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Using weak forms to derive asymptotic
expansions of elliptic equations with

high-contrast coefficients

Leonardo Andrés Poveda Cuevas1,a

Abstract. In this work we review some recent results on approximation of
solutions of elliptic problems with high-contrast coefficients. In particular, we
detail the derivation of asymptotic expansions for the solution in terms of the
high-contrast of the coefficients. We consider the case of high-contrast elliptic
equations and we present the case of only one high-contrast inclusion. The case
of more inclusions follows similarly. In order to simplify the presentation we
consider first the one dimensional case so no further complicated requirements
regarding the computation of two or higher dimensional integrals are needed.
We review the case of two-dimensional problems and give some numerical
examples.

Keywords: Elliptic equations, high-contrast coefficients, asymptotic expan-
sions.

Resumen. En este trabajo revisamos algunos resultados recientes sobre la
aproximación de soluciones de problemas eĺıpticos con coeficientes de alto con-
traste. En particular, detallamos la derivación de expansiones asintóticas para
la solución en términos del alto contraste de los coeficientes. Consideramos
el caso de ecuaciones eĺıpticas de alto contraste y presentamos únicamente el
caso de una inclusión. El caso de más inclusiones se sigue de manera similar.
Con el fin de simplificar la presentación consideramos primero el caso unidi-
mensional, para evitar complicaciones con respecto al cálculo de integrales de
dos o más dimensiones. Revisamos el caso de problemas bi-dimensionales y se
dan algunos ejemplos numéricos.
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1. Introduction

The mathematical and numerical analysis of partial differential equations in
multi-scale and high-contrast media are important in many practical applica-
tions. In fact, in many applications related to fluid flows in porous media the
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coefficient represents the permeability (which is how easy the porous media
let the fluid flow). The values of the permeability usually, and specially for
complicated porous media, vary in several orders of magnitude. We refer to
this case as the high-contrast case and we say that the corresponding elliptic
equation that models (e.g. the pressure) has high-contrast coefficients, see for
instance [4, 7, 8].

A fundamental purpose is to understand the effects on the solution related
to the variations of high-contrast in the properties of the porous media. In
terms of the model, these variations appear in the coefficients of the differential
equations. In particular, this interest gives an importance for the computation
of numerical solutions.

In order to devise efficient numerical strategies it is important to under-
stand the behavior of solutions of these equations. Deriving, and manipulating
expansions representing solutions certainly help in this task.

In this work we detail the derivations of asymptotic expansions for high-
contrast elliptic problems. We consider expansions of the form

uη (x) =

∞∑
j=0

η−juj (x) , (1)

and detail procedures to define and compute each of the terms in the series.
This work is preliminary and complements current work in the use of similar
expansions to design and analyze efficient numerical approximations of high-
contrast elliptic equations, see [8].

This manuscript is organized as follows. In Section 2 we detailedly show
how to work out the expansion for one dimensional problems. We give some
explicit examples. In Section 3 we summarize the procedure for two dimensional
problems and give some numerical examples. In Section 4 we present some
conclusions and work perspective.

2. Asymptotic expansion in one dimension

In this section we detail the procedure to derive (by using weak formulations)
the asymptotic expansion for the solution of a high-contrast elliptic problem.
In order to simplify the presentation we have chosen a one dimensional problem
with only one high-contrast inclusion. In Section 3 we summarize the procedure
for higher dimensional problems.

Let us consider the following one dimensional problem (in its strong form){
− (κ (x)u′ (x))

′
= f (x) , for all x ∈ (−1, 1) ,

u (−1) = u (1) = 0,
(2)

where the high-contrast coefficient is given by,

κ (x) =

{
1, −1 ≤ x < −δ or δ < x ≤ 1,
η, −δ ≤ x ≤ δ. (3)

In this case we assume η >> 1. This differential equation models the stationary
temperature of a bar represented by the one dimensional domain [−1, 1]. In
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this case, the coefficient κ models the conductivity of the bar which depends
on the material the bar is made of. For this particular coefficient, the part
of the domain represented by the interval (−δ, δ) is highly-conducting when
compared with the rest of the domain and we say that this medium (bar) has
high-contrast conductivity properties.

We first write the weak form of this problem. We follow the usual proce-
dure, that is, we select a space of test functions, multiply both sides of the
equations by this test functions, then, we use integration by parts formula (in
one dimension) and obtain the weak form. In order to fix ideas and concentrate
on the derivation of the asymptotic expansion we use the usual test function
and solutions spaces, in this case, that would be subspaces of H1 (−1, 1) for
both, solutions and test functions.

Let v ∈ H1
0 (−1, 1) be a test function and u ∈ H1 (−1, 1) is the sought

solution, for more details of the spaces H1 and H1
0 see for instance [2, 6]. Then

after integration by parts we write∫ 1

−1
κu′v′ =

∫ 1

−1
fv, for all v ∈ H1

0 (−1, 1) .

Here u is the weak solution of problem (2). Existence and uniqueness of the
weak solution follows from usual arguments (Lax-Milgram, in e.g., [2]). To
emphasis the dependence of u on the contrast η, from now on, we write uη
for the solution of (2). Note that in order to simplify the notation we have
omitted the integration variable x and the integration measure dx. We can
split this integral in sub-domains integrals and recalling the definitions of the
high-contrast conductivity coefficient κ = κ (x) in (3), we obtain∫ −δ

−1
u′v′ + η

∫ δ

−δ
u′v′ +

∫ 1

δ

u′v′ =

∫ 1

−1
fv, (4)

for all v ∈ H1
0 (−1, 1). We observe that each integral on the left side is finite

(since all the factors are in L2 (−1, 1)).
Our goal is to write an expansion of the form

uη (x) =

∞∑
j=0

η−juj (x) , (5)

with individual terms in H1 (−1, 1) such that they satisfy the Dirichlet bound-
ary condition uj (−1) = uj (1) = 0 for j ≥ 1. Other boundary conditions for
(2) can be handled similarly. Each term will solve (weakly) boundary value
problems in the sub-domains (−1,−δ) , (−δ, δ) and (δ, 1). The different data
on the boundary of sub-domains are revealed by the corresponding local weak
formulation derived from the power series above (5). We discuss this in detail
below.

We first assume that (5) is a valid solution of problem (4), see [5], thus we
can substitute (5) into (4). We obtain that for all v ∈ H1

0 (−1, 1) the following
holds ∫ −δ

1

∞∑
j=0

η−ju′jv
′ + η

∫ δ

−δ

∞∑
j=0

η−ju′jv
′ +

∫ 1

δ

∞∑
j=0

η−ju′jv
′ =

∫ 1

−1
fv,
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or, after formally interchanging integration and summation signs,

∞∑
j=0

η−j

[∫ −δ
1

u′jv
′ +

∫ 1

δ

η−ju′jv
′

]
+

∞∑
j=0

η−j+1

∫ δ

−δ
u′jv
′ =

∫ 1

−1
fv.

Rearrange these to obtain,

∞∑
j=0

η−j

[∫ −δ
1

u′jv
′ +

∫ 1

δ

η−ju′jv
′

]
+ η

∫ δ

−δ
u′0v
′ +

∞∑
j=0

η−j
∫ δ

−δ
u′j+1v

′ =

∫ 1

−1
fv,

which after collecting terms can be written as

∞∑
j=0

η−j

[∫ −δ
1

u′jv
′ +

∫ δ

−δ
u′j+1v

′ +

∫ 1

δ

η−ju′jv
′

]
+ η

∫ δ

−δ
u′0v
′ =

∫ 1

−1
fv, (6)

which holds for all test functions v ∈ H1
0 (−1, 1). Now we match up the coeffi-

cients corresponding to equal powers on the both sides of equation (6).

2.1. Terms corresponding to η

In the equation (6) above, there is only one term with η so that we obtain∫ δ

−δ
u′0v
′ = 0, for all v ∈ H1

0 (−1, 1) .

Thus u′0 = 0 (which can be readily seen if we take a test function v such that
v = u0) and therefore u0 is a constant in (−δ, δ).

2.2. Terms corresponding to η0 = 1

The next coefficients to match up are those of η0 = 1, the coefficients in (6)
with j = 0.

Figure 1: Function v in Vconst.
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Let

Vconst =
{
v ∈ H1

0 (−1, 1) : v(1) = v|(−δ,δ) is constant
}
.

For an illustration of the function v in Vconst, see Figure 1. We have∫ −δ
−1

u′0v
′ +

∫ 1

δ

u′0v
′ =

∫ 1

−1
fv, for all v ∈ Vconst. (7)

To study further this problem we introduce the following decomposition for
functions in v ∈ Vconst. For any v ∈ Vconst, we write

v = c0χ+ v(1) + v(2),

where v(1) ∈ H1
0 (−1,−δ), v(2) ∈ H1

0 (δ, 1) and χ is a continuous function
defined by

χ(x) =

 1, x ∈ (−δ, δ),
0, x = −1, x = 1,
harmonic, otherwise.

(8)

Figure 2: χ function.

See Figure 2 for an illustration of χ. Note also that

χ′(x) =

 0, x ∈ (−δ, δ),
1/(1− δ), x ∈ (−1,−δ),
−1/(1− δ), x ∈ (δ, 1),

(9)

and observe that χ ∈ H1
0 (−1, 1).

The same decomposition holds for u0, that is, u0 = c0χ+ u(1) + u(2), since
u0 ∈ Vconst. Note that this is an orthogonal decomposition, which can be
verified by direct integration. Next we split (7) into three equations using the
decomposition introduced above. This is done by testing again subset of test
functions determined by the decomposition introduced above.
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1. Test against χ, that is, let v = χ ∈ H1
0 (−1, 1) in (7) and using that

u0 = dχ+ u(1) + u(2) we get,∫ −δ
−1

(
c0χ+ u(1) + u(2)

)′
χ′+

∫ 1

δ

(
c0χ+ u(1) + u(2)

)′
χ′ =

∫ 1

−1
fχ, (10)

which after simplification (using the definition of χ and the fundamental
theorem of calculus) gives∫ −δ

−1
c0 (χ′)

2
+

∫ 1

δ

c0 (χ′)
2

=

∫ 1

−1
fχ,

from which we get

c0 =

∫ 1

−1 fχ∫ −δ
−1 (χ′)

2
+
∫ 1

δ
(χ′)

2
=

1− δ
2

∫ 1

−1
fχ, (11)

where we have used the derivative of χ defined in (9) for (−1,−δ) and
(δ, 1) respectively.

2. We now test (7) against v(1) ∈ H1
0 (−1,−δ) (extended by zero), that is,

we take v = v(1) in v(1) ∈ H1
0 (−1,−δ) to get∫ −δ

−1

(
c0χ+ u(1) + u(2)

)′ (
v(1)

)′
+

∫ 1

δ

(
c0χ+ u(1) + u(2)

)′ (
v(1)

)′
=

∫ 1

−1

fv(1).

Note that

∫ 1

δ

(
c0χ+ u(1) + u(2)

)′ (
v(1)

)′
= 0 (since v(1) is supported in

(−1,−δ)). Using this, we have that∫ −δ
−1

(
c0χ+ u(1) + u(2)

)′ (
v(1)

)′
=

∫ −δ
−1

fv(1).

After simplifying (using the definition of χ and the fundamental theorem
of calculus) we have∫ −δ

−1

(
u(1)

)′ (
v(1)

)′
=

∫ −δ
−1

fv(1), for all v(1) ∈ H1
0 (−1,−δ) . (12)

Recalling the boundary values of u(1) we see that (12) is the weak formu-
lation of Dirichlet problem{

−
(
u(1)

)′′
= f, in (−1,−δ),

u(1) (−1) = 0, u(1) (−δ) = 0.
(13)

3. Testing against v(2) ∈ H1
0 (δ, 1) we get (in a similar fashion) that∫ 1

δ

(
u(2)

)′ (
v(2)

)′
=

∫ 1

δ

fv(2), for all v(2) ∈ H1
0 (δ, 1) . (14)

Then u(2) is the weak formulation to the Dirichlet problem{
−
(
u(2)

)′′
= f, in (δ, 1),

u(2) (δ) = 0, u(2) (1) = 0.

Bolet́ın de Matemáticas 21(2) 99–124 (2014)



Derivations of high-contrasts expansions 105

2.3. A remark about Dirichlet and Neumann sub-domain
problems

Now we make the following remark that will be central for the upcoming argu-
ments. Looking back to (7) we make the following observation about u0. Tak-
ing test functions v ∈ H1

0 (−1,−δ) we see that u0 solve the following Dirichlet
problem ∫ −δ

−1
u′0v
′ =

∫ −δ
−1

fv, for all v ∈ H1
0 (−1,−δ) ,

with the corresponding boundary data. The strong form for this Dirichlet
problem is given by {

−z′′ = f, in (−1,−δ)
z (−1) = 0, z (−δ) = u0 (−δ) ,

with only solution z = u0 in (−1,−δ). From here we conclude that z = u0
is also the solution of the following mixed Dirichlet and Neumann boundary
condition problem {

−z′′ = f, in (−1,−δ),
z (−1) = 0, z′ (−δ−) = u′0 (−δ−) ,

with weak formulation given by∫ −δ
−1

z′v′ = u′0
(
−δ−

)
v
(
−δ−

)
+

∫ −δ
−1

fv, for all v ∈ H1(−1,−δ).

Since z = u0 ∈ H1 (−1,−δ) is solution of this problem we can write∫ −δ
−1

u′0v
′ = u′0

(
−δ−

)
v
(
−δ−

)
+

∫ −δ
−1

fv, for all v ∈ H1(−1,−δ). (15)

Analogously we can write∫ 1

δ

u′0v
′ = u′0

(
δ+
)
v
(
δ+
)

+

∫ 1

δ

fv, for all v ∈ H1(δ, 1). (16)

By substituting the equations (15) and (16) into (7) we have(
u′0
(
−δ−

)
v
(
−δ−

)
+

∫ −δ

−1

fv

)
+

∫ δ

−δ

u′1v
′ +

(∫ 1

δ

fv − u′0
(
δ+
)
v
(
δ+
))

=

∫ 1

−1

fv,

so that, after simplifying it gives, for all v ∈ H1 (−1, 1), that∫ δ

−δ
u′1v
′ =

∫ δ

−δ
fv + u′0

(
δ+
)
v
(
δ+
)
− u′0

(
−δ−

)
v
(
−δ−

)
. (17)

This last equation (17) is the weak formulation of the Neumann problem for
u1 defined by {

−u′′1 = f, in (−δ, δ),
u′1 (−δ+) = u′0 (−δ−) , u′1 (δ−) = u′0 (δ+) .

(18)
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This classical Neumann problem has solution only if the compatibility condition
is satisfied. The compatibility condition comes from the fact that if we integrate
directly the first equation in (18), we have

−
∫ δ

−δ
u′′1 =

∫ δ

−δ
f, and then we need u′1(−δ+)− u′1(δ−) =

∫ δ

−δ
f.

Here, the derivatives are defined using side limits for the function u1. Using
the fact that u′1(−δ+) = u′0(−δ−) and u′1(δ−) = u′0(δ+) then, the compatibility
conditions becomes

u′0(−δ−)− u′0(δ+) =

∫ δ

−δ
f. (19)

In order to verify this compatibility condition we first observe that if we take
v = χ in (15) and (16) and recalling the definition of χ we obtain∫ −δ
−1

u′0χ
′ = u′0(−δ−)(1) +

∫ −δ
−1

fχ and

∫ 1

δ

u′0χ
′ = u′0(δ+)(−1) +

∫ 1

δ

fχ.

On the other hand, if we take v = χ in (7) we have∫ −δ
−1

u′0χ
′ + 0 +

∫ 1

δ

u′0χ
′ =

∫ 1

−1
fχ.

Combining these three equations we conclude that (19) holds true.
Now, observe that (18) has unique solution up to a constant so, the solution

takes the form u1 = ũ1 + c1, with c1 an integration constant. In addition, ũ1
is a function with the property that its means measure is 0, i.e.,∫ δ

−δ
ũ1 = 0.

In this way, we need to determine the value of constant c1, for this, we substitute
the function u1 with a total function ũ1 + c1, but the constant c1 cannot be
computed in this part, so it will be specified later.

Therefore ũ1 solves the Neumann problem in (−δ, δ)∫ δ

−δ
ũ′1v
′ =

∫ δ

−δ
fv −

[
u′0(δ+)− u′0(−δ−)

]
, for all v ∈ H1(−δ, δ). (20)

2.4. Terms corresponding to η−1

For the other parts of u1 in the interval, we need the term of η with j = 1,
which is given from the equation (6), we have∫ −δ

−1
u′1v
′ +

∫ δ

−δ
u′2v
′ +

∫ 1

δ

u′1v
′ = 0, for all v ∈ H1

0 (−1, 1) . (21)

Note that if we restrict this equation to test functions v ∈ H1
0 (−1,−δ) and

v ∈ H1
0 (δ, 1) such as in (7), i.e.,

∫ δ
−δ u

′
2v
′ = 0, we have∫ −δ

−1
u′1v
′ = 0, for all v ∈ H1

0 (−1,−δ),
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and ∫ 1

δ

u′1v
′ = 0, for all v ∈ H1

0 (δ, 1),

where each integral is a weak formulation to problems with Dirichlet conditions −u
′′
1 = 0, in (−1,−δ),

u1(−1) = 0,
u1(−δ−) = u1(−δ+) = ũ1(−δ+) + c1,

(22)

and  −u
′′
1 = 0, in (δ, 1),

u1(δ+) = u1(δ−) = ũ1(δ−) + c1,
u1(1) = 0,

(23)

respectively.
Back to the problem (21) above, we compute u2 with given solutions in (22)

and (23) we get ∫ δ

−δ
u′2v
′ = u′1(−δ−)v(−δ−)− u′1(δ+)v(δ+).

This equation is the weak formulation to the Neumann problem{
−u′′2 = 0, in (−δ, δ),
u′2(−δ+) = u′1(−δ−), u′2(δ−) = u′1(δ+).

(24)

Note that, since u2 depends only on the (normal) derivative of u1, then, it
does not depend on the value of c1. But the value c1 is chosen such that
compatibility condition holds.

2.5. Terms corresponding to η−j, j ≥ 2

In order to determine the other parts of u2 we need the term of η but this
procedure is similar for the case of uj with j ≥ 2, so we present the deduction
for general uj with j ≥ 2. Thus we have that∫ −δ

−1
u′jv
′ +

∫ δ

−δ
u′j+1v

′ +

∫ 1

δ

u′jv
′ = 0, for all v ∈ H1

0 (−1, 1). (25)

Again, if we restrict this last equation to v ∈ H1
0 (−1,−δ) and v ∈ H1

0 (δ, 1) to
be defined in (7), we have∫ −δ

−1
u′jv
′ = 0, for all v ∈ H1

0 (−1,−δ),

and ∫ 1

δ

u′jv
′ = 0, for all v ∈ H1

0 (δ, 1),

respectively. Where each integral is a weak formulation to the Dirichlet problem
−u′′j = 0, in (−1, δ),
uj(−1) = 0,
uj(−δ−) = uj(−δ+) = ũj(−δ+) + cj ,

(26)
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and 
−u′′j = 0, in (δ, 1),
uj(δ

+) = uj(δ
−) = ũj(δ

−) + cj ,
uj(1) = 0.

(27)

Following a similar argument to the one given above, we conclude that uj is
harmonic in the intervals (−1,−δ) and (δ, 1) for all j ≥ 1 and uj−1 is harmonic
in (−δ, δ) for j ≥ 2. As before, we have

u′j(δ
−)− u′j(−δ+) = −

[
u′j−1(δ+)− u′j−1(−δ−)

]
, for all j ≥ 2.

Note that uj is given by the solution of a Neumann problem in (−δ, δ). Thus,
the function takes the form uj = ũj + cj , with cj being a integration constant,
though, ũj is a function with the property that its integral is 0, i.e.,∫ δ

−δ
ũj = 0, for all j ≥ 2.

In this way, we need to determine the value of constant cj , for this, we substitute
the function uj with a total function ũj + cj . Note that ũj solves the Neumann
problem in (−δ, δ)∫ δ

−δ
ũ′jv
′ = −

[
u′j−1(δ+)− u′j−1(−δ−)

]
, for all v ∈ H1(−δ, δ). (28)

Since cj , with j = 2, . . . , are constants, their harmonic extensions are given by
cjχ in (−1, 1), (see Remark 3.1 below for more details). We have

uj = ũj + cjχ, in (−δ, δ).

This complete the construction of uj .
From the equation (25), and solutions of Dirichlet problems (26) and (27)

we have ∫ δ

−δ
u′j+1v

′ = u′j(−δ−)v(−δ−)− u′j(δ+)v(δ+). (29)

This equation is the weak formulation to the Neumann problem{
−u′′j+1 = 0, in (−δ, δ),
u′j+1(−δ+) = u′j(−δ−), u′j+1(δ−) = u′j(δ

+).
(30)

As before, we have

u′j+1(δ−)− u′j+1(−δ+) = −
[
u′j(δ

+)− u′j(−δ−)
]
.

The compatibility conditions need to be satisfied. Observe that

u′j+1(δ−)− u′j+1(−δ+) = −
[
u′j(δ

+)− u′j(−δ−)
]

= −ũ′j(δ+)− cjχ′(δ+) + ũ′j(−δ−) + cjχ
′(−δ−)

= ũ′j(−δ−)− ũ′j(δ+) + cj
[
χ′(−δ−)− χ′(δ+)

]
= 0.
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By the latter we conclude that, in order to have the compatibility condition of
(30) it is enough to set,

cj = −
ũ′j(−δ−)− ũ′j(δ+)

χ′(−δ−)− χ′(δ+)
.

We can choose uj+1 in (−δ, δ) such that

uj+1 = ũj+1 + cj+1, where

∫ δ

−δ
ũj+1 = 0,

and ũj+1 solves the Neumann problem∫ δ

−δ
ũ′j+1v

′ = −
[
u′j(δ

+)− u′j(−δ−)
]
, for all v ∈ H1(−δ, δ). (31)

and as before

cj+1 = −
ũ′j+1(−δ−)− ũ′j+1(δ+)

χ′(−δ−)− χ′(δ+)
.

2.6. Illustrative example in one dimension

In this part we show a simple example of the weak formulation with the purpose
of illustrating of the development presented above. First take the next (strong)
problem {

(κ (x)u′ (x))
′

= 0, in (−2, 2),
u (−2) = 0, u (2) = 4,

(32)

with the function κ (x) defined by

κ (x) =

 1, −2 ≤ x < −1,
η, −1 ≤ x < 1,
1, 1 ≤ x ≤ 2.

The weak formulation for problem (32) is to find a function u ∈ H1(−2, 2) such
that { ∫ 2

−2 κ(x)u′(x)v′(x)dx = 0,

u(−2) = 0, u(2) = 4,
(33)

for all v ∈ H1
0 (−2, 2).

Note that the boundary condition is not homogeneous, but this case is
similar, and only the term u0 inherit a non-homogeneous boundary condition.

As before, for j = 0 we have the equation (7), then u0 is constant in (−1, 1)
and we write the decomposition u0 = c0χ+u(1)+u(2), and if v = χ ∈ H1

0 (−2, 2)
from equation (10) we have that c0 = 2.

Similarly, we can take v = v(1) ∈ H1
0 (−2,−1) and we obtain the weak

formulation of Dirichlet problem{
−
(
u(1)

)′′
= 0, in (−2,−1),

u(1)(−2) = 0, u(1)(−1) = 0,

Bolet́ın de Matemáticas 21(2) 99–124 (2014)



110 Leonardo Andrés Poveda Cuevas

that after integrating directly twice gives a linear function u(1) = α1(x+ 2) in
(−2,−1) and α1 is an integration constant. Using the boundary data we have
u(1) = 0.

If v = v(2) ∈ H1
0 (1, 2) we have the weak formulation to the Dirichlet problem

(13) that in this case becomes,{
−
(
u(2)

)′′
= 0, in (1, 2),

u(2)(1) = 0, u(2)(2) = 4.

Integrating twice in the interval (1, 2) we obtain the solution, u(2) = α2(x− 1),
which becomes u(2) = 4(x − 1). We use the boundary condition to determine
the integration constant α2. Then, we find the decomposition for u0 = c0χ +
u(1) + u(2) for each part of interval which is given by

u0 =

 2(x+ 2), x ∈ (−2,−1),
2, x ∈ (−1, 1),
2x, x ∈ (1, 2).

With u0 already computed we can to obtain the boundary data for the Neu-
mann problem that determines u1 in the equation (18). We have{

−u′′1 = 0, in (−1, 1),
u′1(−1) = 2, u′1(1) = 2.

As before, we see that the compatibility condition holds and therefore it has
solution in the interval (−1, 1). Easy calculation gives u1 = 2x. For computing
the constant c1, we consider the Neumann problem (20), which has the solution
ũ1 = 2x. By the definition of u1 = ũ1 + c1 we conclude that c1 = 0. Now, in
order to compute u1 in the (−2,−1) and (1, 2) we apply the condition in (21).
It follows from the Dirichlet problems (22) and (23), that the solutions are
u1 = −2(x+ 2) and u1 = −2x+ 4 respectively. We summarize the expression
for u1 as

u1 =

 −2(x+ 2), x ∈ (−2,−1),
2x, x ∈ (−1, 1),
−2(x− 2), x ∈ (1, 2).

Returning to equation (21) we can obtain u2 in the interval (−1, 1) by solving
the Neumann problem {

−u′′2 = 0 in (−1, 1),
u′2(−1) = −2, u′2(1) = 2.

Note again that the compatibility condition holds. The solution is given by
u2 = −2x. Computing the constant c2, we consider the Neumann problem
(28) for j = 2, has the solution ũ2 = −2x. Note that we assume the boundary
conditions of Dirichlet problems (26) and (27). Then c2 = 0. So, in order to
find u2 in the intervals (−2,−1) and (1, 2), we apply the condition in (25). It
follows from (26) and (27) that the solutions are u2 = 2(x+2) and u2 = 2(x−2),
respectively.

For the case of terms uj+1 with j ≥ 2, we consider the Neumann problem
(30) with solution uj+1 = ±2x in (−1, 1). Note that the compatibility condition

Bolet́ın de Matemáticas 21(2) 99–124 (2014)



Derivations of high-contrasts expansions 111

holds. Again we recall the Neumann problem (31) with solution ũj+1 = ±2x
in this case. We conclude that cj = 0 for each j = 2, 3 . . . . Again in order
to find uj+1 in the intervals (−2,−1) and (1, 2). It follows of analogous form
above that the solutions uj+1 = ∓2(x+2) in (−2,−1) and uj+1 = ∓2(x−2) in
(1, 2), for j = 2, 3, . . . . So, we can be calculated following terms of the power
series.

We note that above we computed an approximation of the solution by solv-
ing local problems to the inclusion and the background. In this example, we
can directly compute the solution for the problem (32) and verify that the
expansion is correct. We have

u(x) = α

∫ x

−2

1

κ(t)
dt.

Then with boundary condition of problem (32) we calculate a constant α =
2η
1+η , so we have

u (x) =


2η
1+η (x+ 2) , x ∈ [−2,−1),
2η
1+η

[
1 + 1

η (x+ 1)
]
, x ∈ [−1, 1),

2η
1+η

[
1 + 2

η + (x− 1)
]
, x ∈ [1, 2].

(34)

Recall that the term η
1+η can be written as a power series given by η

1+η =∑∞
j=0

(−1)j
ηj .

By inserting this expression into (34) and after some manipulations, we
have

u(x) =


2(x+ 2)

∑∞
j=0

(−1)j
ηj , x ∈ [−2,−1),

2− 2x
∑∞
j=1

(−1)j
ηj , x ∈ [−1, 1),

2x
∑∞
j=0

(−1)j
ηj − 4x

∑∞
j=1

(−1)j
ηj , x ∈ [1, 2].

(35)

We can rewrite this expression to get

u (x) =

 2 (x+ 2)
2
2x

︸ ︷︷ ︸
u0

+
1

η

 −2 (x+ 2)
2x

− (2x− 4)

︸ ︷︷ ︸
u1

+
1

η2

 2 (x+ 2)
−2x

(2x− 4)

︸ ︷︷ ︸
u2

+ · · · , (36)

Observe that those were the same terms computed before by solving local
problems in the inclusions and the background.

3. Asymptotic expansion in two and three
dimensions

In this section we use the notation introduced in [5] and we detail the deriva-
tion of asymptotic expansions in higher dimensions for high-contrast elliptic
problems of the form,

−div(κ(x)∇u(x)) = f(x), in D, (37)
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with Dirichlet data defined by u = g on ∂D. We assume that D is the dis-
joint union of a background domain and inclusions, D = D0 ∪ (

⋃M
m=1Dm).

We assume that D0, D1, . . . , DM , are polygonal domains (or domains with
smooth boundaries). We also assume that each Dm is a connected domain,
m = 0, 1, . . . ,M . Additionally, we assume that Dm is compactly included in
the open set D \

⋃M
`=1, 6̀=mD`, i.e., Dm ⊂ D \

⋃M
`=1, 6̀=mD`, and we define

D0 := D \
⋃M
m=1Dm. Let D0 represent the background domain and the sub-

domains {Dm}Mm=1 represent the inclusions. For simplicity of the presentation
we consider only interior inclusions. Other cases can be studied similarly.

We consider a coefficient with multiple high-conductivity inclusions. Let κ
be defined by

κ(x) =

{
η, x ∈ Dm, m = 1, . . . ,M,

1, x ∈ D0 = D \
⋃M
m=1Dm.

(38)

We seek to determine {uj}∞j=0 ⊂ H1(D) such that

uη = u0 +
1

η
u1 +

1

η2
u2 + · · · =

∞∑
j=0

η−juj , (39)

and such that they satisfy the following Dirichlet boundary conditions,

u0 = g on ∂D and uj = 0 on ∂D for j ≥ 1. (40)

This work complements current work in the use of similar expansions to de-
sign and analyze efficient numerical approximations of high-contrast elliptic
equations, see [8, 9].

We have the following weak formulation of problem (37): to find u ∈ H1(D)
such that {

A(u, v) = F(v), for all v ∈ H1
0 (D),

u = g, on ∂D.
(41)

The bilinear form A and the linear functional F are defined by

A(u, v) =

∫
D

κ(x)∇u(x) · ∇v(x)dx, for all u, v ∈ H1
0 (D), (42)

F(v) =

∫
D

f(x)v(x)dx, for all v ∈ H1
0 (D).

We denote by uη the solution of problem (37) with Dirichlet boundary condition
(40). From now on, we use the notation w(m), which means that the function
w is restricted on domain Dm, that is w(m) = w|Dm , m = 0, 1.

3.1. Derivation for one high-conductivity inclusion

Let us denote by uη the solution of (37) with the coefficient κ(x) defined in
(38). We express the expansion as in (39) with the functions uj , j = 0, 1, . . . ,
satisfying the conditions on the boundary of D given in (40). For the case
of the one inclusion with m = 0, 1, we consider D as the disjoint union of a
background domain D0 and one inclusion D1, such that D = D0 ∪ D1. We
assume that D1 is compactly included in D (D1 ⊂ D).
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We obtain the following development for each term of this asymptotic ex-
pansion in the problem (37). First we replace u(x) for the expansion (39) in
the bilinear form of the (42), we have∫

D

κ(x)

∞∑
j=0

η−j∇uj · ∇v =

∫
D0

∞∑
j=0

η−j∇uj · ∇v + η

∫
D1

∞∑
j=0

η−j∇uj · ∇v

=

∞∑
j=0

η−j
∫
D0

∇uj · ∇v + η

∞∑
j=0

η−j
∫
D1

∇uj · ∇v

=

∞∑
j=0

η−j
∫
D0

∇uj · ∇v +

∞∑
j=0

η−j+1

∫
D1

∇uj · ∇v,

we change the index in the last sum to obtain,

∞∑
j=0

η−j
∫
D0

∇uj · ∇v +

∞∑
j=−1

η−j
∫
D1

∇uj+1 · ∇v,

and then, we have

∞∑
j=0

η−j
∫
D0

∇uj · ∇v + η

∫
D1

∇u0 · ∇v +

∞∑
j=0

η−j
∫
D1

∇uj+1 · ∇v.

We obtain,

η

∫
D1

∇u0 · ∇v +

∞∑
j=0

η−j
(∫

D0

∇uj · ∇v +

∫
D1

∇uj+1 · ∇v
)

=

∫
D

fv. (43)

In brief, we obtain the following equations after matching equal powers,∫
D1

∇u0 · ∇v = 0, (44)

∫
D0

∇u0 · ∇v +

∫
D1

∇u1 · ∇v =

∫
D

fv, (45)

and for j ≥ 1, ∫
D0

∇uj · ∇v +

∫
D1

∇uj+1 · ∇v = 0, (46)

for all v ∈ H1
0 (D).

The equation (44) tells us that the function u0 restricted to D1 is constant,

that is u
(1)
0 is a constant function. We introduce the following subspace,

Vconst = {v ∈ H1
0 (D), such that v(1) = v|D1 is constant}.

If in equation (45) we choose test function z ∈ Vconst, then, we see that u0
satisfies the problem∫

D
∇u0 · ∇z =

∫
D
fz, for all z ∈ Vconst

u0 = g, in ∂D.
(47)
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The problem (47) is elliptic and it has a unique solution. This follows from the
ellipticity of bilinear form A.

We introduce the harmonic characteristic function χD1 ∈ H1
0 (D) with the

condition
χ
(1)
D1

= 1, in D1,

and which is equal to the harmonic extension of its boundary data in D0 (see
[5]). We then have,∫

D0

∇χ(0)
D1
· ∇z = 0, for all z ∈ H1

0 (D0), (48)

χ
(0)
D1

= 1, on ∂D1,

χ
(0)
D1

= 0, on ∂D.

To obtain an explicit formula for u0 we use the facts that the problem (47) is
elliptic and has unique solution, and a property of the harmonic characteristic
functions described in the next remark (see [5]).

Remark 3.1. Let w be a harmonic extension to D0 of its Neumann data on
∂D0. That is, w satisfies the following problem∫

D0

∇w · ∇z =

∫
∂D0

∇w · n0z, for all z ∈ H1(D0).

Since χD1
= 0 on ∂D and χD1

= 1 on ∂D1, we have that∫
D0

∇χD1 · ∇w =

∫
∂D0

∇w · n0χD1 = 0

(∫
∂D

∇w · n
)

+ 1

(∫
∂D1

∇w · n0
)
,

and we conclude that for every harmonic function on D0,∫
D0

∇χD1 · ∇w =

∫
∂D1

∇w · n0.

Note that if ξ ∈ H1(D) is such that ξ(1) = ξ|D1 = c is a constant in D1 and
ξ(0) = ξ|D0 is harmonic in D0, then ξ = cχD1 .

An explicit formula for u0 is obtained as

u0 = u0,0 + c0χD1
, (49)

where u0,0 ∈ H1(D) is defined by u
(1)
0,0 = 0 in D1 and u

(0)
0,0 solves the Dirichlet

problem ∫
D0

∇u(0)0,0 · ∇z =

∫
D0

fz, for all z ∈ H1
0 (D0). (50)

u
(0)
0,0 = 0, on ∂D1,

u
(0)
0,0 = g, on ∂D.

From equation (47), (49) and the facts in the Remark 3.1 we have∫
D0

∇u0 · ∇χD1 =

∫
D

fχD1 ,
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or ∫
D0

∇(u0,0 + c0χD1
) · ∇χD1

=

∫
D

fχD1
,

from which we can obtain the constant c0 given by

c0 =

∫
D
fχD1 −

∫
D0
∇u0,0 · ∇χD1∫

D0
|∇χD1

|2
, (51)

or, using the Remark above we also have

c0 =

∫
D1
f −

∫
∂D1
∇u0,0 · n0∫

∂D1
∇χD1 · n0

. (52)

Thus, by (52) c0 balances the fluxes across ∂D1, see [5].

Figure 3: Illustration of local problems related to u0 in the inclusion and the
background.

In Figure 3 we illustrate the properties of u0, that is, the local problem u0 is
solved in the inclusions and the background.

To get the function u1 we proceed as follows. We first write

u
(1)
1 = ũ

(1)
1 + c1, where

∫
D1

ũ
(1)
1 = 0

and ũ
(1)
1 solves the Neumann problem∫
D1

∇ũ(1)1 · ∇z =

∫
D1

fz −
∫
∂D1

∇u(0)0 · n1z for all z ∈ H1(D1). (53)

The Problem (53) satisfies the compatibility condition so it is solvable. The
constant c1 is given by

c1 = −
∫
∂D1
∇ũ(0)1 · n0∫

∂D1
∇χ(0)

D1
· n0

= −
∫
D0
∇ũ1 · ∇χD1∫
D0
|∇χD1 |2

. (54)
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Figure 4: Illustration of local problems related to u1 in the inclusions and the
background. First a problem in D1 is solved and then a problem in D0 is solved
using the boundary data in ∂D1.

In Figure 4 we illustrate the properties of u1, that is, the local problem u1 is
solved in the inclusions and the background. Now, we complete the construc-
tion of u1 and show how to construct uj , j = 2, 3, . . . . For a given j = 1, 2, . . .

and given u
(1)
j we show how to construct u

(0)
j and u

(1)
j+1.

Assume that we already have constructed u
(1)
j in D1 as the solution of a

Neumann problem in D1 and can be written as

u
(1)
j = ũ

(1)
j + cj , where

∫
D1

ũj = 0. (55)

We find u
(0)
j in D0 by solving a Dirichlet problem with known Dirichlet data,

that is, ∫
D0

∇u(0)j · ∇z = 0, for all z ∈ H1
0 (D0),

u
(0)
j = ũ

(1)
j on ∂D1 and uj = 0 on ∂D.

(56)

Since cj , j = 1, . . . , are constants, their harmonic extensions are given by
cjχD1

, j = 1, . . . . Then, we conclude that

uj = ũj + cjχD1 , (57)

where ũ
(0)
j is defined by (56). The balancing constant cj is given as

cj = −
∫
∂D1
∇ũ(0)j · n0∫

∂D1
∇χ(0)

D1
· n0

= −
∫
D0
∇ũj · ∇χD1∫
D0
|∇χD1

|2
, (58)

so we have
∫
∂D1
∇u(0)j · n0. This completes the construction of uj . The com-

patibility conditions are satisfied, if we use the definition of cj in (58). In the
Figure 5 we illustrate the properties of uj , that is, the local problem uj is solved
in the inclusions and the background.

We recall the convergence result obtained in [5]. There it is proven that
there is a constant C > 0 such that for every η > C, the expansion (39)
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converges (absolutely) in H1(D). The asymptotic limit u0 satisfies (49). Ad-
ditionally, for every η > C, we have∥∥∥∥∥∥u−

J∑
j=0

η−juj

∥∥∥∥∥∥
H1(D)

≤ C1

(
‖f‖H−1(D) + ‖g‖H1/2(∂D)

) ∞∑
j=J+1

(
C

η

)j
,

for J ≥ 0. For the proof we refer to [5].

Figure 5: Illustration of local problems related to uj , j ≥ 2, in the inclusion
and the background. First a problem in D1 is solved and then a problem in
D0 is solved using the boundary data in ∂D1.

3.2. Derivation for multiply high-conductivity inclusions

In this section we express the expansion as in (39) with the coefficient

κ(x) =

{
η, x ∈ Dm, m = 1, . . . ,M,

1, x ∈ D0 = D \
⋃M
m=1Dm.

First, we describe the asymptotic problem.
We recall the space of constant functions inside the inclusions

Vconst =
{
v ∈ H1

0 (D), such that v|Dm is a constant for all m = 1, . . . ,M
}
.

By analogy with the case of one high-conductivity inclusion, if we choose test
function z ∈ Vconst, then, we see that u0 satisfies the problem∫

D
∇u0 · ∇z =

∫
D
fz, for all z ∈ Vconst

u0 = g, in ∂D.
(59)

The problem (47) is elliptic and it has a unique solution. For each m = 1, . . . ,M
we introduce the harmonic characteristic function χDm ∈ H1

0 (D) with the
condition

χ
(1)
Dm
≡ δm` in D`, for ` = 1, . . . ,M, (60)

and which is equal to the harmonic extension of its boundary data in D0, χDm
(see [5]).
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We then have,∫
D0

∇χDm · ∇z = 0, for all z ∈ H1
0 (D0). (61)

χDm = δm`, on ∂D`, for ` = 1, . . . ,M,

χDm = 0, on ∂D.

Where δm` represent the Kronecker delta, which is equal to 1 when m = ` and
0 otherwise. To obtain an explicit formula for u0 we use the facts that the
problem (47) is elliptic and has unique solution, and a similar property of the
harmonic characteristic functions described in the Remark 3.1, we replace χD1

by χDm for this case.
We decompose u0 into the harmonic extension to D0 of a function in Vconst

plus a function u0,0 with value g on the boundary and zero boundary condition
on ∂Dm, m = 1, . . . ,M . We write

u0 = u0,0 +

M∑
m=1

cm(u0)χDm ,

where u0,0 ∈ H1(D) with u0,0 = 0 in Dm for m = 1, . . . ,M , and u0,0 solves
the problem in D0∫

D0

∇u0,0 · ∇z =

∫
D0

fz, for all z ∈ H1
0 (D0), (62)

with u0,0 = 0 on ∂Dm, m = 1, . . . ,M and u0,0 = g on ∂D. We compute the
constants cm using the same procedure as before. We have

M∑
m=1

cm(u0)

∫
D0

∇χDm ·χD` =

∫
D

fχD` −
∫
D0

∇u0,0 ·∇χD` , for ` = 1, . . . ,M,

and this last problem is equivalent to the linear system,

AgeomX = b,

where Ageom = [am`] and b = (b1, . . . , bM ) ∈ RM are defined by

am` =

∫
D

∇χDm · ∇χD` =

∫
D0

∇χDm · χD` , (63)

b` =

∫
D

fχD` −
∫
D0

∇u0,0 · ∇χD` , (64)

and X = (c1(u0), . . . , cM (u0)) ∈ RM . Then we have

X = A−1geomb. (65)

Now using the conditions given for χDm in the Remark 3.1 we have

am` =

∫
D

∇χDm · ∇χD` =

∫
∂Dm

χD` · nm =

∫
∂D`

∇χD` · n`. (66)
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Note that
∑M
m=1 cmχDm is the solution of a Galerkin projection in the space

Span {χDm}
M
m=1. For more details see [5], and references therein.

Now, we describe the next individual terms of the asymptotic expansion.
As before, we have the restriction of u1 to the sub-domain Dm, that is

u
(m)
1 = ũ

(m)
1 + c1,m, with

∫
Dm

ũ
(m)
1 = 0,

and ũ
(m)
1 satisfies the Neumann problem∫
Dm

∇ũ(m)
1 · ∇z =

∫
Dm

fz −
∫
∂Dm

∇u(0)0 · nmz, for all z ∈ H1(Dm),

for m = 1, . . . ,M . The constants c1,m will be chosen later.

Now, for j = 1, 2, . . . we have that u
(m)
j in Dm, m = 1, . . . ,M , then we find

u
(0)
j in D0 by solving the Dirichlet problem∫

D0

∇u(0)j · ∇z = 0, for all z ∈ H1
0 (D0), (67)

u
(0)
j = u

(m)
j (= ũ

(m)
j + cj,m), on ∂Dm, m = 1, . . . ,M,

u
(0)
j = 0, on ∂D.

Since cj,m are constants, we define their corresponding harmonic extension by∑M
m=1 cj,mχDm . So we rewrite

uj = ũj +

M∑
m=1

cj,mχDm . (68)

The u
(m)
j+1 in Dm satisfy the following Neumann problem∫

Dm

∇u(m)
j+1 · ∇z = −

∫
∂Dm

∇u(0)j · n0z, for all z ∈ H1(D).

For the compatibility condition we need that for ` = 1, . . . ,M

0 =

∫
∂D`

∇u(`)j+1 · n` = −
∫
∂D`

∇u(0)j · n0

= −
∫
D`

∇

(
ũ
(0)
j +

M∑
m=1

cj,mχ
(0)
Dm

)
· n0

= −
∫
∂D`

∇ũ(0)j · n0 −
M∑
m=1

cj,m

∫
∂Dm

∇χ(0)
Dm
· n0.

From (63) and (66) we have that Xj = (cj,1, . . . , cj,M ) is the solution of the
system

AgeomXj = Yj ,

where

Yj =

(
−
∫
∂D1

∇u(0)j · n0, . . . ,−
∫
∂Dm

∇ũ(0)j · n0
)
,
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or

Yj =

(
−
∫
∂D0

∇u(0)j · ∇χD1 , . . . ,−
∫
∂D0

∇ũ(0)j · ∇χDM
)
.

For the convergence we have the result obtained in [5]. There it is proven that
there are constants C,C1 > 0 such that η > C, the expansion (39) converges
absolutely in H1(D) for η sufficiently large. We recall the following result.

Theorem 3.2. Consider the problem (37) with coefficient (38). The corre-
sponding expansion (39) with boundary condition (40) converges absolutely in
H1(D) for η sufficiently large. Moreover, there exist positive constants C and
C1 such that for every η > C, we have∥∥∥∥∥∥u−

J∑
j=0

η−juj

∥∥∥∥∥∥
H1(D)

≤ C1

(
‖f‖H−1(D) + ‖g‖H1/2(∂D)

) ∞∑
j=J+1

(
C

η

)j
,

for J ≥ 0.

3.3. Examples in two dimensions

In this section we show some examples of the expansion terms in two dimen-
sions. In particular, few terms are computed numerically using a Finite Element
method. For details on the Finite Element Method, see for instance [1, 3]. We
recall that, apart for verifying the derived asymptotic expansions numerically,
these numerical studies are a first step to understand the approximation u0
and with this understanding try to devise cheap numerical approximations for
u0 (and then for uη). We make some comments in the next section.

Figure 6: Example of geometry configurations with interior inclusion to solve
the problem (37) with u(x) = 0 on ∂D and the coefficient κ in (38).

We numerically solve the problem (37) with u(x) = 0 on ∂D and the coefficient
κ in (38) where the domain configuration is illustrated in Figure 6. This con-
figuration contains one polygonal interior inclusion. We applied the conditions
above develop through an numerical implementation in MatLab. We set η = 10
for this example. We show the computed first four terms of the asymptotic ex-
pansions in Figure 7. In particular we show the asymptotic limit u0. For this
case η = 10 and the errors form the truncated series and the whole domain
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solution uη is reported in Figure 8. We see a linear decay of the logarithm of
the error with respect to the number of terms that corresponds to the decay of
the power series tail.

As a second example we consider several inclusions. The domain is illus-
trated in Figure 9 as well as the corresponding u0 term. In Figure 10 we show
the behavior of the first three terms but inside the inclusions regions.

In the Figure 10 we have a plot of the asymptotic solutions and show its
behaviour on inclusions.

(A) u0 (B) u1

(C) u2 (D) u3

Figure 7: Few terms of the asymptotic expansion (39) for the solution of (37)
with u(x) = 0 on ∂D and the coefficient κ in (38) where the domain configu-
ration is illustrated in Figure 6. Here we consider η = 10.
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Figure 8: Error of the difference of the solution uη computed directly and the
addition of the truncation of the expansion (39). We consider η = 10 (solid
line) and η = 100 (dashed line).

Figure 9: Example of geometry configurations with interior inclusion (left pic-
ture). Asymptotic limit u0 for the solution of (37) with u(x) = 0 on ∂D and
the coefficient κ in (38) where the domain configuration is illustrated in the
left picture. Here we consider η = 10 (right picture).

(A) u0 (B) u1 (C) u2

Figure 10: Illustration, inside inclusions, of first few terms of the asymptotic
expansion (39) for the solution of (37) with u(x) = 0 on ∂D and the coefficient
κ in (38) where the domain configuration is illustrated in Figure 9. Here we
consider η = 10.
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4. Final comments and ongoing work

We review some results and examples concerning asymptotic expansions for
high-contrast coefficient elliptic equations. In particular we gave some explicit
examples for the computations of the few terms in one dimension that several
numerical examples in two dimensions. We mention and a main application
in mind is to find ways to quickly is an approximation compute a few terms,
in particular the term u0, which, as seen in the paper, is approximation of
order η−1 to the solution. A main difficulty is that the computation of the
harmonic characteristic functions is computationally expensive. One option is
to approximate these functions by solving a local problem (instead of a whole
background problem). For instance the domain where harmonic characteristic
functions can computed is illustrated in Figure 11 where the approximated har-
monic characteristic function will be zero on the a boundary of a neighborhood
of the inclusions. See Figure 11. This approximation will be consider for the
case of many highly, dense high-contrast inclusions. This is under study and
results will be presented elsewhere.

Figure 11: Illustration of δ− neighborhood of an inclusion (blue region).
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