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Pasting and Reversing Operations over some
Vector Spaces

Operaciones Pegar y Reversar sobre algunos espacios vectoriales

Primitivo Acosta-Humánez1,a, Adriana Chuquen1,b,
Ángela Rodŕıguez2,c

Abstract. Pasting and Reversing operations have been used successfully over
the set of integer numbers, simple permutations, rings and recently over a
generalized vector product. In this paper, these operations are defined from
a natural way to be applied over vector spaces. In particular we study Past-
ing and Reversing over vectors, matrices and we rewrite some properties for
polynomials as vector space. Finally we present some properties concerning
to palindromic and antipalindromic vector subspaces.

Keywords: Antipalindromic matrix, antipalindromic vector, palindromic ma-
trix, palindromic vector, Pasting, Reversing.

Resumen. Operaciones Pegar y Reversar han sido aplicadas satisfactoria-
mente sobre el conjunto de números enteros, permutaciones simples, anillos y
recientemente sobre un producto vectorial generalizado. En este art́ıculo, estas
operaciones son definidas de una manera natural para ser aplicadas sobre es-
pacios vectoriales. En particular estudiamos Pegar y Reversar sobre vectores y
matrices. También reescribimos algunas propiedades de los polinomios, vistos
como espacio vectorial. Finalmente presentamos algunas propiedades de los
denominados subespacios vectoriales paĺındromes y antipaĺındromes.

Palabras claves: Matrices paĺındromes, matrices antipaĺındromes, Pegar,
Reversar, vectores paĺındromes, vectores antipaĺındromes.
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1. Introduction

Pasting and Reversing are natural processes that people do day after day,

we paste two objects when we put them together as one object, and we re-

verse one object when we reflect it over a symmetry axis. We can apply

these processes over words, thus, Pasting of lumber with jack is lumberjack,

while Reversing of lumber is rebmul. A celebrate phrase of Albert Einstein

is I prefer pi, in which Reversing of this phrase is itself and for instance
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this is a palindromic phrase, another palindromic phrases can be found in

http://www.palindromelist.net.

Similarly to palindromic phrases, we can think in palindromic poetries,

where each line can be palindromic or the hole poetry is palindromic. The

following poems can be found at

http://www.trauerfreuart.de/palindrome-poems.htm

Deific- A poem

Same deficit sale: doom mood. Elastic if edemas?

Loops secreting in a doom mood. An igniter: cesspool.

Set agony care till in a doom mood. An illiteracy: no gates.

Senile fileting: I am, God, doom mood. Dogma: ignite lifelines.

Straws? Send a snowfield in a doom mood. An idle, if won sadness warts.

Me, opacified.

Put in us - sun it up

Put in rubies, I won’t be demandable.

Balderdash: sure fire bottle fill-in.

Raw, put in urn action, I’m odd.

Local law: put in ruts. Awareness

elates pure gnawed limekiln. Us:

sunlike, mildew, anger, upset.

A lessen era was: turn it up! Wall,

a cold domino: it can run it up.

Warn: ill I felt to be rife. Rush! Sad.

Red label, bad name, debt nowise.

I burn it up

Space caps

Seed net: tabard. No citadel like sun is

but spirit. Sense can embargo to get on.

Still amiss: a pyro-memoir, an ecstasy.

A detail, if fades, paler, tall, a�ned

dusk.

Row no risks, asks ironwork, sudden -

if fall at relapsed a�liate - days at

scenario:

memory, pass! I’m all. It’s not ego to

grab

menaces. Nest. I rip stubs in use, killed

at icon. Drab attendees.

One mathematical theory to express these processes as operations was developed by
the first author in [2, 1], followed recently by [3, 4, 5].

In [1] is introduced the concept Pasting of positive integers to obtain their squares
as well their squares roots. Five years later, in [2], are defined in a general way the
concepts Pasting and Reversing to obtain genealogies of simple permutations in the
right block of Sarkovskii order which contains the powers of two. Two years later, in
[4], were applied Pasting and Reversing, as well palindromicity and antipalindromic-

ity, over the ring of polynomials, di↵erential rings and mathematical games incoming
from M. Tahan’s book The man who counted. Another approaches for reversed poly-
nomials, palindromic polynomials and antipalindromic polynomials can be found in
[6, 11]. One year later, in [3], is applied Reversing over matrices to study a general-
ized vector product, in particular were studied relationships between palindromicity

and antipalindromicity with such generalized vector product. Finally, in the preprint
[5] were applied Pasting and Reversing over simple permutations with mixed order
4n+ 2, following [2].

The aim of this paper is to study Pasting and Reversing, as well palindromicity and
antipalindromicity, over vector spaces (vectors, matrices, polynomials, etc.). Some
properties are analyzed for vectors, matrices and polynomials as vector spaces, in
particular we prove that Wa ⇢ V (set of antipalindromic vectors of V ) and Wp ⇢ V

(set of palindromic vectors of V ) are vector subspaces of a vector space V . Recall
that V is the direct sum of W1 and W2, denoted by V = W1 � W2, whenever V =
span{W1 [W2} and W1 \W2 = {0}. Therefore, V = Wa �Wp and in consequence
dim(V ) = dim(Wa) + dim(Wp).
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The reader does not need a high mathematical level to understand this paper, is
enough with a basic knowledge of linear algebra and matrix theory, see for example
the books given in references [7, 10]. Finally, as butterfly e↵ect, we hope that the
results and approaches presented here can be used and implemented in the teaching
of basic linear algebra for undergraduate level.

2. Pasting and Reversing over Vectors

In this section we study Pasting and Reversing over vectors through basic definitions
and properties. We consider the field K and the vector space V = K

n. Here we
study Pasting and Reversing over vectors using the basic definitions and properties
of vectors. In this way, any student beginner of linear algebra can understand the
results presented. We start giving the definition of Reversing.

Definition 2.1. Let be v = (v1, v2, . . . , vn) 2 K

n. Reversing of v, denoted by ev, is
given by ev = (vn, vn�1, . . . , v1).

Definition 2.1 leads us to the following proposition.

Proposition 2.2. Consider v and ev as in Definition 2.1. The following statements

hold:

(i)

˜̃
v = v.

(ii)

^
av + bw = aev + b ew, being a, b 2 K and v, w 2 V.

(iii) v · w = ev · ew.

(iv)

^(v ⇥ w) = ew ⇥ ev for all v, w 2 K

3
.

Proof. (i), (ii) and (iii) follow from the definition.

(iv) Consider v, w 2 K

3, where v = (v1, v2, v3), w = (w1, w2, w3). The vector
product between v and w is given by

v ⇥ w =

������

e1 e2 e3

v1 v2 v3

w1 w2 w3

������
=

✓����
v2 v3

w2 w3

���� ,�
����
v1 v3

w1 w3

���� ,
����
v1 v2

w1 w2

����

◆
,

by Definition 2.1 we have that

v̂ ⇥ w =

✓����
v1 v2

w1 w2

���� ,�
����
v1 v3

w1 w3

���� ,
����
v2 v3

w2 w3

����

◆
.

Now, by properties of determinants (interchanging rows and columns) we obtain

✓����
w2 w1

v2 v1

���� ,�
����
w3 w1

v3 v1

���� ,
����
w3 w2

v3 v2

����

◆
=

������

e1 e2 e3

w3 w2 w1

v3 v2 v3

������
,

therefore v̂ ⇥ w = ew ⇥ ev.

Definition 2.3. The vectors v and w are called palindromic vector and antipalin-
dromic vector respectively whether they satisfy ev = v and ew = �w.

The proof of following proposition is a routine exercise.
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Proposition 2.4. The following statements hold.

(i) The sum of two palindromic vectors belonging to K

n
is a palindromic vector

belonging to K

n
.

(ii) The sum of two antipalindromic vectors belonging to K

n
is an antipalindromic

vector belonging to K

n
.

(iii) The vector product of two palindromic vectors belonging to K

3
is an antipalin-

dromic vector belonging to K

3
.

(iv) The vector product of two antipalindromic vectors belonging to K

3
is the vector

(0, 0, 0).

(v) The vector product of one palindromic vector belonging to K

3
with one an-

tipalindromic vector belonging to K

3
is a palindromic vector belonging to K

3
.

Remark 2.5. In [3] were studied, in a more general way, the vector product for palin-
dromic and antipalindromic vectors. There was used a generalized vector product
and were obtained some results involving the palindromicity and antipalindromicity
of vectors. For completeness we present in Section 4 such results with proofs in detail.

Now we proceed to introduce the concept of Pasting over vectors.

Definition 2.6. Consider v 2 K

n and w 2 K

m, then v ⇧ w is given by

(v1, v2, . . . , vn) ⇧ (w1, w2, . . . , wm) = (v1, v2, . . . , vn, w1, w2, . . . , wm).

Proposition 2.7. If V = K

n
and W = K

m
, then V ⇧W

⇠= K

n+m
.

Proof. Let Bn = {b1, b2, . . . , bn} and Bm = {c1, c2, . . . , cm} basis of K

n and K

m

respectively. Due to v 2 K

n and w 2 K

n, we have by Definition 2.6 that v ⇧ w 2

K

n+m, then there exists a basis Bn+m = {d1, d2, . . . , dn+m} belonging to K

n+m,
therefore K

n
⇧K

m
⇠= K

n+m.

Corollary 2.8. dim(V ⇧W ) = dimV + dimW .

Proposition 2.9. The following statements hold.

(i) ]v ⇧ w = w̃ ⇧ ṽ.

(ii) (v ⇧ w) ⇧ z = v ⇧ (w ⇧ z).

Proof. The proof is left as an exercise to the reader.

Proposition 2.10. Let V be a vector space. Consider Wp and Wa as the sets of

palindromic and antipalindromic vectors of V respectively. The following statements

hold.

(i) Wp is a vector subspace of V .

(ii) dimWp = d

n
2 e.

(iii) Wa is a vector subspace of V .

(iv) dimWa = b

n
2 c.

(v) V = Wp �Wa.

(vi) 8v 2 V , 9(wp, wa) 2 Wp ⇥Wa such that v = wp + wa.

Proof. (i) Set a, b 2 K. Since v, w 2 Wp, we have v = ṽ and w = w̃. By

Proposition 2.2 ^
av + bw = aṽ + bw̃ = av + bw 2 Wp, in consequence, Wp is a

vector subspace of V .

(ii) We analyze the cases when n is even and also when n is odd.
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(a) Consider V = K

n and we start assuming that n = 2k. If v 2 Wp, then

(v1, v2, . . . , v2k�1, v2k) = (v2k, v2k�1, . . . , v2, v1),

then, we have that
v1 = v2k

v2 = v2k�1

...
vk = vk+1,

which lead us to v = (v1, v2, . . . , vk, vk, . . . , v2, v1). In this way we write
the vector v as follows:

v = v1(1, 0, . . . , 0, 0, . . . , 1) + . . .+ vk(0, 0, . . . , 1, 1, . . . , 0, 0), vi 2 K.

The set of vectors of the previous linear combination are palindromic and
linearly independent vectors, therefore they are a basis for Wp and in
consequence

dimWp = k =

⇠
2k
2

⇡
=
l
n

2

m
.

(b) Consider V = K

n and now we assume that n = 2k � 1. If v 2 Wp, then

(v1, v2, . . . , v2k�2, v2k�1) = (v2k�1, v2k�2, . . . , v2, v1).

Thus, we have that
v1 = v2k�1

v2 = v2k�2

...
vk�1 = vk+1,

that is, k � 1 pairs plus the fixed component vk. This lead us to express
the vector v as follows

v = (v1, v2, . . . , vk�1, vk, vk�1, . . . , v2, v1)

and then we have that

v = v1(1, 0, . . . , 0, 0, . . . , 1) + . . .+ vk(0, 0, . . . , 0, 1, 0, . . . , 0, 0), vi 2 K.

The set of vectors of the previous linear combination are palindromic
and linearly independent vectors, hence they are a basis for Wp and in
consequence

dimWp = k =

⇠
2k � 1

2

⇡
=
l
n

2

m
.

In this way, we have proved that for all n 2 Z+, dimWp =
⌃
n
2

⌥
.

(iv) We analyze the cases when n is even as well when n is odd.

(a) Consider V = K

n and we can start assuming that n = 2k. If v 2 Wa,
then

(v1, v2, . . . , v2k�1, v2k) = �(v2k, v2k�1, . . . , v2, v1),

therefore, we have that

v1 = �v2k

v2 = �v2k�1

...
vk = �vk+1,
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which lead us to

v = (v1, v2, . . . , vk,�vk, . . . ,�v2,�v1).

This implies that

v = v1(1, 0, . . . , 0, 0, . . . ,�1) + . . .+ vk(0, 0, . . . , 1,�1, . . . , 0, 0), vi 2 K.

The set of vectors of the previous linear combination are antipalindromic
and linearly independent vectors, thus they are a basis for Wa and in
consequence

dimWa = k =

�
2k
2

⌫
=
j
n

2

k
.

(b) Consider V = K

n and now we suppose that n = 2k � 1. If v 2 Wa, then

(v1, v2, . . . , v2k�2, v2k�1) = �(v2k�1, v2k�2, . . . , v2, v1).

Thus, we obtain that
v1 = �v2k�1

v2 = �v2k�2

...
vk�1 = �vk+1,

that is, k � 1 pairs plus the fixed component vk = 0. This lead us to
express the vector v as follows:

v = (v1, v2, . . . , vk�1, 0,�vk�1, . . . ,�v2,�v1)

and for instance we have that

v = v1(1, 0, . . . , 0, 0, . . . ,�1)+. . .+vk�1(0, 0, . . . , 1, 0,�1, . . . , 0, 0), vi 2 K.

The set of vectors of the previous linear combination are antipalindromic
and linearly independent vectors, for instance they are a basis for Wa and
in consequence

dimWa = k � 1 =

�
2k � 1

2

⌫
=
j
n

2

k
.

In this way we have proved that for all n 2 Z+, dimWa =
⌅
n
2

⇧
.

(v) Since Wp \ Wa = {0} and dimWp + dimWa =
⌃
n
2

⌥
+
⌅
n
2

⇧
= n = dimV , we

have Wp �Wa = V .

(vi) Consider v 2 V , we can observe that

wp =
v + ev
2

is a palindromic vector. In the same way we can observe that

wa =
v � ev
2

is an antipalindromic vector and for instance v = wp + wa, 8v 2 V .
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3. Pasting and Reversing over Polynomials

In [4] we studied Pasting and Reversing over polynomials from an di↵erent approach,
we studied these operations focusing on the ring structure for polynomials. In this
section we rewrite some properties of Pasting and Reversing over polynomials, but
considering to the polynomials as a vector space. Thus, we apply the previous results
for vectors, which we gave in Section 2.

Along this section we consider (Kn[x],+, ·) as the vector space of the polynomials
of degree less than or equal to n over the field K. This vector space is isomorphic
to (Kn+1

,+, ·). In this context we do not impose conditions over the polynomials
just like the conditions given in [4], for example, we do not need that x - P (x). The
following result summarizes the properties given in Section 2 for polynomials.

Proposition 3.1. Consider P 2 Kn[x], Q 2 Km[x] and R 2 Ks[x], the following

statements hold.

(i)

˜̃
P = P .

(ii) P̂ ⇧Q = Q̃ ⇧ P̃ .

(iii) (P ⇧Q) ⇧R = P ⇧ (Q ⇧R).

(iv)

^
aP + bQ = a

e
P + b

e
Q, being a, b 2 K and P,Q 2 Kn[x].

(v) The sum of two palindromic polynomials of degree n is a palindromic polynomial

of degree n.

(vi) The sum of two antipalindromic polynomials of degree n is an antipalindromic

polynomial of degree n.

(vii) If V = Kn[x] and W = Km[x], then V ⇧W = Kn+m+1[x].

(viii) Wp is vector subspace of Kn[x], being Wp the set of palindromic polynomials of

degree Kn[x].

(ix) dimWp = d

n+1
2 e.

(x) Wa is a vector subspace of Kn[x], being Wa the set of antipalindromic polyno-

mials of Kn[x].

(xi) dimWa = b

n+1
2 c.

(xii) Kn[x] = Wp �Wa.

(xiii) 8P 2 Kn[x], 9(Qp, Qa) 2 Wp ⇥Wa such that P = Qp +Qa.

Proof. Owing to (Kn[x],+, ·) ⇠= (Kn+1
,+, ·) as vector spaces we apply ev and ⇧

over the polynomials as vectors. The proof is done using properties of Pasting and
Reversing proved in Section 1.

Remark 3.2. As we can see, this section is a rewriting of Section 2 without new results
for polynomials as vector space, only we suggest the proofs based on the definition
and properties of ev. Another interesting thing of this section is that we recover some
results given in [4, 11].

4. Pasting and Reversing over Matrices

In this section we consider the vector space Mn⇥m (matrices of size n ⇥ m with
elements belonging to K) which is isomorphic to K

nm. We present here di↵erent
approaches for Pasting and Reversing.
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4.1. Pasting and Reversing by rows or columns

We can see any matrix as a row vector of its column vectors, as well as a column
vector of its row vectors. Thus, to matrices we can introduce Pasting and Reversing

by rows and columns respectively. Let us denote by eAr Reversing of the row vectors
vi 2 K

n of A and, by e
Ac Reversing of the column vectors cj 2 K

m of A, where
1  i  n and 1  j  m. Then,

e
Ar =

0

BBB@

ev1
ev2
...
fvn

1

CCCA
,

e
Ac =

�
ec1 ec2 · · · fcm

�
.

Owing to evi = vi
e
Im and eci = e

Incj for 1  i  n, 1  j  m we obtain that eAr = A

e
Im

and e
Ac = e

InA. Therefore we can define palindromicity and antipalindromicity by
rows and columns respectively.

Now, we can assume A 2 Mn⇥m(K), B 2 Mq⇥m(K) and C 2 Mn⇥p(K) given
as follows.

A =

0

BBB@

v1

v2

...
vn

1

CCCA
=
�
f1 f2 · · · fm

�
, vi 2 K

m
, f

T
j 2 K

n
, 1  i  n, 1  j  m,

B =

0

BBB@

s1

s2

...
sq

1

CCCA
=
�
g1 g2 · · · gm

�
, si 2 K

m
, g

T
j 2 K

q
, 1  i  q, 1  j  m,

C =

0

BBB@

w1

w2

...
wn

1

CCCA
=
�
h1 h2 · · · hp

�
, wi 2 K

p
, h

T
j 2 K

n
, 1  i  n, 1  j  p.

As we can see, in agreement with Section 2, we transformed the column vectors fj ,
gj and hj in the form of row vectors through the transposition of matrices (fT

j , gTj
and h

T
j are row vectors). Thus, we can define both Pasting by rows (denoted by ⇧r)

over the matrices A and C and Pasting by columns (denoted by ⇧c) over the matrices
A and B as follows.

A ⇧r C =

0

BBB@

z1

z2

...
zn

1

CCCA
, zi = vi ⇧ wi, A ⇧c B =

�
y1 y2 · · · yn

�
, y

T
i = f

T
i ⇧ g

T
i .

From now on we paste column vectors directly without the use of trasposition of
vectors. Thus, Pasting of column vectors fi and gi is fi ⇧ gi. Therefore, fT

i ⇧ g

T
i =

(fi ⇧ gi)
T .

Proposition 4.1. Consider matrices A, B and C under the previous assumptions.

The following statements hold.

(i)

ee
Ar = A,

ee
Ac = A.
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(ii)

^(A ⇧r B)r = ( eBr) ⇧r ( eAr), ^(A ⇧c B)c = ( eBc) ⇧c ( eAc).

(iii) (A ⇧r B) ⇧r C = A ⇧r (B ⇧r C), (A ⇧c B) ⇧c C = A ⇧c (B ⇧c C).

(iv)

^(↵A+ �B)r = ↵

e
Ar + �

e
Br,

^(↵A+ �B)c = ↵

e
Ac + �

e
Bc, ↵,� 2 K.

(v) If V = Mn⇥m(K) and W = Mn⇥p(K), then V ⇧W = Mn⇥(m+p)(K). In the

same way, if T = Mn⇥m(K) and S = Ml⇥m(K), then T ⇧S = M(n+l)⇥m(K).

(vi) Let W

r
p and W

c
p be the set of palindromic matrices by rows and columns of

Mn⇥m(K) respectively, then the sets W

r
p and W

c
p are vector subspaces of

Mn⇥m(K).

(vii) dimW

r
p = n

⌃
m
2

⌥
, dimW

c
p = m

⌃
n
2

⌥
.

(viii) Let W

r
a and W

c
a be the set of antipalindromic matrices by rows and columns of

Mn⇥m(K) respectively, then W

r
a and W

c
a are vector subspaces of Mn⇥m(K).

(ix) dimW

r
a = n

⌅
m
2

⇧
, dimW

c
a = m

⌅
n
2

⇧
.

(x) The sum of two palindromic matrices by rows (resp. by columns) of the same

vector space is a palindromic matrix by rows (resp. by columns).

(xi) The sum of two antipalindromic matrices by rows (resp. by columns) of the

same vector space is an antipalindromic matrix by rows (resp. by columns).

(xii) Mn⇥m(K) = W

r
p �W

r
a = W

c
p �W

c
a .

(xiii) 8A 2 Mn⇥m(K), 9(Ar
p, A

r
a, A

c
p, A

c
a) 2 W

r
p ⇥ W

r
a ⇥ W

c
p ⇥ W

c
a such that A =

A

r
p +A

r
a = A

c
p +A

c
a.

(xiv) A ⇧r B = A((In ⇧c 0(n�m)⇥m) ⇧r 0n⇥p) + 0n⇥m ⇧r B, A 2 Mn⇥m(K), B 2

Mn⇥p(K),
A ⇧c B = A((In ⇧r 0n⇥(m�q)) ⇧c 0n⇥p)) + 0n⇥m ⇧c B, A 2 Mn⇥m(K), B 2

Mp⇥m(K).

Proof. From (i) to (xiii) we proceed as in the proofs of Section 2 using the properties
of ev. (xiv) is consequence of the definition of Pasting by rows and columns.

Remark 4.2. There are a lot of mathematical software in where Pasting of matrices
is very easy, for example, in Matlab Pasting by rows is very easy: [A,B], as well by
columns [A;B], however we can build our own program using our approach given in
the previous proposition, following the same structure of Pasting of polynomials as in
[4]. Thus, we paste matrices by rows and columns using the item (xiv) in Proposition
4.1. The interested reader may proof the statements of this paper concerning to
Pasting using such equations.

The following proposition summarizes some properties derived from Pasting and
Reversing by rows and columns with respect to classical matrix operations.

Proposition 4.3. The following statements hold.

(i) ( eAr)
T = ](AT )c, (

e
Ac)

T = ](AT )r.

(ii) (A ⇧c B)T = A

T
⇧r B

T
, (A ⇧r B)T = A

T
⇧c B

T
.

(iii) (̂AB)r = A( eBr), (̂AB)c = ( eAc)B.

(iv) det( eAr) = det( eAc) = (�1)b
n
2 c detA.

(v) ( eAc)
�1 = (̂A�1)r, (

e
Ar)

�1 = (̂A�1)c.

(vi) The product of two palindromic matrices by rows (resp. by columns) is a palin-

dromic matrix by rows (resp. by columns).
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(vii) The product of two antipalindromic matrices by rows (resp. by columns) is an

antipalindromic matrix by rows (resp. by columns).

(viii) AB 6= 0 is a palindromic matrix by rows (resp. AB 6= 0 is a palindromic

matrix by columns) if and only if B is a palindromic matrix by rows (resp. A

is a palindromic matrix by columns).

(ix) AB 6= 0 is an antipalindromic matrix by rows (resp. AB 6= 0 is an antipalin-

dromic matrix by columns) if and only if B is an antipalindromic matrix by

rows (resp. A is an antipalindromic matrix by columns).

Proof. In each item we include the proof of the first claim, the other one is similar.

(i) We see that Ãr = A

e
In = (eITn A

T )T = (eInAT )T = (fAT
c)

T and then f
A

T
c =

( eAr)
T .

(ii) Assume A 2 Mn⇥m(K) and B 2 Mn⇥p(K). Let vi and wi be the row vectors
of A and B respectively. Thus vi⇧wi, i = 1, . . . , n, are the row vectors of A⇧rB,
then (vi ⇧ wi)

T = v

T
i ⇧ w

T
i are the column vectors of (A ⇧r B)T = A

T
⇧c B

T .

(iii) Consider A 2 Mn⇥m(K) and B 2 Mm⇥p(K), therefore (̂AB)c =
e
In(AB) = (eInA)B = ( eAc)B.

(iv) ConsiderA 2 Mn⇥n(K), then we obtain det( eAc) = det(eInA) = det(eIn) detA =

det(A) det(eIn) = det(AeIn) = det( eAr). Now, it is follows by induction that

we can transform e
In into In throught b

n
2 c elementary operations, therefore,

det(eIn) = (�1)b
n
2 c.

(v) Assume A 2 Mn⇥n(K), with detA 6= 0. Therefore, ( eAr)
�1 = (AeIn)�1 =

e
I

�1
n A

�1 = e
InA

�1 = (̂A�1)c.

(vi) Assume A 2 Mn⇥m(K) and B 2 Mm⇥p(K), such that eAr = A and e
Br = B,

therefore (̂AB)r = A( eBr) = AB.

(vii) Assume A 2 Mn⇥m(K) and B 2 Mm⇥p(K), such that eAr = �A and e
Br =

�B, therefore (̂AB)r = A( eBr) = �AB.

(viii) Assume A 2 Mn⇥m(K) and B 2 Mm⇥p(K), with AB 6= 0. By previous item
we see that if A is palindromic by rows (resp. if B is palindromic by columns),
then AB is palindromic by rows (resp. then AB is palindromic by columns).

Now, suppose that (̂AB)c = AB 6= 0, then we have ( eAc)B = (eInA)B = AB,

which implies that eAc = A.

(ix) Assume A 2 Mn⇥m(K) and B 2 Mm⇥p(K), with AB 6= 0. By previous
item we see that if A is antipalindromic by rows (resp. if B is antipalin-
dromic by columns), then AB is antipalindromic by rows (resp. then AB is

antipalindromic by columns). Now, suppose that (̂AB)c = �AB 6= 0, then

( eAc)B = (eInA)B = �AB, which implies that eAc = �A.

Now, in a natural way, we can introduce the sets

Wpp := W

r
p \W

c
p , Wpa := W

r
p \W

c
a , Wap := W

r
a \W

c
p and Waa := W

r
a \W

c
a .

The sets Wpp and Waa correspond to the set of double palindromic matrices and the
set of double antipalindromic matrices respectively.

Proposition 4.4. The following statements hold.
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(i) Wpp, Wpa, Wap and Waa are vector subspaces of Mn⇥m(K).

(ii) dimWpp =
⌃
n
2

⌥ ⌃
m
2

⌥
, dimWpa =

⌃
n
2

⌥ ⌅
m
2

⇧
, dimWap =

⌅
n
2

⇧ ⌃
m
2

⌥
and dimWaa =⌅

n
2

⇧ ⌅
m
2

⇧
.

(iii) Mn⇥m(K) = Wpp �Wpa �Wap �Waa.

(iv) 8A 2 Mn⇥m(K), 9(App, Apa, Aap, Aaa) 2 Wpp ⇥ Wpa ⇥ Wap ⇥ Waa such that

A = App +Apa +Aap +Aaa.

Proof. The intersection of vector subspaces is a vector subspace. The rest is obtained
through elementary properties of vector subspaces and by the nature of Wpp, Wpa,
Wap and Waa.

Finally, according to Remark 2.5, we present the results concerning to the rela-
tionship between Reversing and the generalized vector product of n � 1 vectors of
K

n, which are given in [3, §3].
Let M1 = (m11,m12, . . . ,m1n) , . . . ,Mn�1 = (mn�1,1, an�1,2, . . . ,mn�1,n), be n�

1 vectors belonging to K

n. It is known that the generalized vector product of these
vectors is given by

⇥ (M1, M2, . . . , Mn�1) =
nX

k=1

(�1)1+k det
⇣
M

(k)
⌘
ek,

where ek is the k-th element of the canonical basis for K

n, and M

(k) is the square
matrix obtained after deleting of the k-th column of the matrix M = (mij) 2

M(n�1)⇥n(K), for more information see [3, 10]. Therefore, the matrix M

(k) is a
square matrix of size (n� 1)⇥ (n� 1) and is given by

M

(k) =
⇣
m

(k)
i,j

⌘
=

⇢
(mi,j) if j < k

(mi,j+1) if j � k

, M =

0

BBB@

M1

M2

...
Mn�1

1

CCCA
.

Proposition 4.5. Consider the matrix M = (mij) 2 M(n�1)⇥n(K), then ^(M (k))r =

M

(n�k+1)e
In�1, for 1  k  n.

Proof. We know that fMr = M

e
In = (mi,n�j+1), 1  j  n. Therefore

]
M

(k)
r =

⇣̂
m

(k)
i,j

⌘

r
=

⇢
(mi,n�j+1) ifj < k,�
mi,n�(j+1)+1

�
if j � k.

On the other hand,

M

(n�k+1)e
In�1 =

⇣
m

(n�k+1)
i,j

⌘
e
In�1 =

(
(mi,j) eIn�1 if j < n� k + 1

(mi,j+1) eIn�1 if j � n� k + 1

=
⇣
m

(n�k+1)
i,(n�1)�j+1

⌘
=
⇣
m

(n�k+1)
i,n�j

⌘
=

⇢ �
mi,(n�j)

�
if n� j < n� k + 1�

mi,(n�j)+1

�
if n� j � n� k + 1

=

⇢ �
mi,(n�j)

�
if j > k � 1�

mi,(n�j)+1

�
if j  k � 1

=

⇢
(mi,n�j) if j � k

(mi,n�j+1) if j < k

,

therefore ^(M (k))r = M

(n�k+1)e
In�1, for 1  k  n.
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Proposition 4.6. Consider the vectors Mi 2 K

n
, where 1  i  n� 1. Then

⇥

⇣
f
M1r,

f
M2r, . . . , M̂n�1r

⌘
= (�1)d

3n
2 e ^(⇥(M1,M2, . . . ,Mn�1))r.

Proof. For convenience we write

M = ⇥

⇣
f
M1r,

f
M2r, . . . , M̂n�1r

⌘
.

Now, applying the generalized vector product we obtain

M =
nX

k=1

(�1)k+1 det
⇣
]
M

(k)
r

⌘
ek

=
nX

k=1

(�1)k+1 det
⇣
M

(n�k+1)e
In�1

⌘
ek

=
nX

k=1

(�1)k+1 det
⇣
M

(n�k+1)
⌘
det
⇣
e
In�1

⌘
ek

= det
⇣
e
In�1

⌘ nX

k=1

(�1)n�k det
⇣
M

(k)
⌘
en�k+1

= (�1)n+1 det
⇣
e
In�1

⌘ nX

k=1

(�1)k+1 det
⇣
M

(k)
⌘
en�k+1

= (�1)n+1 det
⇣
e
In�1

⌘ nX

k=1

(�1)k+1 det
⇣
M

(k)
⌘
ek

!
e
In

= (�1)n+1 det
⇣
e
In�1

⌘
^(⇥ (M1, M2, . . . , Mn�1))r

therefore,

M = (�1)n+1(�1)b
n�1
2 c ^(⇥ (M1, M2, . . . , Mn�1))r

=

(
(�1)

3n
2 ^(⇥ (M1, M2, . . . , Mn�1))r, n = 2k

(�1)
3n+1

2 ^(⇥ (M1, M2, . . . , Mn�1))r, n = 2k � 1

= (�1)b
3n
2 c ^(⇥ (M1, M2, . . . , Mn�1))r.

Thus we conclude the proof.

Remark 4.7. If M is a palindromic matrix by rows, then the minors M

(k) have at

least
j
n

2

k
� 1 pair of equal columns. This implies that for n � 4, the minors have

at least one pair of equal columns and therefore det
⇣
M

(k)
⌘
= 0 for all 1  k  n,

which leads us to
⇥ (M1, M2, . . . , Mn�1) = 0 2 K

n
.

This means that the generalized vector product of (n�1) palindromic vectors belong-
ing to K

n is interesting whenever 1  n  3. The same result is obtained when we
assume M as an antipalindromic matrix by rows, so we recover the previous results
given in Section 2 with respect to the vector product. Moreover, some rows of M can
be palindromic vectors, while the rest can be antipalindromic vectors, in this way, we
can obtain similar results.
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4.2. Pasting and Reversing simultaneously by rows and
columns

Following Section 2, we can consider the matrices

A = (v11, . . . , v1m, . . . , vn1, . . . , vnm), B = (w11, . . . , w1q, . . . , wp1, . . . wpq)

as vectors. To avoid confusion in this section, we use b
A instead of eA to denote

Reversing of A. Thus, we can see, in a natural way, that

b
A = A

b
Inm = (vnm, . . . , vn1, . . . , v1m, . . . , v11)

and also for n = p or m = q (exclusively) that

A ⇧B = (v11, . . . , v1m, . . . , vn1, . . . vnm, w11, . . . , w1q, . . . , wp1, . . . , wpq).

We come back to express bA and A ⇧B in term of matrices instead of vectors, i.e.,

b
A =

0

B@

vnm . . . vn1

...
v1m . . . v11

1

CA , A ⇧B =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

0

B@

v11 . . . v1m w11 . . . w1q

...
vn1 . . . vnm wp1 . . . wpq

1

CA ,

n = p

m 6= q

0

BBBBBBBB@

v11 . . . v1m

...
vn1 . . . vnm

w11 . . . w1p

...
wp1 . . . wpq

1

CCCCCCCCA

,

n 6= p

m = q

We say that any matrix P , with the conditions established above, is a palindromic
matrix whether bP = P . In the same way, we say that any matrix A, with the
conditions established above, is an antipalindromic matrix whether bA = �A. Note

that d(In) = In
b
In2 , where In is written as vector. Thus, we arrive to the following

elementary result.

Lemma 4.8. Consider M 2 Mn⇥m(K). Then

b
A =

0

B@

fvn
.

.

.

ev1

1

CA , where A =

0

B@

v1

.

.

.

vn

1

CA .

Proof. It is followed by definition of Reversing in matrices seen as vectors.

The following proposition summarizes the previous results for matrices as vectors.

Proposition 4.9. Consider A 2 Mn⇥m(K), B 2 Mp⇥q(K) and C 2 Mr⇥s(K)
satisfying the conditions established above. The following statements hold.

(i)

ˆ̂
A = A.

(ii)

\(A ⇧B) = b
B ⇧

b
A.

(iii) (A ⇧B) ⇧ C = A ⇧ (B ⇧ C).

(iv)

\(bA+ cB) = b

b
A+ c

b
B where b, c 2 K and A,B 2 Mn⇥m(K).
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(v) If V = Mn⇥m(K) and W = Mp⇥q(K), then V ⇧W = Mr⇥s(K), where either

n = p = r, m 6= q and s = m+ q, or n 6= p, m = q and r = n+ p.

(vi) Let Wp be the set of palindromic matrices of Mn⇥m(K), then Wp is a vector

subspace of Mn⇥m(K).

(vii) dimWp =
⌃
nm
2

⌥
.

(viii) Let Wa be the set of antipalindromic matrices of Mn⇥m(K), then Wa is a

vector subspace of Mn⇥m(K).

(ix) dimWa =
⌅
nm
2

⇧
.

(x) The sum of two palindromic matrices of the same vector space is a palindromic

matrix.

(xi) The sum of two antipalindromic matrices of the same vector space is an an-

tipalindromic matrix.

(xii) Mn⇥m(K) = Wp �Wa.

(xiii) 8A 2 Mn⇥m(K), 9(Ap, Aa) 2 Wp ⇥Wa such that A = Ap +Aa.

Proof. Proceed as in the proofs of Section 2 using Lemma 4.8.

The following result shows the relationship of Reversing with matrices classical
operations.

Proposition 4.10. The following statements hold.

(i)

b
In = In.

(ii)

b
A =

⇣̂
e
Ar

⌘

c
=
⇣̂
e
Ac

⌘

r
.

(iii)

\(AB) = d(A)d(B).

(iv) ( bA)�1 = \(A�1).

(v) det( bA) = detA.

(vi) Tr( bA) = TrA.

(vii)

c
A

T = ( bA)T .

(viii) The product of two palindromic matrices is a palindromic matrix.

(ix) The product of two antipalindromic matrices is a palindromic matrix.

(x) The product of one palindromic matrix with one antipalindromic matrix is an

antipalindromic matrix.

Proof. (i) Due to In can be seen as the vector

(1, 0, . . . , 0, 0, 1, . . . , 0, . . . , 0, . . . 0, 1) 2 K

n2

,

then
b
In = In

b
In2 = (1, 0, . . . , 0, 0, 1, . . . , 0, . . . , 0, . . . 0, 1) = In.

(ii) Assumming A = (v1, . . . , vn)
T = (c1, . . . , cn), we arrive to

g
( eAr)c = (̂AeIm)c = e

In(AeIm) = e
In(ev1, . . . , evn)T = (evn, . . . , ev1)T .

By Lemma 4.8 we conclude
g
( eAr)c = b

A.
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(iii) Assume A 2 Mn⇥m(K) and B 2 Mm⇥r(K). Thus, AB 2 Mn⇥r(K), bA 2

Mn⇥m, bB 2 Mm⇥r and dAB 2 Mn⇥r. Suppose that A = [aij ]n⇥m, B =

[bij ]m⇥r, AB = C = [cij ]n⇥r and bC = [dij ]n⇥r, thus

cij =
mX

k=1

aikbkj , dij = c(n+1�i)(r+1�j) =
mX

k=1

a(n+1�i)kbk(r+1�j),

which implies that bC = b
A

b
B and then \(AB) = d(A)d(B).

(iv) Assume A 2 Mn⇥n(K), being detA 6= 0. Therefore

\(AA

�1) = d(A)\(A�1) = d(In) = In.

(v) Assume A 2 Mn⇥n(K). Due to bA is obtained throughout 2k elementary oper-

ations of A, interchanging k rows and interchanging k columns, then det( bA) =
(�1)2k detA = detA.

(vi) Assume A = [aij ]n⇥n 2 Mn⇥n(K). Thus

Tr bA =
nX

i=1

a(n+1�i)(n+1�i) = ann+a(n�1)(n�1)+· · ·+a22+a11 =
nX

k=1

akk = TrA.

(vii) Assume A = [aij ]n⇥m 2 Mn⇥m(K) and cAT = [dij ]m⇥n 2 Mm⇥n(K). We see

that dij = a(m+1�j)(n+1�i) = cji, where ( bA)T = [cji]m⇥n hence cAT = ( bA)T .

(viii) Assume bA = A and bB = B. Therefore, dAB = b
A

b
B = AB.

(ix) Assume bA = �A and bB = �B. Therefore, dAB = b
A

b
B = AB.

(x) Assume bA = �A and bB = B. Therefore, dAB = b
A

b
B = �AB.

At this point, we have considered Pasting over an special case of matrices. As we
can see, it can be confused when both matrices have the same size, how can we paste
them? Another natural question is: how can we paste to matrices whenever n 6= p

and m 6= q? To avoid this di�culty we introduce Pasting by blocks, which will be
denoted by ⇧b. Consider matrices A 2 Mn⇥m(K) and B 2 Mr⇥s(K), Pasting by
blocks of A with B is given by

A ⇧b B :=

✓
A 0n⇥s

0r⇥m B

◆
2 M(n+r)⇥(m+s)(K).

It is well known that Pasting by blocks corresponds to a particular case of block

matrices, also called partitioned matrices, see [8, 9]. The following result, although
is known from block matrices point of view, is consequence of Proposition 4.9 and
Proposition 4.10 considering b as above and ⇧b instead of ⇧.

Proposition 4.11. Consider the matrices A 2 Mn⇥m(K), B 2 Mp⇥q(K) and C 2

Mr⇥s(K), the following statements hold.

(i)

\(A ⇧b B) = d(B) ⇧b d(A).

(ii) (A ⇧b B) ⇧b C = A ⇧b (B ⇧b C).

(iii) If V = Mn⇥m(K) and W = Mp⇥q(K), then V ⇧b W = Mr⇥s(K), where

r = n+ p and s = m+ q.

(iv) (A ⇧b B)T = A

T
⇧b B

T
.

Bolet́ın de Matemáticas 20(2) 145–161 (2013)
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(v) det(A ⇧b B) = detA detB.

(vi) Tr(A ⇧b B) = TrA+TrB.

(vii) (A ⇧b B)�1 = A

�1
⇧b B

�1
.

Proof. (i) and (ii) follow directly from the definition of Pasting by blocks, and Re-
versing and Pasting of vectors. (iii) is due to A ⇧b B = A�B. (iv) to (vii) are known
properties of block matrices.

Final Remarks

In this paper we solved one question proposed in [4], which relates Pasting and Revers-
ing with vector spaces and basic matrix theory. Although the paper was motivated
through poetries and lines, we studied the mathematical structure of Pasting and
Reversing giving the proofs of each statement proposed by us. We considered some
extensions to the definition of Reversing such as palindromic and antipalindromic
vectors and matrices. However, we insist that this paper is only an starting point
to develop and solve theories and problems with a higher mathematical level, see for
example [2, 5] where Pasting and Reversing were applied over simple permutations
and combinatorial dynamics. We hope that the material presented here can be useful
for the interested reader to start his own research project around this subject.
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