Revista Integración, temas de matemáticas
Escuela de Matemáticas
Universidad Industrial de Santander
Vol. 37, N° 1, 2019, pág. 149–152

© ()

DOI: http://dx.doi.org/10.18273/revint.v37n1-2019007

Continuous images of hereditarily indecomposable continua

DAVID P. BELLAMY^{*}

University of Delaware, Professor of Mathematical Sciences, emeritus, Newark, USA.

Abstract. The theorem proven here is that every compact metric continuum is a continuous image of some hereditarily indecomposable metric continuum. **Keywords**: Continuous maps, continuum, hereditarily indecomposable. **MSC2010**: 54F15, 54F45, 54E45, 54C60.

Imágenes continuas de continuos hereditariamente indescomponibles

Resumen. El teorema demostrado es que todo continuo métrico es imagen continua de algún continuo métrico hereditariamente indescomponible. **Palabras clave**: Funciones continuas, continuo, hereditariamente indescomponible.

1. Introduction

These definitions are needed in what follows and may or may not be familiar to everyone. A continuum X is a compact, connected metric space. A continuum X is indecomposable provided that whenever A and B are proper subcontinua of X, $A \cup B$ is a proper subset of X; X is hereditarily indecomposable if, and only if, every subcontinuum of X is indecomposable. A map is a continuous function. A map f from a continuum X to a continuum Y is weakly confluent provided that given any continuum $M \subseteq Y$ there exists a continuum $W \subseteq X$ such that f(W) = M. When X is a continuum, C(X) is the hyperspace of subcontinua of X. If a and b are points in \mathbb{R}^n with $a \neq b$, [a,b] denotes the line segment from a to b. Let S^n denote the n dimensional sphere. An arc $A \subseteq S^3$ is tame if and only if there is a homeomorphism $h: S^3 \to S^3$ such that h(A) is an arc of a great circle in S^3 .

In [4] J. W. Rogers, Jr. asked whether every continuum is a continuous image of some indecomposable continuum. The author [1] gave an affirmative answer to this question.

^{*}E-mail: bellamy@udel.edu

Received: 16 November 2018, Accepted: 4 January 2019.

To cite this article: D.P. Bellamy, Continuous Images of Hereditarily Indecomposable Continua, *Rev. Integr. temas mat.* 37 (2019), No. 1, 149–152. doi: 10.18273/revint.v37n1-2019007.

Some time later, in conversation, Rogers asked whether every continuum is a continuous image of some hereditarily indecomposable continuum. This article provides a proof that the answer to this question is also yes.

The author first announced this result in [1] but has not published it previously. It has come to my attention that in [4] this result has been extended to the non-metric case, building on the metric result.

2. Necessary Lemmas

Lemma 2.1. Let X and Y be continua. Then $f: X \to Y$ is weakly confluent if, and only if, the hyperspace map induced by $f, C(f): C(X) \to C(Y)$, is surjective.

Proof. This is just a restatement of the definition of weakly confluent.

 \checkmark

Lemma 2.2. There exists a hereditarily indecomposable subcontinuum of \mathbb{R}^4 which separates \mathbb{R}^4 .

Remark on proof. R. H. Bing [2] proved this not just for n = 4, but for every n > 1.

Lemma 2.3. Each homotopically essential map from a continuum X to the three sphere, S^3 , is weakly confluent.

Proof. This was essentially proven, although in a different context, by S. Mazurkiewicz in [5, Theoreme I, p. 328]. This argument gives the necessary details. Let X be a continuum, and suppose $g: X \to S^3$ be a homotopically essential map. To prove that gis weakly confluent, it suffices to prove that every tame arc in S^3 is equal to g(M) for some continuum $M \subseteq X$. This follows from Lemma 2.1 because the set of tame arcs is dense in $C(S^3)$.

First, set up some machinery and notation, as follows. Let J be a tame arc in S^3 ; let D_n be the closed disk in the complex plane with radius (1/n) centered at 0. Let E_n be the corresponding open disk, and let T_n be the circle $D_n \setminus E_n$. Let C_n be the solid cylinder $D_n \times [0,1]$. Since J is a tame, there exists an embedding h of C_1 into S^3 such that $h(\{0\} \times [0,1]) = J$. Consider C_n as a subset of S^3 by identifying C_1 with $h(C_1)$, and for each $t \in [0,1]$ let t denote the point $h(0,t) \in J$.

Let F_n denote the manifold boundary of C_n , that is, $F_n = (D_n \times \{0, 1\}) \cup (T_n \times [0, 1])$. Note that given any n and any $a, b \in J$ there is an isotopy $H \colon C_n \times [0, 1] \to C_n$ satisfying the following:

- (i) for each $s \in [0, 1], H(J \times \{s\}) = J;$
- (ii) for each $x \in F_n$ and each $t \in [0, 1], H(x, t) = x$;
- (iii) for every $x \in C_n$, H(x, 0) = x; and
- (iv) H(b, 1) = a.

[Revista Integración, temas de matemáticas

By setting H(x,t) = x for every $x \in S^3 \setminus C_n$, and every $t \in [0,1]$, H can be considered to be a function (hence an isotopy) from $S^3 \times [0,1]$ to S^3 .

Now, suppose X is a continuum and let $g: X \to S^3$ be a homotopically essential map. To prove that g is weakly confluent, it suffices to prove that there exists a continuum $M \subseteq X$ such that g(M) = J.

Proceed by contradiction; assume there is no such M. Then no component of $g^{-1}(J)$ intersects both $g^{-1}(0)$ and $g^{-1}(1)$. By compactness, there is a separation, $R_0 \cup R_1$ of $g^{-1}(J)$ satisfying $g^{-1}(0) \subseteq R_0$ and $g^{-1}(1) \subseteq R_1$. Since R_0 and R_1 are disjoint closed sets in X, there exist open subsets S_0 and S_1 of X such that $R_0 \subseteq S_0$ and $R_1 \subseteq S_1$ and $Cl(S_0) \cap Cl(S_1) = \emptyset$. There exists n such that $g^{-1}(Cn) \subseteq S_0 \cup S_1$. Let $p = \inf g(R_1)$ and let $q = \sup g(R_0)$, and let $a, b \in J$ be such that 0 < a < p and q < b < 1. If p > q, then g is not surjective and hence not essential, so $0 < a < p \leq q < b < 1$. Using the number n and the points a and b just chosen, let $H \colon S^3 \times [0,1] \to S^3$ be the isotopy described above. Define a homotopy $G \colon X \times [0,1] \to S^3$ by G(x,t) = g(x) if $x \in X \setminus S_0$ and G(x,t) = H(g(x),t) if $x \in Cl(S_0)$. Define $f \colon X \to S^3$ by f(x) = G(x,1).

Then, note that if $y \in J$ and a < y < p, then there does not exist $z \in X$ such that f(z) = y, so f is nonsurjective. Hence, f is inessential. Since g is homotopic to f, g is inessential also, a contradiction, which completes the proof.

Lemma 2.4. A continuum $X \subseteq \mathbb{R}^4$ admits a homotopically essential map onto S^3 if, and only if, \mathbb{R}^4 X is not connected S^3 .

Remark on Proof. This is a special case of the Borsuk separation theorem. I do not have a reference to the original proof, but a proof can be found in almost any advanced topology or algebraic topology book.

Lemma 2.5. Given any continuum Y, there is a continuum $X \subseteq S^3$ that admits a continuous surjection $f: X \to Y$.

Proof. Let Y be a continuum and let C and D be Cantor sets in \mathbb{R}^3 such that C and D lie on lines skew to each other. Then, whenever $a, p \in C$ and $b, q \in D$, and a, p, b, and q are all different, the line segments [a, b] and [p, q] are disjoint. Let $g: C \cup D \to Y$ be a map such that $g|C: C \to Y$ and $g|D: D \to Y$ are both onto. Such a g exists since a Cantor set can be mapped onto every compact metric space. Define $X = \bigcup \{[a, b]: a \in C; b \in D \text{ and } g(a) = g(b)\}$. Then X is a continuum in \mathbb{R}^3 . For each $x \in X$, let [a(x), b(x)]be a segment in X satisfying $a(x) \in C$; $b(x) \in D$, and $x \in [a(x), b(x)]$. (This segment is unique unless x = a(x) or x = b(x).) Define $f: X \to Y$ by f(x) = g(a(x)) = g(b(x)). It is straightforward to verify that $f: X \to Y$ is continuous and onto. Since for any point $p \in S^3$, $S^3 \setminus \{p\}$ is a copy of \mathbb{R}^3 , X can be treated as a subcontinuum of S^3 .

3. Main Result

Theorem 3.1. Let Y be an arbitrary continuum. There exists a hereditarily indecomposable continuum K that admits a surjective map $f: K \to Y$.

Vol. 37, N° 1, 2019]

Proof. Let Y be a continuum. By Lemma 2.5, there is a continuum $T \subseteq S^3$ and an onto map $g: T \to Y$. By Lemma 2.2, there exists a hereditarily indecomposable continuum $L \subseteq R^4$ that separates R^4 . Thus by Lemma 2.4, there is a homotopically essential map $h: L \to S^3$. By Lemma 2.3, h is weakly confluent, so there exists a continuum $K \subseteq L$ such that h(K) = T. Let $f = g \circ (h|K)$. Then $f: K \to Y$ is the desired map; K is hereditarily indecomposable since it is a subcontinuum of L.

References

- Bellamy D.P., "Continuous mappings between continua", in *Topology Conference Guilford College*, 1979, Guilford College (1980), 101–112.
- [2] Bellamy D.P., "Mappings of indecomposable continua", Proc. Amer. Math. Soc. 30 (1971), 179–180.
- [3] Bing R.H., "Higher-dimensional hereditarily indecomposable continua", Trans. Amer. Math. Soc. 71 (1951), 267–273.
- [4] Hart K.P., van Mill J. and Pol R., "Remarks on hereditarily indecomposable continua", https://arXiv.org/pdf/math/0010234.pdf
- [5] Mazurkiewicz S., "Sur l'existence des continus indécomposables", Fund. Math. 25 (1935), No. 1, 327–328.
- [6] Rogers J.W.Jr., "Continuous mappings on continua", Proc. Auburn Topology Conference, Auburn University, Auburn, USA, 1969, 94–97.

[Revista Integración, temas de matemáticas