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Some Adjunctions Associated with Extensions

and Restrictions of Ideals in the Context of

Commutative Rings

Algunas adjunciones asociadas con extensiones y restricciones de
ideales en el contexto de anillos conmutativos

Lorenzo Acosta1,a, Marcela Rubio1,b

To Professor Carlos Javier Ruiz Salguero, in memoriam

Abstract. Given a commutative ring R and S one of its ideals, the function
I 7! (I : S) that transforms ideals of R into ideals of R, is right adjoint of
the function I 7! IS. We define the S�maximal ideals of R as those ideals
J of R such that (J : S) = J. If the ring S is pseudo-regular, then the set
of S�maximal ideals of R is a complete lattice, isomorphic to the lattice of
the ideals of S. In particular, the annihilator of S in R is the minimum of the
S�maximal ideals of R. So the lattice structure of S�maximal ideals of R
does not depend on the ring R.
On the other hand, the ideals of S can be extended to ideals of R and the
ideals of R can be restricted to ideals of S. These two processes are not adjoint
to each other, but if we restrict to appropriated collections of ideals we can
obtain adjunctions.

Keywords: Ideal, Prime ideal, Semi-prime ideal, Ordered set, Adjoint func-
tions.

Resumen. Dados un anillo conmutativo R y S uno de sus ideales, la función
I 7! (I : S), que transforma ideales de R en ideales de R es adjunta a derecha
de la función I 7! IS. Se definen los ideales S�maximales de R como aquellos
ideales J de R tales que (J : S) = J. Si el anillo S es seudo-regular, entonces
el conjunto de ideales S�maximales de R es un ret́ıculo completo, isomorfo
al ret́ıculo de los ideales de S. En particular, el anulador de S en R es el
mı́nimo de los ideales S�maximales de R. La estructura de ret́ıculo de los
ideales S�maximales de R no depende entonces del anillo R.
Por otro lado, los ideales de S se pueden extender a ideales de R y los ideales
de R se pueden restringir a ideales de S. Estos dos procesos no son adjuntos
entre śı, pero si se restringen a colecciones apropiadas de ideales śı se obtienen
sendas adjunciones.
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1. Introduction

Remember that if f : X ! Y and g : Y ! X are functions between ordered
sets, f is left adjoint of g (and g is right adjoint of f) if for all x 2 X and for
all y 2 Y we have

f(x)  y , x  g(y).

This is equivalent to f and g are monotone non-decreasing functions such that
f

�
g(y)

�
 y and x  g

�
f(x)

�
, for all x 2 X and for all y 2 Y.

This is a particular case of the concept of adjoint functors in category theory
(see [5]).

The following theorem is well known and we will use it repeatedly along
this work.

Theorem 1.1. If f is left adjoint of g then

(i) f respects least upper bounds and g respects greatest lower bounds and

(ii) Im g and Im f are isomorphic as ordered sets.

For more information about adjoint functions the reader may consult for ex-
ample [3].

In this paper all rings are commutative and not necessarily with identity.
The set of ideals of a ring A is denoted by J (A) and it is considered an ordered
set by the inclusion relation. If K is an ideal of the ring A we say that A is an
i-extension of K. In this case, we denote rA (K) the radical of the ideal K in
the ring A, namely, rA (K) = {x 2 A : xn 2 K, for some n > 0} .

Henceforth S is a fixed ring.
In the first section we see that given an i-extension R of S, the function

that maps each ideal I of R to (I : S) is right adjoint of the function that maps
each ideal I of R to IS. In other words, we see that “to multiply is left adjoint
of to divide”. Moreover, we introduce the notion of S�maximal ideal.

In Section 2 we define the pseudo-regular rings, we prove some of its proper-
ties and we show that if S is pseudo-regular then the collection of the S�maximal
ideals of an i-extension R of S is a complete lattice whose structure is indepen-
dent of the i-extension.

In the third section we introduce a mechanism to extend ideals of S to ideals
of one of its i-extensions and a mechanism to restrict ideals of the i-extension
to ideals of S and we study some properties of these mechanisms. In particular,
we prove that these two mechanisms are not adjoint to each other unless that
S is pseudo-regular.

In the last section we restrict these mechanisms to appropriate collections
of ideals in order to obtain three pairs of adjoint functions.

2. Multiplication and division of ideals

We show that given an i-extension R of S, the processes of multiply and divide
by S are adjoints. In this section we introduce the notion of S�maximal ideal
of an i-extension and present some examples.

The following definition of quotient was taken from [2].
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Definition 2.1. Let A be a ring and let I, J be ideals of A. The quotient of I
by J is defined by

(I : J) = {x 2 A : xJ ✓ I} .

The following proposition can be deduced immediately from the previous defi-
nition.

Proposition 2.2. If I, J are ideals of the ring A then

(i) (I : J) is an ideal of A.

(ii) I ✓ (I : J).

(iii) I ✓ (IJ : J) .

(iv) (I : J) J ✓ I.

(v) (I : J) = (I \ J : J).

Theorem 2.3. For each i-extension R of S, the function

⌘R : J (R) ! J (R) : I 7! (I : S)

is right adjoint of the function

�R : J (R) ! J (R) : J 7! JS.

Proof. It is clear that these two functions are monotone. Further, by the
previous proposition we have that for all I, J 2 J (R)

⌘R (�R (J)) = (JS : S) ◆ J and

�R (⌘R (I)) = (I : S)S ✓ I.

Corollary 2.4. Given an i-extension R of S, for every collection {Jl}l2L of
ideals of R we have that

(i)

⌧ S
l2L

Jl

�
S =

⌧ S
l2L

JlS

�
,

(ii)

✓ T
l2L

Jl : S

◆
=
T
l2L

(Jl : S) .

Proof. It is enough to remember that left adjoint functions respect least upper
bounds and right adjoint functions respect greatest lower bounds.

Definition 2.5. Let R be an i-extension of S. An ideal J of R is S�maximal
if J = ⌘R(J).

Example 2.6. If R is an i-extension of S and S is contained in the annihilator
of R, namely S ✓ (0 : R), then ⌘R(I) = R for all I 2 J (R) and therefore, R is
the only S�maximal ideal of R.
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Example 2.7. Let R be an i-extension of S. If I is a prime ideal of R and
S � I 6= � then I is S�maximal.

Example 2.8. Let R be an i-extension of S. If S ✓ I ✓ R then I is S�maximal
if and only if I = R, since ⌘R(I) = R.

Example 2.9. If R = Z and S = 2Z then nZ is a S�maximal ideal of Z if
and only if n is odd.

If R is an i-extension of S it is natural to ask which are the S�maximal
ideals of the ring R. In the following section we give an answer in the case of
the pseudo-regular rings.

3. Pseudo-regular rings

In this section we consider a particular kind of commutative rings that we
have named pseudo-regular rings, because its definition is a weak version of
von Neumann regular rings (see [7]). In [4], Gilmer studies eleven conditions
that are consequence of the existence of identity in a ring and which are not
equivalent when the ring has not identity. We call pseudo-regularity one of
these conditions.

When the ring S is pseudo-regular, each ideal of S is an ideal in each i-
extension of S and moreover, the S�restriction of each ideal J of an i-extension
of S coincides with the product ideal JS. Using these facts we characterize the
S�maximal ideals of any i-extension of S.

The following theorem was taken from [4].

Theorem 3.1. Let A be a commutative ring. The following statements are
equivalent:

(i) For each b 2 A, b 2 bA.

(ii) For each ideal I of A, AI = I.

(iii) If {x1, ..., xn} is a finite set of elements of A, there exists y 2 A such that
xiy = xi, for each i.

(iv) If I and J are co-maximal ideals of A, then I \ J = IJ.

Definition 3.2. A commutative ring A is pseudo-regular if it satisfies some
of the conditions of the previous theorem.

Example 3.3. Every ring with identity is pseudo-regular.

Example 3.4. Every von Neumann regular ring is pseudo-regular. In partic-
ular, the Boolean rings are pseudo-regular.

Example 3.5. 2Z is not a pseudo-regular ring.

The following proposition is evident.

Proposition 3.6. The collection of pseudo-regular rings is closed for products
and quotients and it is not closed for sub-rings nor ideals.
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Lemma 3.7. If S is pseudo-regular and R is an i-extension of S, then

(i) J (S) ✓ J (R).

(ii) For all J 2 J (R), JS = J \ S.

(iii) For all I 2 J (S) , �R (⌘R (I)) = I.

(iv) Let J 2 J (R). J is a S�maximal ideal of R if and only if J 2 ⌘R (J (S)) .

Proof. (i) If I 2 J (S) then clearly I is a sub-group of (R,+) . Now, if x 2 R

and z 2 I then xz 2 S, thus there exists s 2 S such that xz = (xz) s.
Consequently xz = (xs) z 2 I since xs 2 S. Therefore I 2 J (R).

(ii) Let J 2 J (R). It is enough to prove that J \ S ✓ JS. If x 2 J \ S, there
exists s 2 S such that x = xs and then x 2 JS.

(iii) Let I 2 J (S) . It is enough to see that I ✓ �R (⌘R (I)) . If x 2 I, there
exists s 2 S such that x = xs and as x 2 (I : S) then x 2 (I : S)S =
�R (⌘R (I)) .

(iv) Let J 2 J (R). We have

⌘R(J) = (J : S) = (J \ S : S) = ⌘R(J \ S),

therefore, if J is S�maximal then J = ⌘R(J) = ⌘R(J \ S) 2 ⌘R (J (S)) .
On the other hand, if J = ⌘R (I) then �R (J) = �R (⌘R (I)) = I and thus

J = ⌘R (�R (J))

= (SJ : S)

= (S \ J : S)

= (J : S)

= ⌘R(J).

The proof of the following proposition is a simple routine exercise.

Proposition 3.8. Let R be an i-extension of S.

(i) If I is an ideal of S then the set {x 2 R : xS ✓ I} is an ideal of R which
contains I.

(ii) If J is an ideal of R then the set J \ S is an ideal of S contained in J.

As a consequence, for each i-extension R of S we can define the functions

 R : J (S) ! J (R) : I 7! {x 2 R : xS ✓ I} and

'R : J (R) ! J (S) : J 7! J \ S.

If I is an ideal of S, we say that  R (I) is the S�extension1 of I to the ring R.

If J is an ideal of R, we say that 'R (J) is the S�restriction of J to the ring S.

1
The S-extension should not be confused with the notion of extension presented in [2], that

corresponds to the ideal of R generated by I.
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Theorem 3.9. If S is pseudo-regular and R is an i-extension of S, then the
function

 R : J (S) ! J (R)

is right adjoint to the function

'R : J (R) ! J (S).

Proof. By Lemma 3.7,  R is the restriction of ⌘R to the set of ideals of S and
'R is the same function �R co-restricted to the set of ideals of S. It is clear
that  R and 'R are monotone functions and moreover

'R ( R(I)) = I, for all I 2 J (S) and

 R ('R(J)) ◆ J, for all J 2 J (R).

Corollary 3.10. If S is pseudo-regular and R is an i-extension of S, then
the set of S�maximal ideals of R is a complete lattice, which is isomorphic to
the lattice of ideals of S. The minimum of the S�maximal ideals of R is the
annihilator of S in R.

Proof. By the adjunction of the functions 'R and  R it is obtained that Im'R

and Im R are isomorphic as ordered sets, where Im'R is J (S) and Im R is
the set of S�maximal ideals of R. Also  R (0) = (0 : S) is the annihilator of S
in R.

Remark 3.11. Note that when S is pseudo-regular, the structure of the col-
lection of S�maximal ideals of R does not depend on R. In other words, this
lattice is the same for each i-extension of S.

Remark 3.12. The function  R not always coincides with the restriction of ⌘R.
Indeed, there may be ideals of S that are not ideals of R. Similarly, the function
'R not always coincides with the co-restriction of �R, because there may be
ideals S, J of R such that JS 6= J \ S.

Example 3.13. 1. Let R = R [x] be the polynomial ring over R in the
indeterminate x and let S = hxi be the ideal of R generated by the
polynomial x. Consider p (x) = x

2 + x which clearly is an element of S.
Call I the ideal of the ring S generated by p (x) , namely

I = hp (x)iS
= {p (x) k (x) + zp (x) : k (x) 2 S, z 2 Z}
= {p (x) [k (x) + z] : k (x) 2 S, z 2 Z}
= {p (x) q (x) : q (x) 2 R, q0 2 Z}
✓ {m (x) : m (x) 2 R, m1 2 Z, m0 = 0} .

Therefore, we conclude that I is an ideal of S that is not an ideal of R
because, p (x) 2 I and taking q (x) = 1

2 2 R we see that p (x) q (x) /2 I.

2. Consider R = 2Z and two of its ideals S = 6Z, J = 10Z such that
JS = 60Z 6= 30Z = J \ S.
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4. Extension and restriction of ideals

As we saw in the previous section, if R is an i-extension of S, the ideals of S
can be extended to ideals of R and the ideals of R can be restricted to ideals
of S. In this section we show that the functions 'R and  R are morphisms of
ordered sets that, in general, are not adjoint to each other and we present some
of its properties.

The following proposition is evident:

Proposition 4.1. 'R and  R are monotone functions.

Proposition 4.2. (i) If {Il}l2L is a collection of ideals of S then

 R

✓ T
l2L

Il

◆
=
T
l2L

 R (Il) .

(ii) If I,K are ideals of S then  R (I +K) ◆  R (I) +  R (K) .

(iii) If I is an ideal of S then rR ( R (I)) ✓  R (rS (I)) .

Proof. (i)

a 2  R

 
\

l2L

Il

!
, aS ✓

\

l2L

Il

, a 2  R (Il) for each l 2 L

, a 2
\

l2L

 R (Il) .

(ii) I ✓ I+K and K ✓ I+K thus, by the monotony of  R we have  R (I) ✓
 R (I +K) and  R (K) ✓  R (I +K) . Therefore,  R (I) +  R (K) ✓
 R (I +K) .

(iii) If a 2 rR ( R (I)) then a

k 2  R (I) , for some k > 0. Thus, akS ✓ I,

for some k > 0, namely, (as)k = a

k
s

k 2 I, for all s 2 S and for some
k > 0. Therefore, as 2 rS (I) for all s 2 S, namely, aS ✓ rS (I) and
a 2  R (rS (I)) .

Proposition 4.3. Let Ri be an i-extension of Si and let Ii be an ideal of Si,

for each i 2 L. If R =
Q
i2L

Ri and S =
Q
i2L

Si then R is an i-extension of S and

 R

✓Q
i2L

Ii

◆
=
Q
i2L

 Ri (Ii) .

Proof. Since (ri) 2  R

✓Q
i2L

Ii

◆
is equivalent to (ri)S ✓

Q
i2L

Ii, namely, riSi ✓

Ii for each i 2 L, we have ri 2  Ri (Ii) for each i, namely, (ri) 2
Q
i2L

 Ri (Ii) .

Example 4.4. Note that in general  R (IK) +  R (I) R (K) . Consider R =
Z and S = 2Z.
 R (6Z) = {z 2 Z : z2Z ✓ 6Z} = 3Z.
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 R (8Z) = {z 2 Z : z2Z ✓ 8Z} = 4Z.
 R (48Z) = {z 2 Z : z2Z ✓ 48Z} = 24Z.
 R (6Z.8Z) =  R (48Z) = 24Z $ 12Z = 3Z.4Z =  R (6Z) R (8Z) .

Now we study the relationship between these two morphisms of ordered
sets.

Proposition 4.5. Let R be an i-extension of S. I ✓ 'R ( R (I)) for each ideal
I of S.

Proof. Consider a 2 I. We have that aS ✓ I and a 2 S then, a 2  R (I) and
a 2 S. Therefore, a 2  R (I) \ S, namely, a 2 'R ( R (I)) .

The following example shows us that, in general, this inclusion is strict.

Example 4.6. Consider R = Z, S = 2Z and I = 4Z.
Then 4Z $'R ( R (4Z)) = 'R ({z 2 Z : z2Z ✓4Z}) = 'R (2Z) = 2Z.

Proposition 4.7. Let R be an i-extension of S. J ✓  R ('R (J)) for each ideal
J of R.

Proof. Consider b 2 J. We have that bS ✓ S and bS ✓ J thus, bS ✓ J \ S =
'R (J) . Therefore, b 2  R ('R (J)) .

In general, this inclusion also is strict, as is shown below.

Example 4.8. Consider R = Z, S = 4Z and J = 2Z. We see that 2Z $
 R ('R (2Z)) =  R (2Z\4Z) =  R (4Z) = {z 2 Z : z4Z ✓4Z} = Z.

The situation presented in this example is a particular case of the following
proposition.

Proposition 4.9. Let R be an i-extension of S. If J is a proper ideal of R
containing S then J 6= R ('R (J)) .

Proof. It is enough to see that  R ('R (J)) = R. a 2  R ('R (J)) if and only
if aS ✓ 'R (J) = J \ S, namely, aS ✓ S. Equivalently, a 2 R.

From the results above we see that in general, the functions 'R and  R

are not adjoint to each other. The following theorem establishes a necessary
and su�cient condition on the ring S in order to obtain an adjunction between
these functions.

Theorem 4.10. The following statements are equivalent:

(i) The ring S is pseudo-regular.

(ii) For each i-extension R of S, 'R ( R (I)) = I for all ideal I of S.

(iii) For each i-extension R of S, 'R is left adjoint of  R.
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Proof. (i)) (ii). By Proposition 4.5 it is enough to prove that 'R ( R (I)) ✓ I.

Take b 2 'R ( R (I)) , namely, b 2  R (I) \ S. Thus, bS ✓ I and b 2 S, then
b 2 bS ✓ I. Therefore, b 2 I.

(ii)) (i). Let us suppose that S is not pseudo-regular, namely, there exists
a 2 S such that a /2 aS. Clearly aS is an ideal of S. As aS ✓ aS and a 2 S,

then a 2  R (aS) \ S, so a 2 'R ( R (aS)) . Hence, 'R ( R (aS)) 6= aS.

(ii)) (iii). As 'R and  R are morphisms of ordered sets such that 'R ( R (I)) =
I, for all ideal I of S and J ✓  (' (J)) , for all ideal J of R then, 'R is left
adjoint of  R.

(iii)) (ii). As 'R is left adjoint of  R then 'R ( R (I)) ✓ I, for all ideal I of S.
By Proposition 4.5, 'R ( R (I)) ◆ I, for all ideal I of S. Then, 'R ( R (I)) = I,

for all ideal I of S.

Note that we can consider the ring S as an i-extension of itself, which allows
us to establish an additional characterization of pseudo-regular rings.

Theorem 4.11. The following statements are equivalent:

(i) S is pseudo-regular.

(ii)  S (I) = I, for each ideal I of S.

Proof. (i)) (ii). By Theorem 4.10, if I is an ideal of S then I = 'S ( S (I)) =
 S (I) \ S =  S (I) .

(ii))(i). Consider a 2 S. As aS is an ideal of S, then  S (aS) = aS. On the
other hand, it is clear that a 2  S (aS) = {x 2 S : xS ✓ aS} , so a 2 aS and S

is pseudo-regular.

Example 4.12. Let us consider S = 4Z.
Note that  S (24Z) = {a 2 4Z : a4Z ✓ 24Z} = 12Z and then 4Z is not pseudo-
regular.

The Cohen-Seidenberg theorems (the “going-up” and “going-down” the-
orems) about prime ideals in integral extensions are proved in [2]. We can
note that in the context of i-extensions similar properties are satisfied. For
i-extensions of pseudo-regular rings we have a similar version of the “going-up”
property, that in this case can be extended to the complete collection of ideals.

Proposition 4.13. Let S be a pseudo regular ring and let R be an i-extension
of S. If I1, I2 are ideals of S such that I1 ✓ I2 and J1 is an ideal of R such
that 'R (J1) = I1, then there exists J2, ideal of R, such that J1 ✓ J2 and
'R (J2) = I2.

Proof. As I1 ✓ I2 then, by Proposition 4.1,  R (I1) ✓  R (I2) . By Proposition
4.7, J1 ✓  R ('R (J1)) =  R (I1) ✓  R (I2) .  R (I2) is an ideal of R and as S is
pseudo-regular then 'R ( R (I2)) = I2; it is enough to take J2 =  R (I2) .

Bolet́ın de Matemáticas 20(2) 81–95 (2013)



90 Lorenzo Acosta & Marcela Rubio

5. Some adjunctions associated with

S�extensions and S�restrictions of ideals.

In this section we study the behavior of the extension and restriction mor-
phisms, no longer imposing conditions on the ring S, but on its ideals. Here-
inafter R is a fixed i-extension of S and functions  R and 'R will be denoted
just by  and ', respectively.

5.1. S�extension and S�restriction of prime ideals

Proposition 5.1. If J is a prime ideal of R that does not contain S, then

(i) ' (J) is a prime ideal of S.

(ii)  (' (J)) = J.

Proof. As J does not contain S then ' (J) is a proper ideal of S.

(i) Consider a, b 2 S. If ab 2 ' (J) then ab 2 J, but as J is a prime ideal of
R, it is concluded that a 2 J or b 2 J and hence, a 2 ' (J) or b 2 ' (J) .

(ii) By Proposition 4.7, it is enough to prove that  (' (J)) ✓ J. Let us
consider y 2 S � ' (J) , then y /2 J. If a 2  (' (J)) then aS ✓ ' (J) . In
particular, ay 2 ' (J) , then ay 2 J. Hence, a 2 J.

This proposition shows us that if we restrict ' to the set of prime ideals of R
which do not contain S, its image is a subset of the set of the prime ideals of
S.

Proposition 5.2. If I is a prime ideal of S, then

(i)  (I) is a prime ideal of R which does not contain S.

(ii) ' ( (I)) = I.

Proof. (i) Consider c 2 S � I, then cS * I, thus c /2  (I) and  (I) is a
proper subset of R, moreover, does not contain S.

Let a, b 2 R, such that ab 2  (I) . Let us suppose that a /2  (I) , then
there exists y 2 S such that ay /2 I.

As (ay) b = (ab) y 2 abS ✓ I, then b 2 I and hence, bS ✓ I. Therefore,
b 2  (I) .

(ii) By Proposition 4.5, it is enough to see that ' ( (I)) ✓ I. Take y 2 S� I

and a 2 ' ( (I)) . Thus a 2  (I) , namely, aS ✓ I. In particular, ay 2 I

which implies that a 2 I.
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As a consequence of the above results we can establish the following theorem,
where Pr (S) is the set of prime ideals of S2 and PrS (R) is the set of prime
ideals of R which do not contain S.

Theorem 5.3. The function ' : PrS (R) ! Pr (S) is an isomorphism of
ordered sets with inverse  .

A study about the isomorphism presented in the previous theorem can be
found in [1].

Example 5.4. Let A be a commutative ring. We call U (A) the set A ⇥ Z
endowed with the operations:

(a,↵) + (b,�) = (a+ b,↵+ �) and

(a,↵) (b,�) = (ab+ �a+ ↵b,↵�) .

U (A) is a commutative ring of characteristic 0, with identity (0, 1) and which
naturally contains the ring A, when we identify it with A0 = A⇥ {0} , through
the homomorphism iA : A ! U0(A) : iA (a) = (a, 0) . This is the process used
in standard way to adjoint identity to the ring A. It is easily verified that A0

is an ideal of U (A) , so that U (A) is an i-extension of A0.

Note that I is an ideal (prime ideal) of A if and only if I ⇥ {0} is an
ideal (prime ideal) of A0. So, J (A) ⇡ J (A0) and Pr (A) ⇡ Pr (A0) . On the
other hand, if J is an ideal of U0 (A) , in order to ' (J) be a proper ideal of
A it is necessary that J does not contain A0. In U0 (A) there are ideals that
contain A0, and others that do not contain it. For example, if I is a proper
ideal of A then I ⇥ {0} is an ideal of U0 (A) that does not contain A0. Now,
if p is a prime number, then A ⇥ hpi is a prime ideal of U0 (A) that clearly
contains A0. In fact, A ⇥ hpi is the kernel of the surjective homomorphism
'p : U0 (A) ! Zp : 'p (a,↵) = ↵, where ↵ represents the equivalence class of ↵
modulo p.

The results of this section allow us to a�rm that the sets PrA0 (U (A)) and
Pr (A), ordered by inclusion, are isomorphic.

We note that in the context of prime ideals and i-extensions, we have analo-
gous properties to “going-up” and “going-down”. We mention the correspond-
ing version to “going-up”. For “going down” it is enough to invert the inclusions
in the statement of the following proposition.

Proposition 5.5. (Going-up property.) If I1, I2 are prime ideals of S such
that I1 ✓ I2 and J1 is a prime ideal of R such that ' (J1) = I1, then there
exists J2, prime ideal of R, such that J1 ✓ J2 and ' (J2) = I2.

Proof. As I1 ✓ I2 then, by Proposition 4.1,  (I1) ✓  (I2) . Thus, by the
mentioned isomorphism in the previous theorem, J1 =  (' (J1)) =  (I1) ✓
 (I2) . It is enough to consider that J2 =  (I2) , because  (I2) is a prime
ideal of R and ' (J2) = ' ( (I2)) = I2.

In the remainder of this section we intend to make other restrictions on
the considered collections of ideals, to achieve an adjunction between the mor-
phisms  and '.

2
We do not use the notation Spec(S), because here we are not considering the topology.
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5.2. S�extension and S�restriction of semi-prime ideals

The notion of semi-prime ideal is found in the literature. The interested reader
may consult for example [6], to extend the information about these ideals.

Definition 5.6. An ideal I of the ring S is called semi-prime if each element
of S with some power on I, is also an element of I.

From the previous definition we observe that I is a semi-prime ideal of S
if and only if I = r (I) , where r (I) = {x 2 S : xn 2 I, for some n 2 Z+} , the
radical of I. Clearly the prime ideals of S are semi-prime, but the converse is
not true. One can easily see that h6i is an semi-prime ideal of Z12 that is not
prime, as well as 0 is a semi-prime ideal of Z6 that is not a prime ideal.

Proposition 5.7. I is a semi-prime ideal of the ring S if and only if a2 2 I

implies a 2 I.

Proof. It is evident that if I is a semi-prime ideal of S then a

2 2 I implies
that a 2 I. Now, let us suppose that a2 2 I implies a 2 I. Let n � 2 such that
a

n 2 I. Let us choose a positive integer m such that 2m > n. We have that

a

2m = a

2m�n
a

n 2 I and as a

2m =
⇣
a

2m�1
⌘2

, then a

2m�1 2 I. Similarly we

obtain a

2m�2 2 I, ..., a

2 2 I, hence a 2 I.

As a consequence of the previous proposition we easily observe that the
intersection is a closed operation in the collection of semi-prime ideals of S.

Proposition 5.8. For each semi-prime ideal I of S, ' ( (I)) = I.

Proof. It is enough to see that ' ( (I)) ✓ I. Consider a 2 ' ( (I)) , namely,
a 2  (I) \ S, then a 2 S and aS ✓ I. Thus, a2 2 I then a 2 r (I) and as I is
semi-prime, we conclude that a 2 I.

Proposition 5.9. If I is a semi-prime ideal of S, then  (I) is a semi-prime
ideal of R.

Proof. Let a 2 r ( (I)) namely, there exists n 2 Z+ such that an 2  (I) . As
a

n
S ✓ I and for each s 2 S we have that s

n 2 S, then a

n
s

n = (as)n 2 I, for
each s 2 S. Hence, as 2 r (I) = I for each s 2 S, thus aS ✓ I and a 2  (I) .

Proposition 5.10. If J is a semi-prime ideal of R then ' (J) is a semi-prime
ideal of S.

Proof. Consider a 2 r (' (J)) , namely, a 2 S and there exists n 2 Z+ such
that an 2 J \ S. Thus, a 2 S and a 2 r (J) = J, then a 2 J \ S = ' (J) .

We denote by Smpr (A) the set of semi-prime ideals of A. From the above
propositions we obtain the following result.

Proposition 5.11. The function ' : Smpr (R) ! Smpr (S) is left adjoint of
 : Smpr (S) ! Smpr (R) .

Remark 5.12. ' : Im ! Im' is an isomorphism of ordered sets, where
Im' = Smpr (S) and J 2 Im if and only if it is satisfied that a 2 R and
aS ✓ J imply a 2 J.
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We also obtain a version of the property “going-up” restricting ourselves
now to semi-prime ideals. This property is mentioned in the following propo-
sition and its proof is similar to the proof of Proposition 4.13.

Proposition 5.13. Let S be a ring and let R be an i-extension of S. If I1, I2
are semi-prime ideals of S such that I1 ✓ I2 and J1 is a semi-prime ideal of
R such that ' (J1) = I1, then there exists J2, semi-prime ideal of R, such that
J1 ✓ J2 and ' (J2) = I2.

5.3. S�extension and S�restriction of pseudo-prime

ideals.

The above work suggests the notion of pseudo-prime ideals.

Definition 5.14. An ideal I of the ring S is pseudo-prime if I is proper and
for each a 2 S, aS ✓ I implies a 2 I.

It is evident that if a ring has identity, then all its proper ideals are pseudo-
prime. We denote by Spr (S) the collection of pseudo-prime ideals of S.

Proposition 5.15. If I is a proper and semi-prime ideal of S, then I is pseudo-
prime.

Proof. Consider a 2 S, such that aS ✓ I. If we suppose that a 2 S � I, then
a

2 2 I, but it contradicts that I is semi-prime. Hence, a 2 I.

In a Boolean ring each proper ideal is semi-prime, then by the previous
proposition, it is also a pseudo-prime ideal. The following example shows us
that the converse of previous proposition is false.

Example 5.16. Consider the ring R[x]. As this ring is unitary, all its proper
ideals are pseudo-prime. In particular,

⌦
x

2
↵
is pseudo-prime but it is not semi-

prime. It is enough to see that x /2
⌦
x

2
↵
, but x2 2

⌦
x

2
↵
.

From the previous result we have that each prime ideal of S is pseudo-
prime. However, not every pseudo-prime ideal of S is prime, for example 0 is a
pseudo-prime ideal of Z6, that is not prime. On the other hand, 8Z is an ideal
of 2Z that is not pseudo-prime because 4 2 2Z�8Z and 4 (2Z) ✓ 8Z.

The following propositions characterize the pseudo-prime and semi-prime
ideals of 2Z.

Proposition 5.17. I is a pseudo-prime ideal of 2Z if and only if I = 2kZ,
where k = 0, or k is odd, k > 1.

Proof. () Clearly 0 is a pseudo-prime ideal of 2Z. Let k be an odd integer
greater than 1. 2kZ is a proper ideal of 2Z. Take a 2 2Z such that a2Z ✓ 2kZ,
then should be that a is a multiple of 2 and of the odd number k, so a 2 2kZ
and hence 2kZ is a pseudo-prime ideal of 2Z.
)) It is enough to see that I = 2kZ, where k is an even integer di↵erent from
zero, is not a pseudo-prime ideal of 2Z. If we take a 2 kZ�2kZ then a 2 2Z,
a2Z ✓2kZ, but a /2 2kZ; hence I is not a pseudo-prime ideal of 2Z.
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Proposition 5.18. If I is a pseudo-prime ideal of 2Z, then I is a semi-prime
ideal of 2Z.

Proof. Clearly 0 is a semi-prime ideal of 2Z. Suppose that I = 2kZ, where k

is odd, k > 1.
Consider a 2 2Z� I, namely, a = 2t+ i, where i 2 2kZ and 1  t  k � 1.

Hence, a2 = 4t2+4ti+ i

2
, where k divides 4ti+ i

2 but does not to 4t2, then 2k
does not divide a

2
. Thus, a2 2 2Z� I and I is a semi-prime ideal of 2Z.

Corollary 5.19. The proper pseudo-prime and semi-prime ideals of 2Z coin-
cide.

The collection of pseudo-prime ideals is closed for intersections, as shown
in the following proposition.

Proposition 5.20. If It is a pseudo-prime ideal of S for each t 2 T , then
\

t2T
It is a pseudo-prime ideal of S.

Proof. Clearly \
t2T

It is a proper ideal of S. Consider a 2 S such that aS ✓
\

t2T
It, then aS ✓ It for each t 2 T, thus a 2 It for each t 2 T, namely,

a 2 \
t2T

It.

From the definition of pseudo-prime ideal and Proposition 4.5 we obtain
the following result.

Proposition 5.21. I = ' ( (I)) , for each I 2 Spr (S) .

Moreover, the collection of pseudo-prime ideals of S is the largest subcol-
lection of ideals of S for which we have the result of the previous proposition.

Proposition 5.22. If I is a pseudo-prime ideal of S then  (I) is a pseudo-
prime ideal of R.

Proof. As I = ' ( (I)) , then  (I) does not contain S and it is a proper ideal
of R. Consider a 2 R such that aR ✓  (I) , namely, aRS ✓ I. As S is an ideal
of R then aS ✓ I, thus a 2  (I) .

We can note from the proof of the previous proposition that, if I 2 Spr (S)
then  (I) is a pseudo-prime ideal of R which does not contain S. The following
example shows that if J is a pseudo-prime ideal of R which does not contain
S, then ' (J) is not necessarily a pseudo-prime ideal of S.

Example 5.23. Consider R = Z and S = 2Z. J = 4Z is a pseudo-prime ideal
of Z which does not contain 2Z, but ' (4Z) = 4Z\2Z =4Z is not a pseudo-prime
ideal of 2Z because 2 is an element of 2Z such that 2.2Z ✓ 4Z and 2 /2 4Z.

The previous example shows that, in general, ' is not properly restricted
to the collection of pseudo-prime ideals of R which do not contain S. In order
to find a pseudo-prime ideal J of R which does not contain S such that '(J) is
a pseudo-prime ideal of S, it is required that for each a 2 S such that aS ✓ J

then a 2 J .

Bolet́ın de Matemáticas 20(2) 81–95 (2013)



Some Adjunctions Associated with Extensions and Restrictions of Ideals 95

Definition 5.24. Let R be an i-extension of S. We say that an ideal J of R is
pseudo-prime with respect to S if for each a 2 S such that aS ✓ J then
a 2 J .

We denote SprS (R) the collection of ideals of R that are pseudo-prime with
respect to S. Thus  (Spr (S)) ✓ SprS (R) and SprS (R) is a subset, generally
proper, of the collection of pseudo-prime ideals of R which do not contain S.
Hence, from Proposition 5.21 and as J ✓  (' (J)) for each ideal J of R, we
obtain the following corollary.

Corollary 5.25. The function ' : SprS (R) ! Spr (S) is left adjoint of the
function  : Spr (S) ! SprS (R) .

Finally, we can mention the following result.

Corollary 5.26. Every proper ideal of a pseudo-regular ring is pseudo-prime.
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