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Periodic travelling waves of moderate amplitude

Ondas viajeras periódicas de amplitud moderada

Alex Manuel Montes1,a

Abstract. In this paper, using a variational approach, we show the existence
of periodic travelling waves for a nonlinear dispersive equation that emerges
in the study of the evolution free surface for waves of moderate amplitude in
the shallow water regime.
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Resumen. En este trabajo, usando un enfoque variacional, mostramos la
existencia de ondas viajeras periódicas para una ecuación no lineal de tipo
dispersivo que surge en el estudio de la evolución de ondas de agua de amplitud
moderada en el regimen de aguas poco profundas.
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1. Introduction

The focus of the present work is the one-dimensional nonlinear equation

ut − uxxt + ux − auxxx + αuux = λ(uuxxx + 2uxuxx), (1)

modeling the evolution of the free surface for waves of moderate amplitude
in the shallow water regime. As it is well known, models for dispersive and
nonlinear water waves with small or moderate amplitude in finite depth are
derived from the full water wave problem through an approximation process,
under the imposition of some restrictions on the parameters that affect the
propagation of gravity water waves, as the nonlinearity (amplitude parameter)
and the dispersion (shallowness parameter). A typical example is the Korteweg-
de Vries (KdV) equation [7] which models shallow water waves propagation:

ut + ux + uxxx + αuux = 0.

In this equation, the steeping effect of the nonlinearity, represented by uux, and
the effect of dispersion, represented by uxxx, are in balance with each other.
More recently, it has been noticed by Benjamin, Bona and Mahony [2] that
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the (KdV) equation belongs to a wider class of equations which provide an
approximation of the exact water wave equations of the same accuracy as the
(KdV) equation:

ut + ux + uxxx − uxxt + αuux = 0.

Since the (KdV) and (BBM) type equations do not model breaking waves, sev-
eral model equations were proposed to capture this phenomenon. In particular
we recall the Camassa-Holm (CH) equation [3]

ut + ux − uxxt + αuux = λ(uuxxx + 2uxuxx),

that arises as a model describing the evolution of the horizontal fluid velocity
at a certain depth within the regime of shallow water waves of moderate ampli-
tude. In terms of the two fundamental parameters µ (shallowness parameter)
and ε (amplitude parameter), the shallow water regime of waves of small am-
plitude (proper to KdV and BBM) is characterized by µ � 1 and ε = O(µ),
while the regime of shallow water waves of moderate amplitude (proper to CH)
corresponds to

µ� 1, ε = O(
√
µ). (2)

In a recent paper, A. Constantin and D. Lannes in [4] showed that the correct
generalization of the (KdV), (BBM) and (CH) equations under the scaling (2) is
provided by the class of equations (1). This equations capture stronger nonlin-
ear effects than the classical nonlinear dispersive Benjamin-Bona-Mahony and
Korteweg-de Vries equations. In particular, they accommodate wave breaking,
a fundamental phenomenon in the theory of water waves.

For the equation (1) we distinguish the following results. By perform a
phase plane analysis, A. Geyer in [1] showed the existence of solitary waves
which propagate with velocity c > 1. A. Geyer et al. in [6], using the approach
of Grillakis, Shatah and Strauss, showed the stability of solitary wave solutions
with speed of wave c > 1. A. Constantin et al. in [4], using Kato theory,
showed that the initial value problem associated to (1) is locally well-posed
in the Sobolev space Hs(R), s > 5

2 and N. Duruk in [5] improved this result,
establishing the local well-posed in the Sobolev space Hs(R), s > 3

2 .
In this paper, when a, α, λ > 0 we establish the existence of periodic trav-

elling waves of (1) for wave velocity c > c0 with c0 = max{1, a} and the mean
zero property. We will get the result by using a variational approach for which
solitary waves corresponding to a critical point of a suitable action functional.
The paper is organized as follows. In Section 2 we include some preliminaries
and in Section 3 we characterize periodic travelling solitary waves variation-
ally as critical points of an action functional. Then we prove the existence
of periodic travelling waves for the equation (1) by using the mountain pass
Theorem.

2. Preliminaries and main result

In this section we present some definitions and results that are used in this
paper. Also we present our main theorem. Here X is a Hilbert space, ‖ · ‖X
denotes the norm, <,>X its inner product and X ′ represents the dual space.
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Set Ω ⊂ R and Lp(Ω), 1 ≤ p ≤ ∞, denotes the usual Lebesgue space. Given
T > 0, the Sobolev space W 1

per = W 1
per[0, T ] of periodic functions with period

T is defined in the following standard way. Let C∞per([0, T ]) be the space of
smooth functions which are periodic with period T and have compact support
in [0, T ] and define

XT =
{
ψ|[0,T ] : ψ ∈ C∞per([0, T ])

}
.

We define the Sobolev space W 1
per[0, T ] as the closure of XT with respect to

the norm given by

‖v‖W 1
per

=

[∫ T

0

(
v2 + (v′)2

)
dx

]1/2

.

Then we have that the spaceW 1
per[0, T ] is a Hilbert space with the inner product

defined as

〈v, w〉W 1
per

=

∫ T

0

(vw + v′w′) dx.

Now, we define the Sobolev space of periodic functions with the mean zero
property. H1

per = H1
per[0, T ] denotes the closed subspace of W 1

per[0, T ] given by

H1
per[0, T ] =

{
v ∈W 1

per[0, T ] :

∫ L

0

v dx = 0

}
.

In this work we show the existence of periodic travelling waves in the space
H1
per[0, T ].

Next, we present the following minimax type theorem.

Lemma 2.1 (Mountain pass lemma). Let X be a Hilbert space, ϕ ∈ C2(X,R),
e ∈ X and r > 0 such that ‖e‖X > r and

b = inf
‖u‖X=r

ϕ(u) > ϕ(0) ≥ ϕ(e).

Then, given n ∈ N, there is un ∈ X such that

ϕ(un)→ d, and ϕ′(un)→ 0 in X ′,

where

d = inf
π∈Π

max
t∈[0,1]

ϕ(π(t)), Π = {π ∈ C([0, 1], X) : π(0) = 0, π(1) = e} .

Finally, the following theorem is our main result.

Theorem 2.2. For a, α, λ > 0 and c > max{1, a}, the equation (1) admits
travelling wave solutions u(x, y) = v(x− ct, y) in the space H1

per[0, T ].
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3. Existence of periodic travelling waves

In this section we assume a, α, λ > 0. A periodic travelling wave for the equa-
tion (1) is a solution of the form u(x, t) = v(z) with z = x−ct periodic. Indeed,
when this ansatz is substituted into (1) there appears the ordinary differential
equation

(1− c)v′ + (c− a)v′′′ + αvv′ − λ (vv′′′ + 2v′v′′) = 0,

which, using integration and the periodicity of v, yields

(c− 1)v − (c− a)v′′ − α

2
v2 +

λ

2

(
(v′)

2
+ 2vv

′′
)

= A, (3)

where A is a constant of integration. Note that A must be different from zero
due to the assumption on the mean property in [0, L]. We can see that solutions
v of (3) are critical points of the functional Jc given by

Jc(v) = Ic(v) +G(v),

where the functionals Ic and G are defined on the space H1
per by

Ic(v) =
1

2

∫ T

0

(
(c− 1)v2 + (c− a)(v′)2

)
dx,

G(v) = −1

2

∫ T

0

(α
3
v3 + λv(v′)2

)
dx.

First we have that Ic, G, Jc ∈ C2(H1
per,R) and its derivatives in v in the direc-

tion of w are given by

〈I ′c(v), w〉 =

∫ T

0

((c− 1)vw + (c− a)v′w′) dx,

〈G′(v), w〉 = −1

2

∫ T

0

(
αv2w + λ

(
(v′)2w + 2vv′w′

))
dx.

As a consequence of this, after integration by parts, we conclude that

J ′c(v) = (c− 1)v − (c− a)v′′ − α

2
v2 +

λ

2

(
(v′)

2
+ 2vv

′′
)
,

meaning that a critical point v of the functional Jc in a space having the mean
zero property satisfies the travelling wave equation (3). In fact, let w with the
mean zero property, then

〈J ′c(v), w〉 = 0 = A

∫ T

0

wdx = 〈A,w〉 .

In particular, we have that

〈J ′c(v), v〉 = 2Ic(v) + 3G(v) = 2Jc(v) +G(v). (4)

Thus on any critical point v ∈ H1
per, we have that

Jc(v) =
1

3
Ic(v), Jc(v) = −1

2
G(v), Ic(v) = −3

2
G(v). (5)
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Hereafter, we will say that weak solutions for (3) are critical points of the
functional Jc. Next, it is easy to show the following results on properties of Ic
and G. We will write

L∞T = L∞ [0, T ] .

Lemma 3.1. The functional Ic is well-defined on H1
per. In addition; for c >

max{1, a}, we have that Ic(v) ≥ 0. Moreover, there are some positive constants
C1(a, c) < C2(a, c) such that

C1‖v‖2H1
per
≤ Ic(v) ≤ C2‖v‖2H1

per
. (6)

Lemma 3.2. The functional G is well-defined on H1
per. Moreover, there is a

positive constant C = C(α, λ) such that

|G(v)| ≤ C‖v‖3H1
per
. (7)

Proof. Since the embedding H1
per ↪→ L∞T is continuous we have that there is

C > 0 such that∫ T

−T
|v||v′|2dx ≤ ‖v‖L∞

T

∫ T

−T
|v′|2dx ≤ C‖v‖3H1

per
.

In a similar fashion we see that
∫
R |v|

3dx ≤ C‖v‖3H1
per

. Then the result follows.

Our approach to show the existence of a non trivial critical point for Jc
is to use the mountain pass lemma without the Palais-Smale condition (M.
Willem [8]) to build a Palais-Smale sequence for Jc for a minimax value and
use a embedding result to obtain a critical point for Jc as a weak limit of such
Palais-Smale sequence. First we establish an important result for our analysis,
which is related to the characterization of “vanishing” sequences in H1

per[0, T ].

Proposition 3.3. If (vn)n is a bounded sequence in H1
per such that

lim
n→∞

‖vn‖L∞
T

= 0.

Then we have that

lim
n→∞

∫ T

0

v3
n dx = lim

n→∞

∫ T

0

vn(v′n)2 dx = 0. (8)

Proof. The Hölder inequality implies that∫ T

0

|vn|3dx+

∫ T

0

|vn||v′n|2 dx ≤ ‖vn‖L∞
T

(∫ T

0

|vn|2dx+

∫ T

0

|v′n|2dx

)
= ‖vn‖L∞

T
‖vn‖2H1

per
.

Thus, under the assumptions of the lemma we obtain the result.

In the following proposition we verify the mountain pass lemma’s hypotheses
(Lemma 2.1) and we build a Palais-Smale sequence for Jc.
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Proposition 3.4. Let a, α, λ > 0 and c > max{1, a}. Then

(i) There exists ρ > 0 small enough such that

b(c) := inf
‖z‖H1

per
=ρ
Jc(z) > 0.

(ii) There is e ∈ H1(R) such that ‖e‖H1
per
≥ ρ and Jc(e) ≤ 0.

(iii) If d(c) is defined as

d(c) = inf
π∈Π

max
t∈[0,1]

Jc(π(t)), Π = {π ∈ C([0, 1]), H1
per : π(0) = 0, π(1) = e},

then d(c) ≥ b(c) and there is a sequence (vn)n in H1
per such that

Jc(vn)→ d, J ′c(vn)→ 0 in
(
H1
per

)′
. (9)

Proof. From inequalities (6)-(7), we have for any v ∈ H1
per that

Jc(v) ≥ C1(a, c)‖v‖2H1
per
− C(α, λ)‖v‖3H1

per

≥
(
C1(a, c)− C(α, λ)‖v‖H1

per

)
‖v‖2H1

per
.

Then for ρ > 0 small enough such that

C1 − ρC > 0, (10)

we conclude for ‖v‖H1
per

= ρ that

Jc(v) ≥ (C1 − ρC) ρ2 := δ > 0.

In particular, we have that

b(c) = inf
‖z‖H1

per
=ρ
Jc(z) ≥ δ > 0. (11)

Now, if C∞0 ([0, T ]) denotes the space of smooth compactly support functions
with zero mean value, it is not hard to prove that there exists v0 ∈ C∞0 ([0, T ])
such that

∫
R v

3
0dx and

∫
R v0(v′0)2dx are positive quantities. Hence, for any t ∈ R

we see that

Jc(tv0) = t2

(
Ic(v0)− t

2

∫ T

0

(α
3
v3

0 + λv0(v′0)2
)
dx

)
.

Using the hypotheses we have that

lim
t→∞

Jc(tv0) = −∞,

because 0 ≤ Ic(v0) ≤ C2(c)‖v0‖2H1
per

. So that, there is t0 > 0 such that e =

t0v0 ∈ H1
per satisfies that

t0‖v0‖H1
per

= ‖e‖H1
per

> ρ

and that Jc(e) ≤ Jc(0) = 0. The third part follows by applying Lemma 2.1.
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Proof of Theorem 2.2

We will see that d(c) (see Proposition 3.4) is in fact a critical value of Jc. Let
(vn)n be the sequence in H1

per given by Proposition 3.4. First note from (11)
that d(c) ≥ b(c) ≥ δ. Using the definition of Jc and (4) we have that

Ic(vn) = 3Jc(vn)− 〈J ′c(vn), vn〉 .

But from (6) we conclude for n large enough that

C1(a, c)‖vn‖2H1
per
≤ I(vn) ≤ 3(d(c) + 1) + ‖vn‖H1

per
.

Then we have shown that (vn)n is a bounded sequence in H1
per. We claim that

δ∗ = lim
n→∞

‖vn‖L∞
T
> 0.

Suppose that

lim
n→∞

‖vn‖L∞
T

= 0.

Hence, from Proposition 3.3 we conclude that

lim
n→∞

∫
R
v3
n dx = lim

n→∞

∫
R
vn(v′n)2 dx = lim

n→∞
G(vn) = 0.

Then, we have from (4) and (11) that

0 < δ ≤ d(c) = Jc(vn)− 1

2
〈J ′c(vn), vn〉+ o(1)

≤ −1

2
G(vn) + o(1)

≤ o(1),

but this is a contradiction. Thus, there is a subsequence of (vn)n, which is
denoted the same way, such that

‖vn‖L∞
T
≥ δ∗

2
. (12)

Now, since (vn)n is a bounded sequence in H1
per for some subsequence of (vn)n,

denoted the same way, and for some v ∈ H1
per we have that

vn ⇀ v, as n→∞ (weakly in H1
per).

Since the embedding H1
per ↪→ L∞T is compact we see that

vn → v in L∞T .

Note that v 6= 0 because using (12) we have that

‖v‖L∞
T

= lim
n→∞

‖vn‖L∞
T
≥ δ∗

2
.
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Moreover, if W ∈ C∞0 ([0, T ]), then we have that

〈I ′c(v),W 〉 =

∫ T

0

((c− 1)vW + (c− a)v′W ′) dx

= lim
n→∞

∫ T

0

(
(c− 1)ṽnW + (c− a) (ṽn)

′
W ′
)
dx

= lim
n→∞

〈I ′c(ṽn),W 〉 .

Now (taking a subsequence, if necessary) noting that

(ṽn)2 ⇀ v2, (ṽ′n)2 ⇀ (v′)2, ṽn(ṽ′n) ⇀ vv′ in L2
loc[0, T ],

we have that∫ T

0

(ṽn)2W dx→
∫ T

0

v2W dx,

∫ T

0

(ṽ′n)2W dx→
∫ T

0

(v′)2Wdx

and ∫ T

0

ṽn(ṽ′n)W ′dx→
∫ T

0

vv′W ′dx.

Then we conclude that

〈G′(v),W 〉 = lim
n→∞

〈G′(ṽn),W 〉 , 〈J ′c(v),W 〉 = lim
n→∞

〈J ′c(ṽn),W 〉 = 0.

If W ∈ H1(R), by using density, there is Wk ∈ C∞0 ([0, T ]) such that Wk →W
in H1

per. Hence,

|〈J ′c(v),W 〉| ≤ |〈J ′c(v),W −Wk〉|+ |〈J ′c(v),Wk〉|
≤ ‖J ′c(v)‖(H1

per)′ ‖W −Wk‖H1
per

+ |〈J ′c(v),Wk〉| → 0.

Thus, we have already established that J ′c(v) = 0. In other words, v is a
nontrivial solution for problem (3).
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