n$ de la siguiente manera :

 $x \rho_i y = \tilde{\phi}^{-1}(\tilde{\phi}(x) \rho_i, \tilde{\phi}(y))$ para todo $x, y \in E$,

(1) donde $\tilde{\phi}$ es el isomorfismo obtenido en el caso n=1 de (E; ρ_1) sobre (E'; ρ_1'), que extiende a ϕ .

Gracias a la definición dada en (1) de los operadores ρ_i , resulta muy sencillo demostrar que $\tilde{\phi}$ es un isomorfismo de la estructura algebraica $(E;\;\rho_1\;,\ldots,\;\rho_n)$ sobre la estructura algebraica $(E';\;\rho_1'\;,\ldots,\;\rho_n')$, que extiende a ϕ .

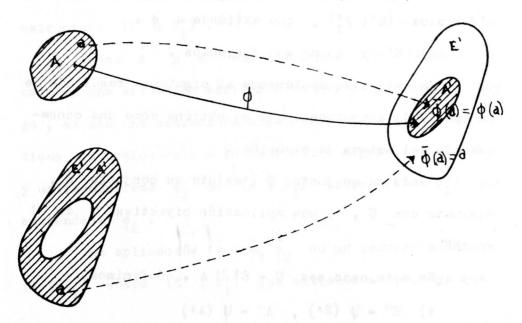
Para el caso n = 1, este problema es conocido con el nombre de "Teorema de Pullback".

Demostración del Teorema de Pullback .

Se presentan dos posibilidades:

1) E' y A son disyuntos.

En este caso se define $E = A \cup (E' - A')$



y
$$\tilde{\phi}$$
: E \rightarrow E' a si a \in E' $-$ A' above (1) a \rightarrow $\tilde{\phi}$ (a) = ϕ (a) si a \in A .

 $\tilde{\phi}$, así definida , es una aplicación biyectiva .

Definimos el operador ρ_1 de la siguiente manera:

$$x \rho_1 y = \tilde{\phi}^{-1}(\tilde{\phi}(x) \rho_1, \tilde{\phi}(y))$$

para todo x, $y \in E$.

Si $x,y \in A$ entonces $x \rho_1 y = \tilde{\phi}^{-1}(\tilde{\phi}(x) \rho_1, \tilde{\phi}(y))$ $= \tilde{\phi}^{-1}(\phi(x) \lambda_1, \phi(y)) = \tilde{\phi}^{-1}(\phi(x \lambda_1, y)) = \tilde{\phi}^{-1}(\tilde{\phi}(x \lambda_$

Además , es evidente que $\tilde{\phi}$ es un isomorfismo de la estructura algebraica (E ; ρ_1) sobre la estructura algebraica (E'; ρ_1') , que extiende a ϕ .

2) E' y A no son disyuntos .

En este caso apelaremos al siguiente resultado de la teoría de conjuntos, que se obtiene como una consecuencia del axioma de elección.

"Dado un conjunto U , existe un conjunto B , disyunto con U , y una aplicación biyectiva ψ de U en B" .

En este caso sea $U = E' \cup A$. Definimos:

ii) Los operadores ρ_1'' y λ_1'' por las fórmulas

a)
$$x \rho_1'' y = \psi (\psi^{-1}(x) \rho_1' \psi^{-1}(y))$$
; para $x, y \in E''$.

b) $x \lambda_1'' y = \psi (\psi^{-1}(x) \lambda_1' \psi^{-1}(y))$; para $x, y \in A''$.

c)
$$\Psi_{R} = \tilde{\phi}_1 \quad y \quad \tilde{\phi}_{1_A} = \phi_1$$

De a) y b) se deduce que la estructura algebraica (A"; λ_1 ") está contenida algebraicamente en la estructura algebraica (E"; ρ_1 ").

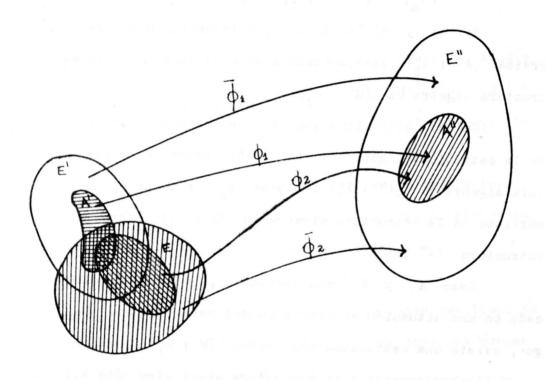
De c) concluímos que ϕ_1 es un isomorfismo, de la estructura algebraica (A'; λ_1') sobre la estructura algebraica (A"; λ_1''). Luego $\phi_2 = \phi_1 \phi$ es un isomorfismo de la estructura algebraica (A; λ_1) sobre la estructura (A"; λ_1'').

Como A y E" son disyuntos, nos hemos colocado en una situación similar a la del primer caso. Lue go, existe una estructura algebraica (E; ρ_1) que contiene algebraicamente a la estructura algebraica (A; λ_1) y un isomorfismo $\tilde{\phi}_2$ de (E; ρ_1) sobre (E"; ρ_1 ") que extiende a ϕ_2 .

La aplicación $\tilde{\phi} = \tilde{\phi}_1^{-1} \tilde{\phi}_2$ es un isomorfismo de $(E ; \rho_1)$ sobre $(E'; \rho_1')$ que extiende a ϕ , ya que

$$(\tilde{\phi}_1^{-1} \tilde{\phi}_2) \mid A = \phi_1^{-1} \phi_2 = \phi_1^{-1} \phi_1 \phi = \phi$$
.

que era lo que queríamos demostrar .



BIBLIOGRAFIA

- 1) Warner Seth , Modern Algebra .

 Prentice Hall , Inc. (1965) .
 - 2) Herstein I.N., Algebra Moderna.
 Ed. Trillas, S.A. México, 1970.
- 3) Fraleigh John B., A First Course in Abstact
 Algebra . Addison Wesley
 Publishing Company (1977) .
- * Este trabajo fué presentado en el VIII Coloquio Colombiano de Matemáticas .

tipo de komptopia par de la maria de la comptanta de la compta

Iván Castro Chadid

Departamento de Matemáticas

Universidad Javeriana

Bogotá - Colombia .