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1. Introduction

The study of convex functions has been of interest for mathematical analysis based on
the properties that are deduced from this concept. Due to generalization requirements of
the convexity concept in order to obtain new applications, in the last years great efforts
have been made in the study and investigation of this topic.

A function f : I → R is said to be convex if for all x, y ∈ I and t ∈ [0, 1] the inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds.

Numerous works of investigation have been realized extending results on inequalities
for convex functions towards others much more generalized, using new concepts such
as E−convexity [35], quasi-convexity [28], s−convexity [3], logarithmically convexity [2],
and others.

A compendium about the history of the Hermite-Hadamard inequality can be found in
the work of D.S. Mitrinovic and I.B. Lackovic [22]. The formulation of this result is as
follows:

(Hermite-Hadamard Inequality). Let f : I → R be a convex function, and a, b ∈ I with
a < b, then

f

(

a+ b

2

)

≤
1

b− a

∫ b

a

f(x)dx ≤
f(a) + f(b)

2
.

The inequality of Hermite-Hadamard has become a very useful tool in the Theory of
Probability and Optimization (See [18]).

The study on convex stochastic processes began in 1974 when B. Nagy, in [23], applied
a characterization of measurable stochastic processes to solving a generalization of the
(additive) Cauchy functional equation. In 1980 Nikodem [24] considered convex stochas-
tic processes. In 1992 and 1995 Skowronski [31], [32] obtained some further results on
convex stochastic processes which generalize some known properties.

In the year 2014, E. Set et. al. in [27] investigated Hermite-Hadamard type inequali-
ties for stochastic processes in the second sense (For other results related to stochastic
processes see [4], [9], [20], [29], [30], where further references are given).

Also, Fractional calculus [10], [21] was introduced at the end of the nineteenth century
by Liouville and Riemann, the subject of which has become a rapidly growing area and
has found applications in diverse fields ranging from physical sciences and engineering to
biological sciences and economics.

In 2011, U. Katugampola presented a new fractional integral operator in [12], which
generalizes the Riemann-Liouville and the Hadamard integrals into a single form, and
various researchers have made use of this result in the field of convexity, generalized
convexity and others ([5], [7], [8], [33]).

Recently, several Hermite-Hadamard type inequalities [19], [34] associated with frac-
tional integrals have been investigated. Here, it is established some generalized Hermite-
Hadamard type integral inequalities for stochastic processes using Katugampola frac-
tional integral operator, which generalize, in a single form those found using Riemann-
Liouville fractional integral and Hadamard fractional integral. Also, it is proposed a

[Revista Integración, temas de matemáticas



Hermite-Hadamard type inequalities, convex stochastic processes 135

refinement of the inequality object of study using the aforementioned fractional integral.
Application areas of the results found are optimization, especially in optimal designs,
and also useful for numerical approximations when there exist probabilistic quantities
[29].

2. Preliminaries

2.1. About calculus of stochastic processes.

The following notions corresponds to ordinary and convex Stochastic Process (References
about can be found in [16], [17], [20], [31], [32].

Definition 2.1. Let (Ω,A, P ) be an arbitrary probability space. A function X : Ω → R is
called a random variable if it is A-measurable. Let I ⊂ R be an interval indicating time.
A function X : I × Ω → R is called a stochastic process if for every t ∈ I the function
X(t, ·) is a random variable.

1. If X(t, w) takes values in R
n it is called vector-valued stochastic process.

2. If the time I can be a discrete subset of R, then X(t, w) is called a discrete time
stochastic process.

3. If the time I is an interval, R+ or R, it is called a stochastic process with continuous
time.

Definition 2.2. Let (Ω, A, P ) be a probability space and I ⊂ R be an interval. A
stochastic process X : I × Ω → R is called:

1. Increasing (decreasing) if for all u, v ∈ I such that u < v,

X(u, ·) ≤ X(v, ·), (X(u, ·) ≥ X(v, ·)), (a.e.);

2. Monotonic, if it’s increasing or decreasing;

3. Continuous in probability in the interval I, if for all t0 ∈ I the following limit holds:

P − lim
t→t0

X(t, ·) = X(t0, ·),

where P − lim denotes the limit in probability;

4. Mean square continuous in the interval I, if the limit for all t0 ∈ I

lim
t→t0

E[X(t, ·)−X(t0, ·)]
2 = 0,

where E [X(t, ·)] denotes the expectation value of the random variable X(t, ·);

5. Mean square differentiable in I, if there exist a stochastic process X ′(t, ·) (the
derivative of X) such that for all t0 ∈ I we have

lim
t→t0

E

[

X(t, ·)−X(t0, ·)

t− t0
−X ′(t0, ·)

]2

= 0.
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136 J.E. Hernández H. & J.F. Gómez

Definition 2.3. Let (Ω, A, P ) be a probability space, I ⊂ R be an interval with

E [X(t)]2 < ∞ for all t ∈ I.
Let [a, b] ⊂ I, a = t0 < t1 < ... < tn = b be a partition of [a, b] and θk ∈ [tk−1, tk] for
k = 1, 2, ..., n.
A random variable Y : Ω → R is called mean-square integral of the process X(t, ·) on
[a, b], if the following identity holds:

lim
n→∞

E

[

n
∑

k=1

X(θk, ·)(tk − tk−1)− Y (·)

]2

= 0;

in such a way, it can be written

∫ b

a

X(t, ·)dt = Y (·) (a.e.).

Also, mean square integral operator is increasing, that is,

∫ b

a

X(t, ·)dt ≤

∫ b

a

Z(t, ·)dt (a.e.),

where X(t, ·) ≤ Z(t, ·) in [a, b] .

Throughout this paper, it will be considered mean square continuous stochastic processes.

Important theorems as the mean value theorem for mean square derivatives and integrals
for stochastic processes have been proved in the work of J.C. Cortés et. al. The reader
can find these results in [6, Lemma 3.1,Theorem 3.2].

In 1980 K. Nikodem introduced the following definition [24].

Definition 2.4. Set (Ω,A, P ) be a probability space and I ⊂ R be an interval. The
stochastic process X : I × Ω → R is said to be a convex stochastic process if

X(λu+ (1− λ)v, ·) ≤ λX(u, ·) + (1 − λ)X(v, ·) (1)

holds almost everywhere for all u, v ∈ I and λ ∈ [0, 1].

One of the results of interest for the present work is the following.

Theorem 2.5. Every Jensen-convex stochastic process and continuous in probability is
convex.

Using Definition 2.4, D. Kotrys presented, in 2012, the Hermite-Hadamard integral in-
equality version for Stochastic Processes [16].

Theorem 2.6. If X : I × Ω → R is convex and mean square continuous in the interval
T × Ω, then for any u, v ∈ T , the inequality

X

(

u+ v

2
, ·

)

≤
1

u− v

∫ v

u

X(t, ·)dt ≤
X(u, ·) +X(v, ·)

2

holds almost everywhere.
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2.2. About generalized fractional integral operators

Before establishing the main results, it will be given some necessary notions and mathe-
matical preliminaries of fractional calculus theory which are used further in this paper.
For more details, consult [10], [15], [21], [25].

Definition 2.7. Letf ∈ L1 ([a, b]) . The Riemann-Liouville integrals Jα
a+ and Jα

b− of order
α > 0 with a ≥ 0 are defined by

Jα
a+f(x) =

1

Γ(α)

∫ x

a

(x− t)
α−1

f(t)dt

and

Jα
b−f(x) =

1

Γ(α)

∫ b

x

(t− x)
α−1

f(t)dt,

respectively, where Γ(α) is the Euler’s Gamma function defined by

Γ(α) =

∫

∞

0

tα−1e−tdt.

Note that J0
a+f(x) = J0

b−f(x) = f(x).

Using the Riemann-Liouville fractional integral, Sarikaya et all [26] established the
Hermite-Hadamard inequalities version.

Theorem 2.8. Let f : [a, b] → R be a positive function with a < b and f ∈ L1 ([a, b]) . If
f is a convex function on [a, b], then, with α > 0,

f

(

a+ b

2

)

≤
Γ (α+ 1)

(b− a)α
(

Jα
a+f(b) + Jα

b−f(a)
)

≤
f(a) + f(b)

2
.

Also, J. Hadamard in 1892 introduced the following fractional integral operator ([11]).

Definition 2.9. Let α > 0 with n − 1 < α < n , n ∈ N, and a < x < b. The left and
right-side Hadamard fractional integrals of order α > 0 of a function f , are given by

Hα
a+f(t) =

1

Γ(α)

∫ x

a

(

ln
x

t

)α−1 f(t)

t
dt

and

Hα
b−f(t) =

1

Γ(α)

∫ b

x

(

ln
x

t

)α−1 f(t)

t
dt,

respectively.

As it was mentioned in the introductory section, Katugampola introduced a new frac-
tional integral that generalizes the Riemann-Liouville and Hadamard fractional integrals
into a single form (see [12], [13], [14]).
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In the following will denote the space Xp
c (a, b) , (c ∈ R, 1 ≤ p ≤ ∞) of those complex

valued Lebesgue measurable functions f on [a, b] for which ‖f‖Xp
c
< ∞, where

‖f‖Xp
c
=

(

∫ b

a

|tcf(t)|p
dt

t

)1/p

.

Katugampola in [13] established the following definition and property.

Definition 2.10. Let [a, b] ⊂ R be a finite interval. The left and right sides of Katugam-
pola fractional integral of order α > 0 of f ∈ Xp

c (a, b) are defined by

ρIαa+f(x) =
ρ1−α

Γ(α)

∫ x

a

tρ−1

(xρ − tρ)
1−α f(t)dt

and

ρIαb−f(x) =
ρ1−α

Γ(α)

∫ b

x

tρ−1

(tρ − xρ)
1−α f(t)dt,

respectively, with a < x < b and ρ > 0, if the integrals exist.

Theorem 2.11. Let α > 0 and ρ > 0. Then, for x > a,

lim
ρ→1

ρIαa+f(x) = Jα
a+f(x)

and

lim
ρ→0+

ρIαa+f(x) = Hα
a+f(x).

Similar results also hold for the right-sided operators.

The purpose of this paper is to derive some inequalities of type Hermite-Hadamard for
convex stochastic processes using the Katugampola fractional integrals.

3. Main Results

Theorem 3.1. Let α > 0 and ρ > 0. Let X : [aρ, bρ] × Ω → R be a positive stochastic
process with 0 ≤ a < b and X(t, ·) ∈ Xp

c (a
ρ, bρ) . If X (t, ·) is convex, the following

inequality holds almost everywhere:

X

(

aρ + bρ

2
, ·

)

≤
Γ (α+ 1)

2ρ−α (bρ − aρ)
α

(

ρIαbρ−X (aρ, ·) + ρIαaρ+X (bρ, ·)
)

≤
X (aρ, ·) +X (bρ, ·)

2ρα
. (2)

Proof. Let t ∈ [0, 1], and u, v ∈ [a, b] defined by

uρ = tρaρ + (1 − tρ)bα and vρ = (1 − tρ)aρ + tρbρ. (3)
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Since X is a convex stochastic process,

X

(

uρ + vρ

2
, ·

)

≤
X (uρ, ·) +X (vα, ·)

2
;

using (3), it can be rewritten as

2X

(

aρ + bρ

2
, ·

)

≤ X (tρaρ + (1− tρ) bα, ·) +X ((1− tρ) aρ + tρb, ·) . (4)

Multiplying both sides of (4) by tαρ−1, (α, ρ > 0) and integrating over t ∈ [0, 1] , it is
obtained that

2

αρ
X

(

aρ + bρ

2
, ·

)

≤

∫ 1

0

tαρ−1X (tρaρ + (1− tρ) bα, ·) dt

+

∫ 1

0

tαρ−1X ((1− tρ) aρ + tρbρ, ·) dt. (5)

Now, from (3) and the Definition 2.10, it is obtained that
∫ 1

0

tαρ−1X (tρaρ + (1− tρ)bα, ·) dt =
1

(bρ − aρ)
α

∫ b

a

uρ−1

(uρ − bρ)1−αX (uρ, ·) du

=
Γ (α)

ρ1−α (bρ − aρ)
α

ρIαb−X (aρ, ·) (6)

and
∫ 1

0

tαρ−1X ((1− tρ) aρ + tρbρ, ·) dt =
1

(bρ − aρ)α

∫ b

a

vρ−1

(bρ − vρ)1−αX (vρ, ·) dv

=
Γ (α)

ρ1−α (bρ − aρ)
α

ρIαa+X (bρ, ·) . (7)

Replacing (6) and (7) in (5) , it is obtained the left side of the inequality (2)

X

(

aρ + bρ

2
, ·

)

≤
Γ (α+ 1)

2ρ−α (bρ − aρ)
α

(

ρIαbρ−X (aρ, ·) + ρIαaρ+X (bρ, ·)
)

.

In order to obtain the right side of the inequality(2), it is used the convex property of
the stochastic process X :

X (tρaρ + (1− tρ)bα, ·) ≤ tρX (aρ, ·) + (1− tρ)X (bρ, ·) ,

X ((1− tρ) aρ + tρbρ, ·) ≤ (1− tρ)X (aρ, ·) + tρX (bρ, ·) ;

adding these inequalities it is obtained

X (tρaρ + (1− tρ)bα, ·) +X ((1− tρ) aρ + tρbρ, ·) ≤ X (aρ, ·) +X (bρ, ·) . (8)

Multiplying both sides of (8) by tαρ−1, (α, ρ > 0) and integrating over t ∈ [0, 1] , it is
attained that

Γ (α)

2ρ−α (bρ − aρ)
α

(

ρIαbρ−X (aρ, ·) + ρIαaρ+X (bρ, ·)
)

≤
X (aρ, ·) +X (bρ, ·)

2ρα
.

The proof is complete. �XXX

Vol. 36, N◦ 2, 2018]
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Remark 3.2. Using the Theorem 2.11 we get the Hermite Hadamard inequality version
for the Riemann Liouville fractional integral,

X

(

a+ b

2
, ·

)

≤
Γ (α+ 1)

2 (b− a)
α

(

Jα
b−X (a, ·) + Jα

a−X (b, ·)
)

≤
X (a, ·) +X (b, ·)

2α
, (9)

almost everywhere, making coincidence with the result proved by H. Aghahi and A.
Babakhani in [1]. Letting α = 1 in (9), it is obtained the Hermite Hadamard inequality
for the ordinary Riemann integral

X

(

a+ b

2
, ·

)

≤
1

(b− a)

∫ b

a

X (t, ·) dt ≤
X (a, ·) +X (b, ·)

2
, (a.e.)

making coincidence with the result proved by Kotrys in [16].

Theorem 3.3. Let X : [aρ, bρ]×Ω → R be a square mean differentiable stochastic process
with 0 ≤ a < b. If X ′ is a square mean differentiable stochastic process, then the following
inequality holds almost everywhere:
∣

∣

∣

∣

X (aρ, ·) +X (bρ, ·)

2
−

αραΓ (α+ 1)

2 (bρ − aρ)α
(

ρIαbρ−X (aρ, ·) + ρIαaρ+X (bρ, ·)
)

∣

∣

∣

∣

≤
(bρ − aρ)2

2 (α+ 1) (α+ 2)

(

α+
1

2α

)

sup
ξ∈[aρ,bρ]

|X ′′(ξ, ·)| .

Proof. From the proof of Theorem 3.1 we get

Γ (α+ 1)

2ρ1−α (bρ − aρ)
α

(

ρIαbρ−X (aρ, ·) + ρIαaρ+X (bρ, ·)
)

=

∫ 1

0

tαρ−1X (tρaρ + (1− tρ) bα, ·) dt+

∫ 1

0

tαρ−1X ((1− tρ) aρ + tρbρ, ·) dt. (10)

Integrating by parts each of the integrals we have
∫ 1

0

tαρ−1X (tρaρ + (1− tρ) bα, ·) dt

=
tαρX (tρaρ + (1− tρ) bα, ·)

αρ

∣

∣

∣

∣

1

0

−
(aρ − bρ)

α

∫ 1

0

tαρ+ρ−1X ′ (tρaρ + (1− tρ) bα, ·) dt

=
X (aρ, ·)

αρ
−

(aρ − bρ)

α

∫ 1

0

tρ(α+1)−1X ′ (tρaρ + (1− tρ) bα, ·) dt

and
∫ 1

0

tαρ−1X ((1− tρ) aρ + tρbρ, ·) dt

=
tαρX ((1− tρ) aρ + tρbρ, ·)

αρ

∣

∣

∣

∣

1

0

−
(bρ − aρ)

α

∫ 1

0

tαρ+ρ−1X ′ ((1− tρ) aρ + tρbρ, ·) dt

=
X (bρ, ·)

αρ
−

(bρ − aρ)

α

∫ 1

0

tρ(α+1)−1X ′ ((1− tρ) aρ + tρbρ, ·) dt.
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So,

Γ (α+ 1)

2ρ1−α (bρ − aρ)α
(

ρIαbρ−X (aρ, ·) + ρIαaρ+X (bρ, ·)
)

=
X (aρ, ·) +X (bρ, ·)

αρ
−

(bρ − aρ)

α
×

(
∫ 1

0

tρ(α+1)−1 (X ′ (tρaρ + (1− tρ) bα, ·)−X ′ ((1− tρ) aρ + tρbρ, ·)) dt

)

. (11)

Applying the Mean Value Theorem for X ′ it is obtained

Γ (α+ 1)

2ρ1−α (bρ − aρ)α
(

ρIαbρ−X (aρ, ·) + ρIαaρ+X (bρ, ·)
)

=
X (aρ, ·) +X (bρ, ·)

αρ
−

(bρ − aρ)2

α

(
∫ 1

0

tρ(α+1)−1(2tρ − 1)X ′′(ξ, ·)dt

)

for some ξ ∈ [aρ, bρ].

Now, it can be written
∣

∣

∣

∣

X (aρ, ·) +X (bρ, ·)

αρ
−

Γ (α+ 1)

2ρ1−α (bρ − aρ)α
(

ρIαbρ−X (aρ, ·) + ρIαaρ+X (bρ, ·)
)

∣

∣

∣

∣

≤
(bρ − aρ)

2
|X ′′(ξ, ·)|

α

(
∫ 1

0

tρ(α+1)−1 |2tρ − 1| dt

)

=
(bρ − aρ)

2
|X ′′(ξ, ·)|

α
×

(

∫ 1/21/ρ

0

tρ(α+1)−1 (1− 2tρ) dt+

∫ 1

1/21/ρ
tρ(α+1)−1 (2tρ − 1)dt

)

≤
(bρ − aρ)

2

αρ (α+ 1) (α+ 2)

(

α+
1

2α

)

sup
ξ∈[aρ,bρ]

|X ′′(ξ, ·)| .

The proof is complete. �XXX

Remark 3.4. Using Theorem 2.11 and taking limit when ρ → 1 in Theorem 3.3, it is
obtained the version for the Riemann-Liouville fractional integral

∣

∣

∣

∣

X (aρ, ·) +X (bρ, ·)

2
−

Γ (α+ 1)

2 (b− a)
α

(

Jα
b−X (aρ, ·) + Jα

a+X (bρ, ·)
)

∣

∣

∣

∣

≤
(b− a)

2

2 (α+ 1) (α+ 2)

(

α+
1

2α

)

sup
ξ∈[a,b]

|X ′′(ξ, ·)| , (a.e.), (12)

and letting α = 1 in (12) it is obtained the version for the ordinary Riemann integral
∣

∣

∣

∣

∣

X (a, ·) +X (b, ·)

2
−

1

(b− a)

∫ b

a

X (t, ·) dt

∣

∣

∣

∣

∣

≤
(b− a)2

8
sup

ξ∈[a,b]

|X ′′(ξ, ·)| ,

almost everywhere.
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Theorem 3.5. Let α > 0 and ρ > 0. Let X : [aρ, bρ] × Ω → R be a mean square
differentiable stochastic process with 0 ≤ a < b and X(t, ·) ∈ Xp

c (a
ρ, bρ) . If |X ′ (t, ·)| is

convex, then the following inequality holds almost everywhere:

∣

∣

∣

∣

X (aρ, ·) +X (bρ, ·)

2
−

αραΓ (α+ 1)

2 (bρ − aρ)
α

(

ρIαbρ−X (aρ, ·) + ρIαaρ+X (bρ, ·)
)

∣

∣

∣

∣

≤
(bρ − aρ) (|X ′ (aρ·)|+ |X ′ (bρ·)|)

2(α+ 1)
.

Proof. Using equality (11) , the triangular inequality and the convexity of |X ′ (t, ·)| , it
is obtained that

∣

∣

∣

∣

X (aρ, ·) +X (bρ, ·)

αρ
−

Γ (α+ 1)

2ρ1−α (bρ − aρ)
α

(

ρIαbρ−X (aρ, ·) + ρIαaρ+X (bρ, ·)
)

∣

∣

∣

∣

≤
(bρ − aρ)

α

∫ 1

0

tρ(α+1)−1 |X ′ (tρaρ + (1− tρ) bα, ·)

−X ′ ((1− tρ) aρ + tρbρ, ·)| dt

≤
(bρ − aρ)

α

(
∫ 1

0

tρ(α+1)−1 |X ′ (tρaρ + (1− tρ) bα, ·)| dt

+

∫ 1

0

tρ(α+1)−1 |X ′ ((1− tρ) aρ + tρbρ, ·)| dt

)

≤
(bρ − aρ)

α

(
∫ 1

0

tρ(α+1)−1 (tρ |X ′ (aρ·)|+ (1− tρ) |X ′ (bρ·)|) dt

+

∫ 1

0

tρ(α+1)−1 ((1− tρ) |X ′ (aρ·)|+ tρ |X ′ (bρ·)|) dt

)

=
(bρ − aρ) (|X ′ (aρ·)|+ |X ′ (bρ·)|)

α

∫ 1

0

tρ(α+1)−1dt

=
(bρ − aρ) (|X ′ (aρ·)|+ |X ′ (bρ·)|)

αρ(α+ 1)
.

The proof is complete. �XXX

Remark 3.6. With the same reasoning used in Remarks 3.2 and 3.4, it is obtained the
following inequality almost everywhere, for the Riemann-Liouville fractional integral:

∣

∣

∣

∣

X (a, ·) +X (b, ·)

2
−

Γ (α+ 1)

2 (b− a)α
(

Jα
b−X (a, ·) + Jα

a+X (b, ·)
)

∣

∣

∣

∣

≤
(b− a) (|X ′ (a·)|+ |X ′ (b·)|)

2(α+ 1)
. (13)

Letting α = 1 in (13), it is obtained the inequality for the ordinary Riemann integral
∣

∣

∣

∣

∣

X (a, ·) +X (b, ·)

2
−

1

(b− a)

∫ b

a

X (t, ·) dt

∣

∣

∣

∣

∣

≤
(b− a) (|X ′ (a·)|+ |X ′ (b·)|)

4
.
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Lemma 3.7. Let X : [aρ, bρ]×Ω → R be a mean square differentiable stochastic process;
then the following equality holds:

X (aρ, ·) +X (bρ, ·)

2
−

αραΓ (α+ 1)

2 (bρ − aρ)
α

(

ρIαbρ−X (aρ, ·) + ρIαaρ+X (bρ, ·)
)

=
bρ − aρ

2

∫ 1

0

[(1− tρ)α − tρα] tρ−1X ′ (tρaρ + (1− tρ)bρ, ) dt.

Proof. First, it must be noted that

∫ 1

0

[(1− tρ)α − tρα] tρ−1X ′ (tρaρ + (1 − tρ)bρ, ) dt

=

∫ 1

0

(1− tρ)αtρ−1X ′ (tρaρ + (1− tρ)bρ, ) dt

−

∫ 1

0

tρ(α+1)−1X ′ (tρaρ + (1 − tρ)bρ, ) dt,

and using integration by parts it is obtained

∫ 1

0

(1− tρ)αtρ−1X ′ (tρaρ + (1− tρ)bρ, ) dt

=
(1− tρ)αX (tρaρ + (1− tρ)bρ, )

ρ (aρ − bρ)

∣

∣

∣

∣

1

0

+
α

aρ − bρ

∫ 1

0

(1 − tρ)αtρ−1X (tρaρ + (1 − tρ)bρ, ) dt

=
X (bρ, )

ρ (aρ − bρ)
−

αραΓ (α+ 1)

(bρ − aρ)
α

ρ

Iαbρ−X (aρ, ·) ,

and similarly,

∫ 1

0

tρ(α+1)−1X ′ (tρaρ + (1 − tρ)bρ, ) dt = −
X (aρ, )

ρ (aρ − bρ)
+

αραΓ (α+ 1)

(bρ − aρ)
α

ρ

Iαbρ−X (bρ, ·) ;

adding these last results we get the desired result.

The proof is complete. �XXX

Theorem 3.8. Let X : [aρ, bρ]×Ω → R be a mean square differentiable stochastic process
on [aρ, bρ] . If |X ′| is a convex stochastic process, then the following inequality holds
almost everywhere:

∣

∣

∣

∣

X (aρ, ·) +X (bρ, ·)

2
−

αραΓ (α+ 1)

2 (bρ − aρ)
α

(

ρIαbρ−X (aρ, ·) + ρIαaρ+X (bρ, ·)
)

∣

∣

∣

∣

≤
bρ − aρ

2ρ(α+ 1)

(

1−

(

1
2

)α

α+ 1

)

(|X ′(a, ·)|+ |X ′(b, ·)|) .
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Proof. Using Lemma 3.7 and the convexity of |X ′|, it is obtained that
∣

∣

∣

∣

X (aρ, ·) +X (bρ, ·)

2
−

αραΓ (α+ 1)

2 (bρ − aρ)α
(

ρIαbρ−X (aρ, ·) + ρIαaρ+X (bρ, ·)
)

∣

∣

∣

∣

≤
bρ − aρ

2

∫ 1

0

|(1 − tρ)α − tρα| tρ−1 |X ′ (tρaρ + (1− tρ)bρ, )| dt

≤
bρ − aρ

2

∫ 1

0

|(1 − tρ)α − tρα| tρ−1 (tρ |X ′ (aρ, ·)|+ (1− tρ) |X ′ (bρ, ·)|) dt

=
bρ − aρ

2
×

(

∫ 1/21/ρ

0

((1− tρ)α − tρα) tρ−1 (tρ |X ′ (aρ, ·)|+ (1− tρ) |X ′ (bρ, ·)|) dt

+

∫ 1

1/21/ρ
(tρα − (1− tρ)α) tρ−1 (tρ |X ′ (aρ, ·)|+ (1− tρ) |X ′ (bρ, ·)|) dt

)

=
bρ − aρ

2
×

(
∫ 1

0

(tρα − (1 − tρ)α) tρ−1 (tρ |X ′ (aρ, ·)|+ (1− tρ) |X ′ (bρ, ·)|) dt

−2

∫ 1/21/ρ

0

(tρα − (1− tρ)α) tρ−1 (tρ |X ′ (aρ, ·)|+ (1 − tρ) |X ′ (bρ, ·)|) dt

)

.

Making the corresponding substitution in the previous inequalities, we have:
∫ 1

0

(tρα − (1− tρ)α) tρ−1 (tρ |X ′ (aρ, ·)|+ (1− tρ) |X ′ (bρ, ·)|) dt

= |X ′ (aρ, ·)|

(
∫ 1

0

tραtρ−1tρdt−

∫ 1

0

(1− tρ)αtρ−1tρdt

)

− |X ′ (bρ, ·)|

(
∫ 1

0

tραtρ−1(1− tρ)dt−

∫ 1

0

tρ−1(1 − tρ)α+1dt

)

.

With the change of variable x = tρ it is obtained

∫ 1

0

(tρα − (1− tρ)α) tρ−1 (tρ |X ′ (aρ, ·)|+ (1 − tρ) |X ′ (bρ, ·)|) dt

= (|X ′ (aρ, ·)| − |X ′ (bρ, ·)| )

(

α

ρ(α+ 1)(α+ 2)

)

,

and similarly,

∫ 1/21/ρ

0

(tρα − (1− tρ)α) tρ−1 (tρ |X ′ (aρ, ·)|+ (1− tρ) |X ′ (bρ, ·)|) dt

= (|X ′ (aρ, ·)|+ |X ′ (bρ, ·)| )

(

(

1
2

)α+1

ρ(α + 1)

)

−
|X ′ (aρ, ·)|

(α+ 1)(α+ 2)
−

|X ′ (bρ, ·)|

α+ 2
.
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So,

∣

∣

∣

∣

X (aρ, ·) +X (bρ, ·)

2
−

αραΓ (α+ 1)

2 (bρ − aρ)
α

(

ρIαbρ−X (aρ, ·) + ρIαaρ+X (bρ, ·)
)

∣

∣

∣

∣

≤
bρ − aρ

2

{

(|X ′ (aρ, ·)| − |X ′ (bρ, ·)| )

(

α

ρ(α+ 1)(α+ 2)

)

− 2

[

(|X ′ (aρ, ·)|+ |X ′ (bρ, ·)| )

(

(

1
2

)α+1

ρ(α+ 1)

)

−
|X ′ (aρ, ·)|

(α+ 1)(α+ 2)
−

|X ′ (bρ, ·)|

α+ 2

]}

=
bρ − aρ

2ρ(α+ 1)

(

1−

(

1
2

)α

α+ 1

)

(|X ′(a, ·)|+ |X ′(b, ·)|) .

The proof is complete. �XXX

Remark 3.9. With the same reasoning used in Remarks 3.2, 3.4 and 3.6, it is obtained
the following inequality almost everywhere, for the Riemann-Liouville fractional integral:

∣

∣

∣

∣

X (a, ·) +X (b, ·)

2
−

Γ (α+ 1)

2 (b− a)α
(

Jα
b−X (a, ·) + Jα

a+X (b, ·)
)

∣

∣

∣

∣

≤
b− a

2

(

1−

(

1
2

)α

α+ 1

)

(|X ′(a, ·)|+ |X ′(b, ·)|) . (14)

Letting α = 1 in (14), it is obtained the following inequality, almost everywhere, for the
ordinary Riemann integral:

∣

∣

∣

∣

∣

X (a, ·) +X (b, ·)

2
−

1

(b − a)

∫ b

a

X (t, ·) dt

∣

∣

∣

∣

∣

≤
3(b− a)

8
(|X ′(a, ·)|+ |X ′(b, ·)|) .

Next theorem proposes a refinement of the Hermite-Hadamard inequality using Katugam-
pola fractional integral.

Theorem 3.10. Let α > 0 and ρ > 0. Let X : [aρ, bρ] × Ω → R be a positive stochastic
process with 0 ≤ a < b and X(t, ·) ∈ Xp

c (a
ρ, bρ) . If X (t, ·) is Jensen-convex and mean

square continuous in the interval [aρ, bρ], the following inequality holds almost everywhere:

X

(

aρ + bρ

2
, ·

)

≤ h (λ) ≤
Γ (α+ 1)

2ρ−α (vρ − uρ)α
(ρSα

1 [u, v;λ;X ] + ρSα
2 [v, u;λ;X ])

≤ H (λ) ≤
X (aρ, ·) +X (bρ, ·)

2ρα
,

where

h (λ) = λρX

(

(2− λρ)uρ + λρvρ

2
, ·

)

+ (1− λρ)X

(

(1 + λρ)uρ + (1− λρ)vρ

2
, ·

)

,
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H (λ) = λρX (uρ, ·) +X (λρvρ + (1− λρ)uρ, ·)

2ρα

+ (1− λρ)
X (λρvρ + (1− λρ)uρ, ·) +X (vρ, ·)

2ρα
,

ρSα
1 [u, v;λ;X ] = ρIαλρvρ+(1−λρ)uρ−

X (uρ, ·) + ρIαuρ+X (λρvρ + (1− λρ)uρ, ·)

and

ρSα
1 [v, u;λ;X ] = ρIαvρ−X (λρvρ + (1 − λρ)uρ, ·) + ρIαλρvρ+(1−λρ)uρ+X (vρ, ·) .

Proof. Applying (2) in the interval [uρ, λρvρ + (1− λρ)uρ], we have:

X

(

(2− λρ)uρ + λρvρ

2
, ·

)

≤
Γ (α+ 1)

2ρ−αλρ (vρ − uρ)
α×

(

ρIαλρvρ+(1−λρ)uρ−
X (uρ, ·) + ρIαuρ+X (λρvρ + (1 − λρ)uρ, ·)

)

≤
X (uρ, ·) +X (λρvρ + (1− λρ)uρ, ·)

2ρα
. (15)

Now, for the interval [λρvρ + (1− λρ)uρ, vρ] we have:

X

(

(1 + λρ)uρ + (1 − λρ)vρ

2
, ·

)

≤
Γ (α+ 1)

2ρ−α(1− λρ) (vρ − uρ)α
×

(

ρIαvρ−X (λρvρ + (1− λρ)uρ, ·) + ρIαλρvρ+(1−λρ)uρ+X (vρ, ·)
)

≤
X (λρvρ + (1− λρ)uρ, ·) +X (vρ, ·)

2ρα
. (16)

Multiplying (15) by λρ and (16) by (1− λρ), and adding these inequalities, we have

h (λ) ≤
Γ (α+ 1) (ρSα

1 [u, v;λ;X ] + ρSα
2 [v, u;λ;X ])

2ρ−α (vρ − uρ)
α ≤ H (λ) , (17)

where

h (λ) = λρX

(

(2− λρ)uρ + λρvρ

2
, ·

)

+ (1− λρ)X

(

(1 + λρ)uρ + (1− λρ)vρ

2
, ·

)

,

H (λ) = λρX (uρ, ·) +X (λρvρ + (1− λρ)uρ, ·)

2ρα

+ (1− λρ)
X (λρvρ + (1− λρ)uρ, ·) +X (vρ, ·)

2ρα
,
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ρSα
1 [u, v;λ;X ] = ρIαλρvρ+(1−λρ)uρ−

X (uρ, ·) + ρIαuρ+X (λρvρ + (1− λρ)uρ, ·)

and

ρSα
1 [v, u;λ;X ] = ρIαvρ−X (λρvρ + (1 − λρ)uρ, ·) + ρIαλρvρ+(1−λρ)uρ+X (vρ, ·) .

Using Theorem 2.5 it is seen that

X

(

a+ b

2
, ·

)

= X

(

λ
λv + (2 − λ)u

2
+ (1 − λ)

(1 + λ)v + (1− λ)u

2
, ·

)

≤ λX

(

λv + (2 − λ)u

2
, ·

)

+ (1 − λ)X

(

(1 + λ)v + (1− λ)u

2
, ·

)

≤
1

2
(X(λv + (1− λ)u, ·) + λX(u, ·) + (1 − λ)X(v, ·))

≤
X(u, ·) +X(v, ·)

2
. (18)

From (17) and (18) it is attained the desired result. The proof is complete. �XXX

4. Conclusions

In the present article, the fractional integral of Katugampola was used to find the
Hermite-Hadamard inequality for convex stochastic processes (Theorem 3.1), as well
as some other results that estimate the difference between the value of the fractional
integral and the right side of such inequality (Theorems 3.3, 3.5, 3.8), as well as a re-
finement of the aforementioned inequality (Theorem 3.10). From the results found, the
same were deduced for the particular cases of Riemann-Liouville fractional integral and
Riemann integral. The authors hope that this work will serve as a stimulus for future
research in the area.
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