
∮
Revista Integración, temas de matemáticas

Escuela de Matemáticas

Universidad Industrial de Santander

Vol. 37, N◦ 1, 2019, pág. 113–148

DOI: http://dx.doi.org/10.18273/revint.v37n1-2019006

On the existence of a priori bounds for

positive solutions of elliptic problems, II

Rosa Pardo
∗

Universidad Complutense de Madrid, Departamento de Análisis Matemático y
Matemática Aplicada, Madrid, Spain.

Abstract. We continue studying the existence of uniform L∞ a priori bounds
for positive solutions of subcritical elliptic equations

(P)p −∆pu = f(u), in Ω, u = 0, on ∂Ω,

We provide sufficient conditions for having a-priori L∞ bounds forC1,µ(Ω)
positive solutions to a class of subcritical elliptic problems in bounded, con-
vex, C2 domains. In this part II, we extend our results to Hamiltonian el-
liptic systems −∆u = f(v),−∆v = g(u), in Ω, u = v = 0 on ∂Ω, when
f(v) = vp

/
[ln(e + v)]α, g(u) = uq

/
[ln(e + u)]β, with α, β > 2/(N − 2),

and p, q are lying in the critical Sobolev hyperbolae 1
p+1 + 1

q+1 = N−2
N . For

quasilinear elliptic equations involving the p-Laplacian, there exists a-priori
bounds for positive solutions of (P)p when f(u) = up

⋆−1/[ln(e + u)]α, with
p∗ = Np/(N−p), and α > p/(N−p). We also study the asymptotic behavior
of radially symmetric solutions uα = uα(r) of (P)2 as α → 0.
Keywords: A priori estimates, subcritical nonlinearity, moving planes
method, Pohozaev identity, critical Sobolev hyperbola, biparameter bifur-
cation.
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Sobre la existencia de cotas a priori para soluciones

positivas de problemas elípticos, II

Resumen. Continuamos estudiando la existencia de cotas uniformes a priori
para soluciones positivas de equaciones elípticas subcríticas

(P)p −∆pu = f(u), en Ω, u = 0, sobre ∂Ω,

Proporcionamos condiciones suficientes para que las soluciones positivas en
C1,µ(Ω) de una clase de problemas elípticos subcríticos tengan cotas a-priori
L∞ en dominios acotados, convexos, y de clase C2.
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114 R. Pardo

En esta parte II, extendemos nuestros resultados a sistemas elípticos Hamil-
tonianos −∆u = f(v),−∆v = g(u), en Ω, u = v = 0 sobre ∂Ω, cuando
f(v) = vp

/
[ln(e + v)]α, g(u) = uq

/
[ln(e + u)]β, con α, β > 2/(N − 2), y p, q

varían sobre la hipérbola crítica de Sobolev 1
p+1 +

1
q+1 = N−2

N . Para ecuaciones
elípticas cuasilineales que involucran al operador p-Laplacian, existen cotas
a-priori para soluciones positivas de (P)p en el espacio C1,µ(Ω), µ ∈ (0, 1),
cuando f(u) = up

⋆−1/[ln(e + u)]α, con p∗ = Np/(N − p), y α > p/(N − p).

También estudiamos el comportamiento asintótico de soluciones radialmente
simétric uα = uα(r) de (P)2 cuando α → 0.
Palabras clave: Estimaciones a priori, no-linealidades subcríticas, método
de “moving planes”, igualdad de Pohozaev, hipérbola crítica de Sobolev,
bifurcación biparamétrica.

1. Introduction

In this part II, we describe our a priori bounds results on semilinear elliptic systems, on
quasilinear elliptic equations for the p-laplacian, and the asymptotic behavior of radial
solutions as α→ 0+ in several subsections. We leave the proofs for the following sections.

In a previous paper containing part I, when p = 2, we show the existence of L∞ a-priori
bounds for classical, positive solutions of semilinear elliptic equations −∆u = f(u) with
Dirichlet homogeneous boundary conditions, for

f(u) =
u2

∗−1

[
ln(e+ u)

]α , with 2∗ =
2N

N − 2
, and α >

2

N − 2
.

Appealing to the Kelvin transform, we extend our results to non-convex domains (see
[16], [17]).

1.1. Hamiltonian elliptic systems

We provide a-priori L∞(Ω)-bounds for classical positive solutions of Hamiltonian elliptic
systems 





−∆u = f(v), in Ω,
−∆v = g(u), in Ω,
u = v = 0, on ∂Ω,

(1)

where Ω ⊂ R
N , N ≥ 2, is a bounded, convex C3 domain,

f(v) =
vp

[ln(e+ v)]α
, g(u) =

uq

[ln(e+ u)]β
, α, β >

2

N − 2
,

and p, q, are in the so called critical Sobolev hyperbola

1

p+ 1
+

1

q + 1
=
N − 2

N
(2)

(see [71] and Theorem 1.1).
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On the existence of a priori bounds, II 115

Using these a priori bounds, and local and global bifurcation techniques, we prove the
existence of positive solutions for a corresponding parametrized semilinear elliptic system
(see [71] and Theorem 1.3).

If the exponents α = β = 0, then we have the Lane-Emden system





−∆u = vp, in Ω,

−∆v = uq, in Ω,

u = 0, v = 0 on ∂Ω,

(3)

where Ω ⊂ R
N is either a bounded, smooth subset, or a half space, or RN . The exponents

(p, q) play a crucial role for the existence or nonexistence of positive solutions of Lane-
Emdem system, depending on the boundedness or not of Ω. When Ω is a bounded
smooth star-shaped domain, the Sobolev hyperbola divides, on the pq-plane, existence
and nonexistence of positive solutions of the Lane-Emdem system (see fig. 1; we include
the details in Section 2). When Ω = R

N there is a conjecture: the hyperbola (2) is also
the dividing curve between existence and nonexistence for the Lane-Emdem system.

Non Existence

Figure 1. Ω bounded

We now state our main results on elliptic systems. See Section 2, or [71, Theorems 1.1,
1.3] for a proof.

Theorem 1.1 (a-priori L∞ bounds). Let us consider the following semilinear elliptic sys-
tem:





−∆u =
vp[

ln(e+ v)
]α , in Ω,

−∆v =
uq

[
ln(e+ u)

]β , in Ω,

u = 0, v = 0 on ∂Ω,

(4)

where Ω ⊂ R
N , N ≥ 3, is a bounded, convex domain with boundary ∂Ω of class C2.

Suppose that p, q > 1, α, β >
2

N − 2
, p, q are on the critical Sobolev hyperbola (2), and

assume that

min

{
p

α
,
q

β

}
≥ max

t≥0

[
t

(e + t) ln(e+ t)

]
. (5)
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116 R. Pardo

Then there exists a uniform constant C, depending only on Ω and p, q, α, β but not on
(u, v), such that

‖u‖L∞(Ω) ≤ C and ‖v‖L∞(Ω) ≤ C,

for all positive solutions (u, v) of (4).

Remark 1.2. Observe that condition (2) relates the exponents p and q to the Sobolev
hyperbola, and condition (5) ensures that our nonlinearities are nondecreasing since it
will be needed in the proof. Notice that

max
t≥0

[
t

(e+ t) ln(e + t)

]
=

e

e + t∗
,

where t∗ is the solution of the logarithmic equation e ln(e+ t) = t.

In the next theorem, we state the existence of positive solutions for the semilinear bipa-
rameter elliptic systems (4).

Theorem 1.3 (Existence). Consider the biparameter elliptic system





−∆u = λ v +
vp[

ln(e+ v)
]α , in Ω,

−∆v = µu+
uq

[
ln(e + u)

]β , in Ω,

u = 0, v = 0 on ∂Ω,

(6)

where the exponents p, q, α, β are as defined in Theorem 1.1, and the parameters λ and
µ are non-negative real parameters.

Then (6) has a positive solution (u, v) if, and only if, λµ < λ21, where λ1 is the princi-
pal eigenvalue associated with the linear eigenvalue problem with homogeneous Dirichlet
boundary conditions −∆φ = λφ in Ω; φ = 0 on ∂Ω.

Proof. See Section 2, or [71, Theorem 1.3] for a proof. �XXX

The ideas of the proof of Theorem 1.1 are adapted for systems. Moving planes for
system provides L∞ bounds in a neighborhood of the boundary of a convex domain,
for classical positive solutions of (1). Rellich-Pohazev identity for systems give us two
bounded integrals in Ω. With the help of Morrey’s Theorem, we estimate the radius
R , (R′), of a ball where the function u , (v), exceeds half of its L∞ bound. Then, we
get a lower bound of the above integrals, deriving the L∞ bounds for classical positive
solutions of (4).

1.2. The p-Laplacian

We consider the Dirichlet problem for positive solutions of the equation −∆p(u) = f(u)
in a convex, bounded, smooth domain Ω ⊂ R

N , with f locally Lipschitz continuous. We
provide sufficient conditions guarantying L∞ a priori bounds for positive solutions of
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some elliptic equations involving the p-Laplacian and extend the class of known nonlin-
earities for which the solutions are L∞ a priori bounded. As a consequence we prove the
existence of positive solutions in convex bounded domains.

Specifically, in case of elliptic equations involving the p-Laplacian, we prove the existence
of a-priori bounds for C1,µ(Ω) positive solutions of elliptic equations

−∆pu = f(u) in Ω, u = 0, on ∂Ω,

when

f(u) =
up

⋆−1

[ln(e+ u)]α
, with p∗ =

Np

N − p
, and α >

p

(N − p)
,

see Example 1 in [31].

Corollary 1.4. Assume that Ω ⊂ R
N is a smooth bounded convex domain, 1 < p < N ,

and u > 0 is a C1(Ω) solution to




−∆pu =
up

⋆−1

[ln(e + u)]α
, in Ω,

u = 0, on ∂Ω,

with α > p/(N − p).

Then, there exists a uniform constant C, depending only on Ω and f but not on the
solution, such that ‖u‖L∞(Ω) ≤ C.

Proof. It is a Corollary of Theorem 3.5 (see also [31, Theorem 1.7 and Example 1 in p.
491]). �XXX

1.3. Final remarks

We finally provide sufficient conditions for a uniform L2⋆(Ω) bound to imply a uniform
L∞(Ω) bound, for positive classical solutions to a class of subcritical elliptic problems in
bounded C2 domains. We also establish an equivalent result for sequences of boundary
value problems.

We also study the asymptotic behavior of radially symmetric solutions uα = uα(r) to
the subcritical semilinear elliptic problem

(P )α






−∆u = u
N+2
N−2

/[
log(e+ u)

]α
in Ω = BR(0) ⊂ R

N ,

u > 0, in Ω,

u = 0, on ∂Ω,

as α → 0+. We prove that there exists an explicitly defined constant L(N,R) > 0, only
depending on N and R, such that

lim sup
α→0+

αuα(0)
2

[
log(e+ uα(0))

]1+α(N+2)
2

≤ L(N,R)

≤ 2∗ lim inf
α→0+

αuα(0)
2

[
log(e+ uα(0))

]α(N−4)
2

,
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118 R. Pardo

Figure 2. Let (u, v) be a solution of (1); we plot one component u, its L∞ norm, and the estimate of

the radius R such that u(x) ≥
‖u‖∞

2
for all x ∈ B(x0, R), where x0 is such that u(x0) = ‖u‖∞.

see [75].

This paper is organized in the following way. Section 2 is devoted to semilinear elliptic
systems. In Section 3 we state an abstract theorem on a priori bounds for p-laplacian
equations in convex domains. Section 4 contains a result on the equivalence between
uniform L2⋆(Ω) a-priori bounds and uniform L∞(Ω) a-priori bounds for subcritical
elliptic equations. In Section 5 we study the asymptotic behavior of radially symmetric
solutions uα = uα(r) as α → 0+. In Section 6 we collect some open problems.

2. A priori bounds and existence of positive solutions for semilinear
elliptic systems

It is natural to ask whether it is possible to obtain the corresponding a priori results for
systems. In this Section, we extend the results of [16] from scalar equations to systems.
The existence of a-priori bounds for the system (4) is proved in the same lines of [16],
that is, using the Rellich-Pohozaev identity and the method of moving planes as in [21],
combined with Morrey’s Theorem. The moving planes method is used to obtain L∞

bounds in a neighborhood of the boundary for classical positive solutions of (4), whereas
the Rellich-Pohozaev identity is used to get two bounded integrals in Ω. Furthermore,
Morrey’s Theorem is used to estimate the radius R , (R′), of a ball where the function
u , (v), exceeds half of its L∞ bound (see fig. 2), allowing us to reach a contradiction on
the lower bounds of the above integrals.

We consider the semilinear elliptic system given by (4) where Ω ⊂ R
N , N ≥ 3, is

a bounded, convex domain with a smooth boundary ∂Ω (at least of class C3), and
1 < p, q < ∞, α, β > 0. The purpose of this Section is to establish a-priori estimates
for positive classical solutions of (4) and subsequently prove an existence result for the
parametrized version for the system. By a positive classical solution of (4), we mean
(u, v) that satisfies (4) and both components are positive. Let us mention that when the
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exponents α = β = 0, we have the system




−∆u = vp, in Ω,

−∆v = uq, in Ω,

u = 0, v = 0 on ∂Ω,

(7)

that is usually referred to as the Lane-Emden system. This problem arises in modeling
spatial phenomena in a variety of biological and chemical problems. Naturally positive
solutions of system (7) is of particular interest, and there have been significant studies of
positive solutions of (7) where Ω is either a bounded, smooth subset of RN , a half space,
or the entire space R

N (see [11], [12], [14], [21], [23], [40], [39], [72], [76], [79], [86], [87],
[92] and references therein).

It is known that the pair of exponents (p, q) plays a crucial role in the questions of
existence and nonexistence of positive solutions of (7). For instance, it has been shown
that on a bounded smooth star-shaped domain Ω ⊂ R

N , the Sobolev hyperbola (2)
is precisely the dividing curve on the pq-plane between existence and nonexistence of
positive solutions of (7) (see [21], [72], [76]).

In [21], the authors established a-priori estimates and proved the existence of positive
solutions of (7) when (p, q) is subcritical (i.e. (p, q) lies below the critical Sobolev hy-

perbola), that is,
1

p+ 1
+

1

q + 1
>
N − 2

N
. Moreover, in [72], the author proved that if

(p, q) is critical (i.e. (p, q) lies on critical Sobolev hyperbola) or supercritical (i.e. (p, q)

lies above the critical Sobolev hyperbola), namely if
1

p+ 1
+

1

q + 1
≤ N − 2

N
, then (7)

has no positive solution (see fig. 1).

When Ω = R
N , it has been conjectured that the hyperbola (2) is also the dividing curve

between existence and nonexistence for (7). The conjecture has been completely proved
for radial positive solutions (see e.g. [72], [85]), that is, if (p, q) is subcritical, then there
are no radial positive classical solution to (7) (see [72] for p > 1, q > 1) and it has
been extended in [85] for the case p > 0 and q > 0. Furthermore, if (p, q) is critical or
supercritical, system (7) does admit (bounded) positive radial solutions (see e.g. [72],
[85]). In the more general case, i.e. without assuming radial symmetry, the question has
not been completely answered yet. Partial answers are known for nonexistence of positive
entire solutions of (7) when the pair of exponents are subcritical; for example, it has been
proved the nonexistence in certain space dimensions [72], [87] or in certain subregions,
below the critical hyperbola in the (p, q)−plane (see e.g. [14], [87]). For Ω = R

N
+ (i.e.

the half space), we refer to [11] for the study of nonexistence of positive solutions. These
nonexistence results in R

N or RN
+ allow to prove a-priori bounds for positive solutions of

semilinear elliptic equations in bounded domains via the blow-up method (see e.g. [52],
[53], [11], [92]).

In the present Section, we use the method of moving planes and the Rellich-Pohazev
identity for systems to establish a-priori L∞ bounds when the pair of exponents (p, q)

lies on the critical Sobolev hyperbola (2) and α, β >
2

N − 2
, and then subsequently prove

an existence result for the parametrized version for the system (see system (6) below).
Problems of type (4) has been considered by several authors (we refer to [37], [22]). In
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120 R. Pardo

[37, Theorem 1.3] the authors study the existence of solutions of (4) when the pair of

exponents (p, q) lies on the critical Sobolev hyperbola (2) and α < 0, β >
q + 1

p+ 1
|α|,

that is, one nonlinearity is above the power function. Whereas in [22, Theorem 2.7]
the authors study related nonlinearities when the pair of exponents (p, q) lies below the
critical Sobolev hyperbola (2), using variational approaches.

Throughout this Section we assume that Ω ⊂ R
N is a smooth bounded, convex domain.

The hypothesis on convexity of the domain is needed in order to establish a priori bounds
in a neighborhood of the boundary, via the moving planes method (see Lemma 2.1). In
[89, Lemma 4.3] the author develop the moving planes method for systems assuming
that both nonlinearities are nondecreasing and do not depend explicitly on the spatial
variable x.

Let us first briefly recall the different methods for deriving a-priori estimates for elliptic
systems in the literature. In [93], the existence of a-priori estimates of classical positive
solutions of (4) was proved based on scaling or blow-up method which requires the
nonlinearities to have a precise asymptotic behavior at infinity, typically f ∼ vp, g ∼ uq.
In [79], [80], the authors derived a-priori estimates results using a method close to the
Hardy-Sobolev inequalities method. This method requires only upper bounds on the
growth of the nonlinearities and allows the nonlinearities to depend on x, u and v, but
the growth bounds assumed on f, g are more restrictive than in general.

For elliptic equations on general bounded domains, not necessarily convex, de Figueiredo,
Lions and Nussbaum [40] applied the moving planes method on the Kelvin transform in
order to avoid the difficulty of an empty cap (see [51], [16] for details and the definition
of a cap). In that situation, it turns out that the (transformed) nonlinearity depends on
the spatial variable x. Then, they obtained a priori bounds in a neighborhood of the
boundary for classical positive solutions of scalar equations on non-convex domains. To
the best of our knowledge, the moving planes method for systems is not yet developed
for nonlinearities depending also on the variable x. Hence, we focus on convex domains.

The ideas of the proof of Theorem 1.3 are based on local bifurcation techniques [24],
combined with global bifurcation theorem [34], [63], [82], and the a-priori estimates.
From the seminal works of Crandall and Rabinowitz (see [24], [82]), there are a huge
amount of references corresponding to one-parameter bifurcation theory. There are not so
many on multiparameter bifurcation. Let us mention Alexander and Antman’s Theorem
[3] on global multiparameter bifurcation techniques, looking for a change of fixed point
index, and providing a manifold of solutions of topological dimension at least the number
of parameters, [64] on local multiparameter bifurcation techniques on elliptic systems,
[48], [63], [64], [65], [66], [67], [68] on combination of local and global multiparameter
bifurcation techniques on elliptic systems, and [49] on the multiparameter bifurcation for
the p-laplacian.

In this Section, we state two lemmas that are relevant in order to obtain the a priori
estimates. The first lemma provides L∞ a priori bounds for any positive solution of (4)
in a neighborhood of the boundary (see [40]). The hypothesis of convexity of the domain
is needed in order to establish these a priori bounds in a neighborhood of the boundary.
Whereas the second lemma provides a Rellich-Pohozaev-Mitidieri type identity (see [72]
for a proof).
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Lemma 2.1. Let (u, v) be a positive classical solution of the system (4). Assume that the
hypotheses of Theorem 1.1 are satisfied. Then there exists a constant δ > 0 depending
only on Ω and not on p, q, α, β or (u, v), and a constant C depending only on Ω and
p, q, α, β, but not on (u, v), such that

max
Ω\Ωδ

u ≤ C and max
Ω\Ωδ

v ≤ C, (8)

where Ωδ := {x ∈ Ω : d(x, ∂Ω) > δ}.

The proof is done in a similar way as step 2 in the proof of Theorem 1.1 in [40], using the
moving planes method for systems [89, Lemma 4.3]. See also step 1 and 2 in the proof
of Theorem 2.1 in [21].

Lemma 2.2 (Rellich-Pohozaev-Mitidieri type identity). Let u and v be in C2(Ω̄), where Ω
is a C1 domain in R

N , and u = v = 0 on ∂Ω. Then,
∫

Ω

∆u (x · ∇v) + ∆v (x · ∇u) = (N − 2)

∫

Ω

(∇u · ∇v) +
∫

∂Ω

∂u

∂n
(x · ∇v)

+

∫

∂Ω

∂v

∂n
(x · ∇u)−

∫

∂Ω

(∇u,∇v) (x · n),

where n denotes the exterior normal, and (x · n) denotes the inner product.

The proof of Theorem 1.1 and Theorem 1.3 can be read in [71]; we include it below by
completeness.

Proof of Theorem 1.3. Step 1. It follows from (8) and de Giorgi-Nash type Theorems for
systems (see [59, Theorem 3.1, p. 397]) that

‖(u, v)‖C0,α(Ωδ/8\Ω7δ/8) ≤ C, for any α ∈ (0, 1),

where Ωt := {x ∈ Ω : d(x, ∂Ω) > t}, and ‖(u, v)‖ := ‖u‖+ ‖v‖. Using Schauder interior
estimates (see [54, Theorem 6.2]),

‖(u, v)‖C2,α(Ωδ/4\Ω3δ/4) ≤ C.

Finally, combining Lp estimates with Schauder boundary estimates (see [13], [54], [59]),

‖(u, v)‖W 2,p(Ω\Ωδ/2) ≤ C, for any p ∈ (1,∞).

By the Sobolev embedding for p > N , we have that there exists two constants C, δ > 0,
independent of u, such that

‖(u, v)‖C1,α(Ω\Ωδ) ≤ C, for any α ∈ (0, 1). (9)

Step 2. Let θ ∈ (0, 1) be such that

1

p+ 1
= θ

N − 2

N
and

1

q + 1
= (1− θ)

N − 2

N
, (10)
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122 R. Pardo

which is possible by (2).

Set F (t) :=
∫ t

0

f(s) ds and G(t) :=

∫ t

0

g(s) ds, where

f(s) =
sp[

ln(e+ s)
]α , g(s) =

sq
[
ln(e+ s)

]β .

Integrating by parts and taking into account (10) we have that

F (t)− θ

(
N − 2

N

)
t f(t) =

α

p+ 1

∫ t

0

sp+1

ln(e+ s)α+1

ds

e + s
. (11)

Likewise

G(t)− (1− θ)

(
N − 2

N

)
t g(t) =

β

q + 1

∫ t

0

sq+1

ln(e+ s)β+1

ds

e+ s
. (12)

Now, if we set W (s, t) := F (t) + G(s), then Ws = g(s) and Wt = f(t). Therefore, for
solutions u > 0 and v > 0 of (4),

∫

Ω

− [∆u (x · ∇v) + ∆v (x · ∇u)] =
∫

Ω

∑

j

xj

(
∂W

∂v

∂vj
∂xj

+
∂W

∂u

∂uj
∂xj

)

=

∫

Ω

∑

j

xj
∂W

∂xj
= −N

∫

Ω

W +

∫

Ω

div(W ~x)

= −N
∫

Ω

[F (v) +G(u)] +

∫

∂Ω

(x · n)W (u, v),

and ∫

Ω

∇u∇v = (1 − θ)

∫

Ω

ug(u) + θ

∫

Ω

vf(v).

Applying Lemma 2.2 (Pohozaev-Rellich-Mitidieri type identity) we get that

N

∫

Ω

[F (v) +G(u)]− (N − 2)

∫

Ω

[θ v f(v) + (1− θ)u g(u)]

=

∫

∂Ω

(x · n)W (u, v)−
∫

∂Ω

(∇u · ∇v) (x · n)

+

∫

∂Ω

∂u

∂n
(x · ∇v) +

∫

∂Ω

∂v

∂n
(x · ∇u).

(13)

Therefore, it follows from (13) and (9) that

∣∣∣∣N
∫

Ω

[F (v) +G(u)]− (N − 2)

∫

Ω

[θ v f(v) + (1− θ)u g(u)]

∣∣∣∣ ≤ C. (14)
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Using (11), (12), and (14), we obtain that

∣∣∣∣
α

p+ 1

∫

Ω

(∫ v(x)

0

sp+1

ln(e + s)α+1

ds

e+ s

)
dx

+
β

q + 1

∫

Ω

(∫ u(x)

0

sq+1

ln(e + s)β+1

ds

e+ s

)
dx

∣∣∣∣∣ ≤ C.

(15)

Moreover,

lim
t→∞

∫ t

0

(
1

ln(e + s)

)α+1
sp+1

e+ s
ds

tp+1

ln(e + t)α+1

=
1

p+ 1
,

and

lim
t→∞

∫ t

0

(
1

ln(e+ s)

)β+1
sq+1

e+ s
ds

tq+1

ln(e+ t)β+1

=
1

q + 1
.

Therefore, for any ε > 0 there exists a constant tε, such that if t > tε, then

1

p+ 1
− ε <

∫ t

0

(
1

ln(e + s)

)α+1
sp+1

e+ s
ds

tp+1

ln(e+ t)α+1

and

1

q + 1
− ε <

∫ t

0

(
1

ln(e + s)

)β+1
sq+1

e+ s
ds

tq+1

ln(e+ t)β+1

.

Let us choose ε = 1
2 min

{
1

p+1 ,
1

q+1

}
; then there exists a constant C > 0 such that for

any t > 0,

tp+1

ln(e+ t)α+1
≤ C

(
1 +

∫ t

0

(
1

ln(e + s)

)α+1
sp+1

e+ s
ds

)

and

tq+1

ln(e+ t)β+1
≤ C

(
1 +

∫ t

0

(
1

ln(e+ s)

)β+1
sq+1

e+ s
ds

)
.
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Hence, applying the above inequalities for any v(x) and u(x) solving (4) respectively,
integrating in Ω and using (15), we have that

∣∣∣∣
∫

Ω

vp+1

ln(e+ v)α+1
+

∫

Ω

uq+1

ln(e+ u)β+1

∣∣∣∣ ≤ C.

This implies that
∫

Ω

vf(v)

ln(e+ v)
=

∫

Ω

vp+1

ln(e+ v)α+1
≤ C,

∫

Ω

ug(u)

ln(e+ u)
=

∫

Ω

uq+1

ln(e+ u)β+1
≤ C.

(16)

As pointed out in Remark 1.2, condition (5) ensures that f and g are nondecreasing.

Step 3. Now, let us fix r, r′ ∈ (N2 , N) such that r ≥ 1 +
1

p
and r′ ≥ 1 +

1

q
. Then using

(16) and the fact that f and g are nondecreasing for ‖v‖∞ large enough, we get that
∫

Ω

|f(v)|r =

∫

Ω

vpr

ln(e+ v)αr

=

∫

Ω

vpr−p−1

ln(e+ v)α(r−1)−1

vp+1

ln(e+ v)α+1

≤ C
‖v‖pr−(p+1)

∞

ln(e+ ‖v‖∞)α(r−1)−1

= C

( ‖v‖p∞
ln(e+ ‖v‖∞)α

)r−1− 1
p 1

ln(e + ‖v‖∞)
α
p−1

,

and similarly
∫

Ω

|g(u)|r′ ≤ C

( ‖u‖q∞
ln(e+ ‖u‖∞)β

)r′−1− 1
q 1

ln(e+ ‖u‖∞)
β
q −1

.

All the other arguments work as in part I, Theorems 2.1, 2.2 (see also [71, proof of
Theorems 1.1 and 1.3]). �XXX

Proof of Theorem 1.3. The proof is divided in two parts. We first prove that if there
exists a positive solution

(
(λ, µ), (u, v)

)
of equation (6) with λ, µ ≥ 0, then λµ < λ21. In

the second part, we prove the converse.

Part I. Assume that there exists a positive solution
(
(λ, µ), (u, v)

)
of equation (6), and

that λ, µ ≥ 0. Let φ1 > 0 be the principal eigenfunction associated to λ1 and normalized
in the L2(Ω) norm. Multiplying each equation of (6) by φ1, and integrating by parts on
Ω, it yields that

λ1

∫

Ω

uφ1 = λ

∫

Ω

vφ1 +

∫

Ω

f(v)φ1,

λ1

∫

Ω

vφ1 = µ

∫

Ω

uφ1 +

∫

Ω

g(u)φ1.
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Multiplying the first equation by λ1, the second equation by λ and adding both equations
we deduce

(λ21 − λµ)

∫

Ω

uφ1 =

∫

Ω

[λ1f(v) + λg(u)]φ1 > 0.

Thus, λµ < λ21.

Part II. Assume that λ, µ ≥ 0 and λµ < λ21; we will prove that there is a positive solution
(u, v) of (6). The proof is divided in three steps. In step 1, we reformulate problem (6)
in abstract (operators) setting. In step 2, we fix one parameter, say, λ = λ0 > 0, and
choosing µ as bifurcation parameter, we use Crandall-Rabinowitz’s Theorem to prove that
when

√
λ0µ = λ1 there is a bifurcation phenomena from the trivial solution. Moreover, at

least locally, the nontrivial solution pairs (u, v) are strictly positive. In step 3 we use the
global bifurcation result stated by Rabinowitz [82] and completed by Dancer [34] (see also
[35], [63]) to prove that equation (6) has at least one solution. We conclude with a remark
on the fact that varying λ we obtain a whole curve of non-isolated bifurcation points,
and using Alexander and Antman’s result [3], we can deduce that in a neighborhood
of that curve, there is a bifurcating two-dimensional surface of nontrivial solution pairs(
(λ, µ), (u, v)

)
of equation (6).

Step1. We start by reformulating problem (6).

Let f and g be the extension of f and g, defined by

f(t) =
|t|p[

ln(e + |t|)
]α , g(s) =

|s|q
[
ln(e + |s|)

]β , for s, t ≤ 0,

and denote by F (w) :=

(
f(v)
g(u)

)
. Then (6) can be extended to non-positive and

changing sign solutions and can be rewritten

−∆w = Aw + F (w), in Ω, w =

(
0
0

)
on ∂Ω, (17)

where A :=

(
0 λ
µ 0

)
, w :=

(
u
v

)
, and any positive solution (u, v) of (17) is a positive

solution of (6), and conversely.

Following the same ideas used in the proof of Theorem 1.1, it can be easily checked that
for any [a, b]× [c, d] ⊂ R

2
+, there exists a constant C > 0 such that any positive solution

(u, v) of equation (17) satisfies

‖u‖L∞(Ω) ≤ C, ‖v‖L∞(Ω) ≤ C, ∀ (λ, µ) ∈ [a, b]× [c, d]. (18)

Assume that λ, µ > 0 and consider the Jordan canonical form of the matrix A. We can
decompose A = P−1JP , where

J =

( √
λµ 0
0 −√

λµ

)
, P =

1

2

( √
µ
λ 1

−
√

µ
λ 1

)
, P−1 =

( √
λ
µ −

√
λ
µ

1 1

)
.
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Multiplying (17) by P on the left and denoting by z = Pw, we obtain

−∆z = Jz +G(z), in Ω, z =

(
0
0

)
on ∂Ω,

where G(z) := PF (w) = PF (P−1z).

Step 2. We check that the conditions of Crandall-Rabinowitz’s Theorem [24] are satisfied.
Fix λ = λ0 > 0, and choose µ as the bifurcation parameter. Let σ ∈ (0, 1); define
E2 = {u ∈ C2,σ(Ω) : u = 0 on ∂Ω} equipped with its standard norm; E2 is a Banach
space. Set E0 = Cσ(Ω) and define the operator F : R× (E2)

2 → (Cσ(Ω))2 by

F (µ,w) := −∆w −
(

0 λ0
µ 0

)
w − F (w);

L0w := D(u,v)F (µ0, 0)w = −∆w −
(

0 λ0
µ0 0

)
w,

L1w := Dµ,(u,v)F (µ0, 0)w =

(
0

−v.

)
, where w =

(
u
v

)
.

Set µ0 =
λ2
1

λ0
, and P0 = P (λ0, µ0). Observe that w ∈ N(L0) (where N(L0) is the kernel of

L0) if, and only if, z = P0w ∈ N

(
−∆−

(
λ1 0
0 −λ1

))
= span

[(
φ1
0

)]
. Therefore,

N(L0) = span

[(
λ0φ1
λ1φ1

)]
.

Now, we claim that L1(N(L0)) 6⊂ R(L0), where R(L0) is the range of L0.

Indeed, assume that there exist w ∈ N(L0) and ψ =

(
ψ1

ψ2.

)
∈ D(L0) such that

L1 w = L0 ψ or, equivalently by definition of L0 and L1,

−∆ψ −
(

0 λ0
µ0 0

)
ψ = a

(
0

−λ1φ1

)
, for some a ∈ R. (19)

Multiplying (19) on the left by P0, and denoting by ϕ = P0ψ =

(
ϕ1

ϕ2.

)
, we obtain

−∆ϕ−
(
λ1 0
0 −λ1

)
ϕ = −aλ1

2

(
φ1
φ1

)
.

Multiplying the first (component) equation by φ1, integrating on Ω, and applying Green’s
formulae we obtain

0 =

∫

Ω

(−∆ϕ1 − λ1ϕ1)φ1 = −aλ1
2

∫

Ω

φ21.

Therefore a = 0. Hence, the hypotheses of Crandall Rabinowitz theorem are satisfied.

Thus, there exists a neighborhood of
(

λ2
1

λ0
, (0, 0)

)
in R× (E2)

2, and continuous functions
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µ(s), w̃(s), s ∈ (−ǫ, ǫ), such that µ(0) = µ0, w̃(0) =

(
0
0

)
, w̃ =

(
w̃1

w̃2

)
, with

∫
Ω w̃iφ1 = 0, and the only nontrivial solutions of (6) for λ = λ0 fixed, are

(
µ(s), s

(
λ0φ1
λ1φ1

)
+ s w̃(s)

)
.

Observe that for s > 0 small enough, w =

(
u
v

)
satisfies u > 0, v > 0, ∂u

∂n < 0, ∂v
∂n < 0

on ∂Ω, hence λ0µ < λ21.

Step 3. Now, we use the global bifurcation Theorem as stated by Rabinowitz [82] and as
completed by Dancer [34]. Let (−∆)−1 denote the inverse of (−∆) with homogeneous
Dirichlet boundary conditions. It follows from Schauder estimates that (−∆)−1 maps
bounded subsets of E0 into bounded subsets of E2, which in turn are relatively compact
in E0. Thus, (−∆)−1 : E0 → E0 is compact.

Observe that, fixed points of the operator (−∆)−1 [J(.)+G(.)] corresponds to fixed points
of the operator (−∆)−1 [A(.) + F (.)], that is,

z = (−∆)−1 [Jz +G(z)] ⇐⇒ w = (−∆)−1 [Aw + F (w)].

Let us keep fixed λ = λ0 > 0, and allow µ to vary. It follows from Rabinowitz’s global
bifurcation Theorem [82, Theorem 1.3] that there is a continuum of solutions, emanating

from the trivial solution at (λ, µ) =
(
λ0,

λ2
1

λ0

)
, which is either unbounded, or meets another

bifurcation point from the trivial solution. Let

Cλ0 :=
{(

(λ0, µ), (uλ0,µ, vλ0,µ)
)
∈ R

2 ×
(
Cσ(Ω)

)2}

be the continuum emanating from the trivial solution at µ = µ0 =
λ2
1

λ0
, and solving (6)

for λ = λ0 fixed. By elliptic regularity, it is known that Cλ0 ⊂ R
2 ×

(
C2,σ(Ω)

)2
.

Considering the positive cone P := {u ∈ C1,σ(Ω) : u > 0, in Ω, ∂u
∂n < 0, on ∂Ω}, let us

denote by C+
λ0

:= Cλ0 ∩ R
2 × (P)2 6= ∅. Since the classical positive solutions are a priori

bounded (see (18)), we have that C+
λ0
∩
(
{λ0} ×

[
0,

λ2
1

λ0

)
×
(
Cσ(Ω)

)2)
is bounded. Assume

that there exists µ = µ∗ ∈
[
0,

λ2
1

λ0

)
such that

(
(λ0, µ

∗), (u∗, v∗)
)
∈ C+

λ0
\ C+

λ0
; then, either

(u∗, v∗) = (0, 0) or u∗ ≥ 0, v∗ ≥ 0 in Ω, ∂u∗

∂n ≤ 0, ∂v
∗

∂n ≤ 0 on ∂Ω, with (u∗, v∗) 6= (0, 0).
If (u∗, v∗) = (0, 0) then

(
(λ0, µ

∗), (u∗, v∗)
)

is a bifurcation point from the trivial solution
to positive solutions. Due to the unique bifurcation point from the trivial solution to

positive solutions at λ = λ0 is attained at µ =
λ2
1

λ0
, if (u∗, v∗) = (0, 0) then we reach a

contradiction. On the other hand, if u∗ ≥ 0, v∗ ≥ 0 in Ω, (u∗, v∗) 6= (0, 0), from the
Maximum Principle and the Hopf Maximum Principle u∗ > 0, v∗ > 0 in Ω, and ∂u∗

∂n∗
< 0,

∂v
∂n < 0; therefore

(
(λ0, µ

∗), (u∗, v∗)
)
∈ C+

λ0
, which contradicts the hypothesis. �XXX

Remark 2.3. Let us mention that when moving λ we obtain a whole curve of non-
isolated bifurcation points. If S denote the closure of the set of nontrivial solutions pairs
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(
(λ, µ), w

)
of (17), and F denote the set of bifurcation points of (17) from the trivial

solution, we proved in Step 2 that the set

F1 :=

{((
λ,
λ21
λ

)
, (0, 0)

)
: λ > 0

}

is a set of bifurcation points of (17) from the trivial solution. All points in F1 are non-
isolated bifurcation points. Using Alexander and Antman’s result [3], we can deduce
that in a neighborhood of that curve, there is a bifurcating two-dimensional surface of
nontrivial solution pairs

(
(λ, µ), (u, v)

)
of equation (6).

3. A priori estimates for quasilinear elliptic equations involving the
p-Laplacian

Let Ω be a smooth, bounded, and strictly convex domain in R
N , N ≥ 2. We prove

L∞(Ω) a priori bounds for C1(Ω) weak solutions of the problem




−∆p(u) = f(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(20)

where ∆p(u) = div(|Du|p−2Du) is the p-Laplace operator, 1 < p <∞, and

(H1) f : [0,∞) → R is a locally Lipschitz continuous function with f(0) ≥ 0.

If p > 2 we also assume that f(s) > 0 if s > 0.

The equation −∆pu = f(u) is the Lp counterpart to the classical semilinear elliptic
equation −∆u = f(u), and appears for instance in the theory of non-Newtonian fluids,
dilatant fluids in the case p ≥ 2, pseudo-plastic fluids in the case 1 < p < 2 (see [6], [69],
[70]).

If u ∈ W 1,p(Ω) ∩ L∞(Ω) is a weak solution of the problem (20), then u ∈ C1,τ (Ω) with
τ < 1 (see [41], [60]), so we assume from the beginning a C1 regularity for the solution,
which is in general only a weak solution. A standard setting in the applications of a
priori estimates to existence of solutions to elliptic problems, is the space of continuous
functions. If u ∈ C0(Ω), then also f(u) is continuous and the solution u belongs to the
space C1,τ (Ω), by the cited regularity results.

Mitidieri and Pohozaev in [73], [74] proved Liouville theorems for quasilinear elliptic
inequalities in R

N involving the p-laplacian. Later, Serrin and Zou [86], and also Farina
and Serrin [42], [43], proved Liouville theorems for more general operators.

With the help of the blow-up procedure, Azizieh and Clement in [9] proved a priori
estimates for the equation (20) when Ω is strictly convex, 1 < p < 2 and f(u) growing
not faster than a power uϑ at infinity, with

1 < ϑ < p∗ − 1 , p∗ =
(N − 1)p

N − p
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(see [10] for the case of systems). The exponent p∗ = (N−1)p
N−p is the optimal exponent for

Liouville theorems for elliptic inequalities ; observe that

p∗ =
(N − 1)p

N − p
< p∗ =

Np

N − p
,

where p∗ is the critical exponent for the Sobolev’s embeddings. The restriction 1 < p < 2
depends on the fact that using a blow-up procedure and Liouville theorems on the whole
space, they need to exclude concentration of maximum points of the solutions at the
boundary, and they use some result proved in [29], [30] on the symmetry and monotonicity
of solutions to p-Laplace equations in the singular case 1 < p < 2; these results were
later extended to the case p > 2 in the papers [32], [33].

Ruiz [83] proved a priori estimates for equation more general than (20), using a different
technique based among other tools on Harnack type inequalities; therein f = f(x, u,Du)
can depend on x and on the gradient, for any 1 < p < N and for general domains. Once
again the growth at infinity with respect to u must be less than powers with exponent
ϑ < p∗ − 1.

In both papers, there is also a general discussion on how the existence of solutions follows
from the a priori estimates, using some abstract results by Krasnoselskij already used in
[40].

Later, Zou [92] proved Liouville theorems in half spaces that, together with the results
in [84], allow him to use the blow-up method and prove a priori estimates for equations
more general than (20), in case 1 < p < N ; therein f = f(x, u,Du) can depend on x and
on the gradient, and under various hypotheses on the nonlinearities. In particular, it is
assumed that f = f(x, u,Du) grows with respect to u as a subcritical power at infinity
and zero.

For monotonicity and Liouville type theorems in half spaces many other papers appeared
recently (see in particular the papers of Farina, Montoro, and Sciunzi [44], [45], [46], and
Farina, Montoro, Riey, and Sciunzi [47]).

In recent years, related a priori estimates for general operators were established by
D’Ambrosio and Mitidieri in [26], [27].

The aim of this Section is to state a priori estimates for solutions of (20) in the case
of Ω being a smooth bounded strictly convex domain, for any value of p > 1. In case
1 < p < N , f(u) is assumed to have a subcritical grow at infinity, but allowing more
general functions than merely subcritical powers (see for example Corollary 1.4).

We adapt the technique introduced in [40] for the case p = 2, that allows to give the same
proof in cases 1 < p < N , p = N and p > N . Of course, in the latter cases, much weaker
hypotheses are needed in order to obtain the desired estimates (in particular in case p > N
we only need that f(u) grows faster than up−1 at infinity, condition that for p = 2 is the
superlinearity at infinity). This proofs rely deeply on the C2 regularity of solutions, which
are then classical solutions, and on the W 2,q estimates based on the Calderón-Zygmund
and Agmon-Douglis-Nirenberg estimates [1], [2]. These estimates are not available in
the singular/degenerate case p 6= 2. We use instead regularity results for the p-laplacian
(see [41], [60], [88], and gradient estimates [57], [19], [20]). There are many other tools
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that we had to adapt to handle in our case. We use Strong Maximum Principle and
Hopf’s Lemma for the p-Laplacian (see [91]), weak and strong comparison principles for
the p-Laplacian (see [25], [28], [32], [33], [55], [78]), Picone’s identity for the p-Laplacian
([4]), Pohozaev’s identity for the p-Laplacian ([55]). Although the general theory of
eigenvalues for the p-Laplacian is far from complete (see [50], [77]), the properties of the
first eigenvalue are known and are the same as in the case p = 2 (see [5], [77], [61]).

All the following results are already known (see [31]):

Theorem 3.1 (Case p > N). Let Ω be a smooth bounded domain in R
N , N ≥ 2, which

is strictly convex. Assume that p > N , the condition (H1) holds and

(H2) there exist τ > 0 and C1 > 0 such that

lim infs→+∞
f(s)

sp−1+τ > C1 > 0.

Then, the solutions of (20) are a priori bounded in L∞: there exists a constant C,
depending on p, Ω and f , but independent of the solution u, such that ‖u‖L∞(Ω) ≤ C for
any solution of (20).

Proof. See [31, Proof of Theorem 1.1] for a proof. �XXX

Remark 3.2. For the ordinary laplacian (p = 2), the above theorem corresponds to the
case of dimension N = 1. In [40, Remark 1.3] it was observed that if N = 1, solutions
are uniformly bounded under the only hypothesis of superlinearity at infinity, which
corresponds for p = 2 to the hypothesis (H2) with τ = 0, and the bound from below
strictly bigger than λ1, the first eigenvalue for the Laplacian operator.

We need the slightly stronger form (with τ > 0 but arbitrarily small) for technical reasons
(use of the Picone’s Identity for the p-laplacian).

Theorem 3.3 (Case p = N). Let Ω be a smooth bounded domain in R
N , N ≥ 2, which

is strictly convex. Let p = N and assume that (H1) and (H2) hold, as well as

(H3) there exists C2 > 0 such that lim inf
s→+∞

F (s)

sf(s)
> C2 > 0, where F (t) =

∫ t

0 f(s) ds is

a primitive of the function f ;

(H4) there exists θ > 0 such that lim sup
s→+∞

|f(s)|
sθ

< +∞ (of course this is equivalent to:

there exists η > 0 such that lim
s→+∞

|f(s)|
sη

= 0 ).

Then, the solutions of (20) are a priori bounded in L∞: there exists a constant C,
depending on p, Ω and f , but independent of the solution u, such that ‖u‖L∞(Ω) ≤ C for
any solution of (20).

Proof. See [31, Proof of Theorem 1.3] for a proof. �XXX
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Remark 3.4. If p = 2 (the ordinary laplacian), the above theorem corresponds to the
case of dimension N = 2, and in that case solutions are uniformly bounded under the
only hypotheses of superlinearity together with polynomial growth at infinity (cf. [40,
Theorem 1.1]). All the functions f growing polynomially at infinity are included in
hypotheses (H3), and (H4).

Nevertheless, when p = N the critical embedding is of exponential type, and those
hypotheses are not optimal (neither are the hypotheses in [40]), and we think that they
can be improved.

The following result can be seen as the counterpart for p 6= 2 to the results above (see
[31, Proof of Theorem 1.7] for a proof).

Theorem 3.5 (Case 1 < p < N). Let Ω be a smooth bounded domain in R
N , N ≥ 2,

which is strictly convex.

Let 1 < p < N , and assume that (H1) and (H2) hold, as well as

(H3”) there exist a nonincreasing positive function H : [0,+∞) → R such that

lim inf
s→+∞

p∗F (s)− sf(s)

sf(s)H(s)
> 0,

where p∗ = Np
N−p , and

(H4”) lim
s→+∞

f(s)

sp∗−1[H(s)]
p

N−p

= 0;

(H5) there exist C4 > 0, C5 > 0 such that

lim inf
s→+∞

min[ s2 ,s]
f

f(s)
≥ C4 > 0, lim sup

s→+∞

max[0,s] f

f(s)
≤ C5.

Then, the solutions of (20) are a priori bounded in L∞: there exists a constant C,
depending on p, Ω and the function f , but independent of the solution u, such that
‖u‖L∞(Ω) ≤ C for any solution of (20).

The existence of solutions for (20) follows from the a priori estimates, with a further
hypothesis about the behavior of the nonlinearity at zero.

This was proved in [40] (with the hypothesis (H0) below) for p = 2, using some variants
of topological arguments, connected with theorems of Krasnoselskii [58] and Rabinowitz
[81] based on degree theory. It was extended to the case of p-Laplace equations in [9],
[83], [92].

It also can be adapted to our hypotheses. More precisely, the following result holds (see
[31, Proof of Theorem 1.8] for a proof).

Theorem 3.6. Let us assume that the hypotheses of one of the previous theorem hold,
and assume also that
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(H0) lim sup
s→0+

f(s)

sp−1
< λ1,p,

where λ1,p is the first eigenvalue for the p-Laplacian (see [31, Section 2]). (Since f(0) ≥ 0
by (H1), this hypothesis implies that f(0) = 0).

Then, there exists a positive solution of (20).

4. Equivalence between uniform L2⋆(Ω) a-priori bounds and uniform
L∞(Ω) a-priori bounds for subcritical elliptic equations

We consider the existence of L∞(Ω) a-priori bounds for classical positive solutions to
the boundary value problem

−∆u = f(u), in Ω, u = 0, on ∂Ω, (21)

where Ω ⊂ R
N , N > 2, is a bounded domain with C2 boundary ∂Ω. Trudinger [90]

proved that any weak solution in H1(Ω) is in fact in L∞(Ω) and consequently in C∞(Ω).

We provide sufficient conditions on f for uniform L2∗(Ω) a-priori bounds to imply uni-
form L∞(Ω) a-priori bounds, where 2∗ = 2N

N−2 is the critical Sobolev exponent. The
converse is obviously true without any additional hypotheses.

The ideas for the proof of the following theorem are similar to those used in [16, Theorem
1.1] (see also part I, Theorems 2.1, 2.2). Unlike the proof in [16], here we do not use
Pohozaev or moving planes arguments.

Our main result is the following theorem.

Theorem 4.1. Assume that the nonlinearity f : R+ → R is a locally Lipschitzian function
that satisfies:

(H1) There exists a constant C0 > 0 such that lim inf
s→∞

min
[s/2,s]

f

f(s)
≥ C0.

(H2) There exists a constant C1 > 0 such that lim sup
s→∞

max
[0,s]

f

f(s)
≤ C1.

(F) lim
s→+∞

f(s)

s2⋆−1
= 0; that is, f is subcritical.

Then the following conditions are equivalent:

(i) there exists a uniform constant C (depending only on Ω and f) such that for every
positive classical solution u of (21),

‖u‖L∞(Ω) ≤ C;
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(ii) there exists a uniform constant C (depending only on Ω and f) such that for every
positive classical solution u of (21),

∫

Ω

|f(u)| 2N
N+2 dx ≤ C;

(iii) there exists a uniform constant C (depending only on Ω and f) such that for every
positive classical solution u of (21),

‖u‖L2∗(Ω) ≤ C.

Proof. All the arguments work in a similar way as in part I, Theorems 2.1, 2.1 (see also
[15, proof of Theorem 1.1]). �XXX

In this Section, we also provide sufficient conditions for the equivalence of the existence
of a uniform L2⋆(Ω) a priori bound with that of a uniform L∞(Ω) a priori bound for
sequences of boundary value problems. In fact, we have the following theorem, which is
[15, Theorem 1.2]; we include the proof by the sake of completeness.

Theorem 4.2. Consider the following sequence of BVPs

−∆v = gk(v) in Ω, v = 0 on ∂Ω, (21)k

with gk : R+ → R locally Lipschitzian. We assume that the following hypotheses are
satisfied:

(H1)k there exists a uniform constant C1 > 0 such that lim inf
s→+∞

min
[s/2,s]

gk

gk(s)
≥ C1;

(H2)k there exists a uniform constant C2 > 0 such that lim sup
s→+∞

max
[0,s]

gk

gk(s)
≤ C2.

Let {vk} be a sequence of classical positive solutions to (21)k for k ∈ N . If

(F)k lim
k→+∞

gk(‖vk‖)
‖vk‖2⋆−1

= 0,

then, the following two conditions are equivalent:

(i) there exists a uniform constant C, depending only on Ω and the sequence {gk}, but
independent of k, such that for every vk > 0, classical solution to (21)k,

lim sup
k→∞

‖vk‖L∞(Ω) ≤ C;

(ii) there exists a uniform constant C0, depending only on Ω and the sequence {gk},
but independent of k, such that for every vk > 0, classical solution to (21)k,

lim sup
k→∞

∫

Ω

|gk(vk)|
2N

N+2 dx ≤ C0; (22)
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(iii) there exists a uniform constant C (depending only on Ω and the sequence {gk})
such that for every positive classical solution vk of (21)k,

‖vk‖L2∗(Ω) ≤ C.

Hypothesis (H1)k, and (H2)k, are not sufficient for the existence of a uniform L∞ a priori
bound. Atkinson and Peletier in [8] show that for fε(s) = s2

⋆−1−ε and Ω a ball in R
3,

there exists x0 ∈ Ω and a sequence of solutions uε such that lim
ε→0

uε = 0 in C1(Ω \ {x0})
and lim

ε→0
uε(x0) = +∞. See also Han [56], for minimum energy solutions in general

domains.

Furthermore, hypotheses (H1)k, (H2)k, and (F)k, are not sufficient for the existence of
an L∞ a priori bound. In fact, at the end of this Section, we construct a sequence
of BVP satisfying (H1)k, (H2)k, and (F)k, and a sequence of solutions vk such that
lim
k→∞

‖vk‖∞ = +∞. Our example also shows the non-uniqueness of positive solutions.

Remark 4.3. One can easily see that condition (22), elliptic regularity and Sobolev
embeddings imply that there exists a uniform constant C4 > 0 such that

lim sup
k→∞

∫

Ω

vk gk(vk) dx ≤ C4, (23)

for all classical positive solutions {vk} to (21)k.

The ideas for the proof of the above theorem are similar to those used in [16, Theorem
1.1] (see also Theorems 2.1, 2.1 in part I). But, unlike the proof in [16], here we do not
use Pohozaev or moving planes arguments; therefore, the structure of the proof described
in Subsection 1.1 of part I will start in one adaptation of Step 3.

Proof of Theorem 4.2. Clearly, condition (i) implies (ii) and (iii). By the elliptic regu-
larity and condition (22), we have that ‖vk‖

W
2, 2N

N+2
≤ C. Therefore, ‖vk‖H1(Ω) ≤ C. So,

by the Sobolev embedding, we deduce that

‖vk‖L2∗(Ω) ≤ C for all k.

Using similar arguments as in Theorems 2.1, 2.1 of part I and condition (F)k, one can
show that (ii) and (iii) are equivalent. We shall concentrate our attention in proving that
(ii) implies (i). All throughout this proof C denotes several constants independent of k.

Observe that 1 + 1
2⋆−1 = 2N

N+2 . From hypothesis (ii) (see (22)), there exists a fixed
constant C > 0 (independent of k) such that

∫

Ω

∣∣gk
(
vk(x)

)∣∣q dx ≤
∫

Ω

∣∣gk
(
vk(x)

)∣∣1+ 1
2⋆−1

∣∣gk
(
vk(x)

)∣∣q−1− 1
2⋆−1 dx

≤ C
∥∥gk
(
vk(·)

)∥∥q−1− 1
2⋆−1

∞
, (24)

for k big enough, and for any q > N/2.
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Therefore, from elliptic regularity, (see [54, Lemma 9.17]),

‖vk‖W 2,q(Ω) ≤ C‖∆vk‖Lq(Ω) ≤ C
∥∥gk
(
vk(·)

)∥∥ 1− 1
q−

1
(2⋆−1)q

∞
(25)

for k big enough.

Let us restrict q ∈ (N/2, N). From Sobolev embeddings, for 1/q∗ = 1/q − 1/N with
q∗ > N , we can write

‖vk‖W 1,q∗ (Ω) ≤ C‖vk‖W 2,q(Ω) ≤ C
∥∥gk
(
vk(·)

)∥∥ 1− 1
q−

1
(2⋆−1)q

∞
,

for k big enough.

From Morrey’s Theorem (see [13, Theorem 9.12 and Corollary 9.14]), there exists a
constant C only dependent on Ω, q and N such that

|vk(x1)− vk(x2)| ≤ C|x1 − x2|1−N/q∗‖vk‖W 1,q∗ (Ω), ∀x1, x2 ∈ Ω,

for any k.

Therefore, for all x ∈ B(x1, R) ⊂ Ω,

|vk(x) − vk(x1)| ≤ C R2−N
q ‖vk‖W 2,q(Ω), (26)

for any k.

From now on, we argue by contradiction. Let {vk} be a sequence of classical positive
solutions to (21)k and assume that

lim
k→∞

‖vk‖ = +∞, where ‖vk‖ := ‖vk‖∞.

Let xk ∈ Ω be such that
vk(xk) = max

Ω
vk.

Let us choose Rk such that Bk := B(xk, Rk) ⊂ Ω, and

vk(x) ≥
1

2
‖vk‖ for any x ∈ Bk,

and there exists yk ∈ ∂Bk such that

vk(yk) =
1

2
‖vk‖. (27)

Let us denote by
mk := min

[‖vk‖/2,‖vk‖]
gk, Mk := max

[0,‖vk‖]
gk.

Therefore, we obtain

mk ≤ gk
(
vk(x)

)
if x ∈ Bk, gk

(
vk(x)

)
≤Mk ∀x ∈ Ω. (28)
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Then, reasoning as in (24), we obtain
∫

Ω

∣∣gk
(
vk
)∣∣q dx ≤ C M

q−1− 1
2⋆−1

k .

From elliptic regularity (see (25)), we deduce

‖vk‖W 2,q(Ω) ≤ C M
1− 1

q−
1

(2⋆−1)q

k .

Therefore, from Morrey’s Theorem (see (26)), for any x ∈ Bk),

|vk(x)− vk(xk)| ≤ C (Rk)
2−N

q M
1− 1

q−
1

(2⋆−1)q

k .

Particularizing x = yk in the above inequality, and from (27), we obtain

C (Rk)
2−N

q M
1− 1

q−
1

(2⋆−1)q

k ≥ |vk(yk)− vk(xk)| =
1

2
‖vk‖,

which implies

(Rk)
2−N

q ≥ 1

2C

‖vk‖
M

1− 1
q−

1
(2⋆−1)q

k

,

or equivalently,

Rk ≥



 1

2C

‖vk‖
M

1− 1
q−

1
(2⋆−1)q

k




1/
(
2−N

q

)

. (29)

Consequently, taking into account (28),
∫

Bk

vk|gk(vk)| dx ≥ 1

2
‖vk‖mk ω (Rk)

N ,

where ω = ωN is the volume of the unit ball in R
N .

Due to Bk ⊂ Ω , substituting inequality (29), and rearranging terms, we obtain

∫

Ω

vk|gk(vk)| dx ≥ 1

2
‖vk‖mk ω


 1

2C

‖vk‖
M

1− 1
q−

1
(2⋆−1)q

k




N

2− N
q

= C mk



[‖vk‖
] 2

N − 1
q

‖vk‖
M

1− 1
q−

1
(2⋆−1)q

k





1
2
N

−
1
q

= C mk


 ‖vk‖1+

2
N − 1

q

M
1− 1

q−
1

(2⋆−1)q

k




1
2
N

−
1
q

= C
mk

Mk



 ‖vk‖1+
2
N − 1

q

M
1− 2

N − 1
(2⋆−1)q

k





1
2
N

−
1
q

.
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At this moment, let us observe that from hypothesis (H1)k and (H2)k,

mk

Mk
≥ C, for all k big enough.

Hence, taking again into account hypothesis (H2)k, and rearranging exponents, we can
assert that

∫

Ω

vk|gk(vk)| dx ≥ C


 ‖vk‖1+

2
N − 1

q

M
1− 2

N − 1
(2⋆−1)q

k




1
2
N

−
1
q

≥ C




‖vk‖1+
2
N − 1

q

[
gk
(
‖vk‖

)]1− 2
N − 1

(2⋆−1)q




1
2
N

−
1
q

= C




‖vk‖(N+2)[ 1
N − 1

(N+2)q ]

[
gk
(
‖vk‖

)](N−2)[ 1
N − 1

(N+2)q ]




1
2
N

−
1
q

.

Finally, from hypothesis (F)k we deduce

∫

Ω

vk|gk(vk)| dx ≥ C

(
‖vk‖2

∗−1

gk
(
‖vk‖

)
) (N−2)[ 1

N
−

1
(N+2)q ]

2
N

−
1
q

→ ∞, as k → ∞,

which contradicts (23). �XXX

4.1. Radial problems with almost critical exponent

In this Section, we build an example of a sequence of functions {gk} growing subcriti-
cally, and satisfying the hypotheses (H1)k, (H2)k, and (F)k, such that the corresponding
sequence of BVP {

∆wk + gk(wk) = 0 in |x| ≤ 1,

wk(x) = 0 for |x| = 1.
(30)

has an unbounded (in the L∞(Ω)-norm) sequence {wk} of positive solutions. As a con-
sequence of Theorem 4.2, this sequence {wk} is also unbounded in the L2∗(Ω)-norm.

Let N ≥ 3 be an integer. For each positive integer k > 2 let gk(s) = 0 for s < 0;

gk(s) = s
N+2
N−2 for s ∈ [0, k]; gk(s) = k

N+2
N−2 for s ∈

[
k, k

N+2
N−2

]
, and

gk(s) = k
N+2
N−2 +

(
s− k

N+2
N−2

)N+1
N−2

, ∀s > k
N+2
N−2 .
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For the sake of simplicity in notation, we write gk := g.

Let uk := u denote the solution to



u′′ +

N − 1

r
u′ + g(u) = 0, r ∈ (0, 1],

u(0) = k
N

N−2 , u′(0) = 0.

Let r1 = sup
{
r > 0; uk(s) ≥ k on [0, r]

}
. Since g ≥ 0, u is decreasing, consequently for

r ∈ [0, r1], k ≤ u(r) ≤ k
N

N−2 , and

−rN−1u′(r) =

∫ r

0

sN−1g(u(s)) ds =

∫ r

0

sN−1k
N+2
N−2 ds =

k
N+2
N−2

N
rN ,

so

−u′(r) = k
N+2
N−2

N
r. (31)

Hence,

u(r) = k
N

N−2 − k
N+2
N−2

2N
r2, for r ∈ [0, r1]. (32)

Thus, u(r) ≥ k
N

N−2 /2, for all 0 ≤ r ≤ r0 :=
√
N
/
k

1
N−2 , and u(r0) = k

N
N−2 /2.

By well established arguments based on the Pohozaev identity (see [18]), we have

P (r) := rNE(r) +
N − 2

2
rN−1 u(r)u′(r) =

∫ r

0

sN−1 Γ
(
u(s)

)
ds, (33)

where E(r) = 1
2 (u

′(r))2 + G(u(r)), Γ(s) = NG(s) − N−2
2 sg(s), and G(s) =

∫ s

0 g(t)dt.

For s ∈
[
k, k

N
N−2

]
,

Γ(s) =
N + 2

2
k

N+2
N−2 (s− k) ≥ 0. (34)

Hence,

Γ(u(r)) ≥ N + 2

2
k

2N+2
N−2 for all r ≤ r0, k ≥ 4

N−2
2 . (35)

Due to Γ(s) = 0 for all s ≤ k, (33) and (34), for r ≥ r0,

P (r) ≥ P (r0) ≥
N + 2

2N
k

2N+2
N−2 rN0 =

N + 2

2
N

N−2
2 k

N+2
N−2 . (36)

From definition of r1 and (32),

u(r1) = k, with

r1 =

√√√√2N

[(
1

k

) 2
N−2

−
(
1

k

) 4
N−2

]

=
√
2N

(
1

k

) 1
N−2

+ o

((
1

k

) 1
N−2

)
.

(37)
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From definition of g, −u′(r1) = 1
N k

N+2
N−2 r1 (see (31)), which implies

P (r1) ≥ rN+2
1 O

(
k

2(N+2)
N−2

)
− rN1 O

(
k

2N
N−2

)

≥ O
(
k

N+2
N−2

)
−O

(
k

N
N−2

)

≥ O
(
k

N+2
N−2

)
.

For r ≥ r1,

−N − 2

2
rN−1u(r)u′(r) ≥ (N − 2)rN

2N
u(r)u(r)

N+2
N−2

=
(N − 2)rN

2N
u(r)

2N
N−2

= rNG(u(r)).

This, Pohozaev’s identity, and (36) imply

[
(u′(r)

]2 ≥ O
(
k

N+2
N−2

) 1

rN
, or − u′(r) ≥ O

(
k

N+2
2(N−2)

) 1

rN/2
.

Integrating on [r1, r] we have

u(r) ≤ k −O
(
k

N+2
2(N−2)

)( 1

r
(N−2)/2
1

− 1

r(N−2)/2

)
,

which implies that there exists k0 such that if k ≥ k0 then u(r) = 0 for some r ∈ (r1, 2r1].
Since (37), r1 = r1(k) → 0 as k → ∞.

Let v := vk denote the solution to




v′′ +

N − 1

r
v′ + g(v) = 0, r ∈ (0, 1],

v(0) = k
N+2
N−2 , v′(0) = 0.

Let r′1 = sup
{
r > 0; vk(s) ≥ k on [0, r]

}
. For v(r) ≥ k, integrating (31) we deduce

v(r) = k
N+2
N−2 − k

N+2
N−2

2N
r2, for r ∈ [0, r′1]

and

v(r′1) = k
N+2
N−2 − k

N+2
N−2

2N
r21 = k;

therefore,

r′1 =

√√√√2N

(
1−

(
1

k

) 4
N−2

)
> 1,

so v(r) ≥ k for all r ∈ [0, 1].
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Therefore, by continuous dependence on initial conditions, there exists dk ∈(
k

N
N−2 , k

N+2
N−2

)
such that the solution w = wk to





w′′ +

N − 1

r
w′ + gk(w) = 0, r ∈ (0, 1],

w(0) = dk, w′(0) = 0,

satisfies w(r) ≥ 0 for all r ∈ [0, 1], and w(1) = 0. Since k may be taken arbitrarily large,
and as a consequence of Theorem 4.2, we have established the following result.

Corollary 4.4. There exists a sequence of functions gk : R → R and a sequence {wk} of
positive solutions to (30), such that each function gk grows subcritically and satisfies the
hypotheses (H1)k, (H2)k and (F)k of Theorem 4.2, and the sequence {wk} of positive
solutions to (30) is unbounded in the L∞(Ω)-norm.

Moreover, this sequence {wk} is also unbounded in the L2∗(Ω)-norm.

Let now v := vk denote the solution to



v′′ +

N − 1

r
v′ + g(v) = 0, r ∈ (0, 1],

v(0) = k, v′(0) = 0.
(38)

Since Γ(s) = 0 for all s ≤ k, and the solution is decreasing, by Pohozaev’s identity,

1

2
r(v′(r))2 +

N − 2

2N
r v(r)

2N
N−2 +

N − 2

2
v(r)v′(r) = 0, ∀r ∈ [0, 1].

Hence, if v(r̂) = 0 for some r̂ ∈ (0, 1], then v′(r̂) = 0 and the uniqueness of the solution
of the IVP (38), implies v(r) = 0 for all r ∈ [0, 1]. Since this contradicts v(0) = k > 0 we
conclude that v(r) > 0 for all r ∈ [0, 1]. Therefore, by continuous dependence on initial

conditions, there exists d′k ∈
(
k, k

N
N−2

)
such that the solution z = zk to





z′′ +

N − 1

r
z′ + gk(z) = 0, r ∈ (0, 1],

z(0) = d′k, z′(0) = 0,

satisfies z(r) ≥ 0 for all r ∈ [0, 1], and z(1) = 0.

Corollary 4.5. For any k ∈ N , the BVP (30) has at least two positive solutions.

5. Asymptotics for positive radial solutions of elliptic equations ap-
proaching critical growth

Consider the classical Dirichlet boundary value problem




−∆u = f(u) in BR,

u > 0 in BR,

u = 0 in ∂BR,

(39)
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for u ∈ C2(BR), in which BR = BR(0) ⊂ R
N , N > 2, is the open ball of radius R, and f is

locally-Lipschitz in [0,∞) and superlinear at infinity (i.e. lim inf f(u)/u > λ1 as u→ ∞,
where λ1 > 0 is the first eigenvalue of −∆ with Dirichlet boundary conditions). Denote by
2∗ := 2N/(N−2) the critical Sobolev exponent; H1(Ω) is compactly embedded in Lp(Ω)
if, and only if, p < 2∗. The extended real number f⋆ := lim

u→∞
f(u)/u2

∗−1 discriminates

the problem (39) into three types: critical if f⋆ ∈ (0,∞), supercritical if f∗ = ∞ and
subcritical if f⋆ = 0.

Assume the nonlinearity is a pure subcritical power f(u) = u2
∗−1−ε, ε > 0, and Ω is a

ball. Atkinson and Peletier in [8] studied the assymptotic behavior as ε→ 0+ of solutions
to (39), and proved that

lim
ε→0+

εuε(0)
2 = L(N,R),

and ∀r 6= 0,

lim
ε→0+

uε(r)√
ε

= L̃(N,R)

(
1

rN−2
− 1

RN−2

)
,

where L(N,R), L̃(N,R) are constants only dependent on N , and R, defined by

L(N,R) :=
4

N − 2

[
N(N − 2)

]N−2
2

Γ(N)

Γ(N/2)2
1

RN−2
, (40)

L̃(N,R) :=
(N − 2)

1
2

2

[
N(N − 2)

]N−2
4

Γ(N/2)

Γ(N)1/2
R

N−2
2 =

[
N(N − 2)

]N−2
2

L(N,R)1/2
, (41)

where Γ denotes the Gamma function. See also [56] with similar results for least energy
solutions on general domains.

The above sections lead to a natural question: Is the lower bound on α > 2
N−2 a technical

or an intrinsic condition?

In the present Section, we focus our attention on nonlinearities

f(u) = fα(u) :=
|u|2∗−2u[

log(e+ |u|)
]α , with α ∈

(
0,

2

N − 2

)
. (42)

We analyze the asymptotic behavior as α → 0+ of solutions to (39). Firstly, we prove

that for each α ∈
(
0, 2

N−2

)
fixed, the set of positive solutions to (39) is a priori bounded.

Henceforth, the bound from below on α in [16], [17], [31], [71] are technical rather than
intrinsic, at least when Ω is the open ball of radius R. Secondly, we provide estimates for
the growth of uα(0) as α → 0+. We adapt for our nonlinearities, techniques introduced
by Atkinson and Peletier for the case of subcritical powers in [7], [8].

Our first result is on the existence of solutions to (39), and of uniform L∞ a priori bounds
for each α fixed (see [75, Proof of Theorem 1.1] for a proof).

Theorem 5.1. Fix α ∈
(
0, 2

N−2

)
; let f = fα be as in (42) and assume Ω is the open ball

of radius R. Then the following results hold:
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(i) There exists a radially symmetric solution to (39), u = uα(r) > 0.

(ii) There are constants A = Aα(N,R), B = Bα(N,R) > 0 depending only on α, N
and R, such that for every u = uα > 0, radially symmetric solution to (39), we
have

Aα(N,R) ≤ ‖uα‖L∞(Ω) ≤ Bα(N,R), for each α ∈
(
0,

2

N − 2

)
.

Our second result is an estimate of the asymptotic behavior of uα(0) = ‖uα‖L∞(Ω) as
α → 0+.

Theorem 5.2. Let f = fα be as in (42) with α ∈
(
0, 2

N−2

)
, and Ω be the open ball of

radius R. Then, there exists a constant L(N,R) > 0 only depending on N and R, such
that for any uα = uα(r), radially symmetric positive solution to (39), we have

lim sup
α→0+

αuα(0)
2

[
log(e+ uα(0))

]1+α(N+2)
2

≤ L(N,R), (43)

lim inf
α→0+

αuα(0)
2

[
log(e+ uα(0))

]α(N−4)
2

≥ 1

2∗
L(N,R), (44)

where L(N,R) is defined by (40).

Proof. See [75, Proof of Theorem 1.2]. �XXX

6. Some Open Problems

- When N = 2, which is the critical nonlinearity f for having a priori bounds?

(See [38], [39]).

- When N > 2, which is the more general subcritical nonlinearity f for having a
priori bounds?

- When p = N , which is the critical nonlinearity f for having a priori bounds?

(See [36]).

- When N > p, which is the more general subcritical nonlinearity f for having a
priori bounds?

(See [36]).

- The conjecture on Lane-Emdem systems when Ω = R
N .

See the discussion corresponding to the Lane-Emdem system (7).
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