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Abstract. For a compact Hausdorff space, we denote by C(K) the Banach
space of continuous functions defined in K with values in R or C. A well
known result in Banach spaces of continuous functions is the Holsztyński
theorem which establishes that if C(K) is isometric to a subspace of C(S),
then K is a continuous image of S. The aim of this paper is to give an
alternative proof of this result for extremely regular subspaces of C(K).
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Una prueba del teorema de Holsztyński

Resumen. Dado un espacio compacto Hausdorff, denotaremos por C(K) el
espacio de Banach de las funciones continuas definidas en K con valores en
R o C. Un resultado clásico en la teoría de Espacios de Banach de funcio-
nes continuas es el teorema de Holsztyński el cual establece que si C(K) es
isométrico a un subespacio de C(S), entonces K es imagen continua de un
subespacio de S. El objetivo de este artículo es dar una prueba alternativa
de este resultado para subespacios extremadamente regulares de C(K).
Palabras clave: Espacios de Banach C(K), teorema de Banach-Stone.

1. Introduction and main theorems

We will use the standard terminology and notation of Banach space theory. For unex-
plained definitions and notation we refer to [1]-[10]. As usual K stands for the field R or
C. For a compact Hausdorff space K, we denote by C(K) the Banach space of K-valued
continuous functions on K, provided with the supremum norm.

The classical Banach-Stone theorem states that the Banach space C(K) determines the
topology of K [3], [4], [5], [11]. More precisely, if T : C(K) → C(S) is an onto isometry,
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then there are a homeomorphism h : S → K and a continuous function σ : S → K with
|σ(s)| = 1 for all s ∈ S such that

Tf(s) = σ(s)f(h(s)) for all f ∈ C(K) and s ∈ S. (1)

The conclusion of the Banach-Stone theorem is too far to be valid when we consider
into isomorphisms between C(K) spaces. Thus it seems natural to ask for topological
properties which are preserved under into isomorphisms of C(K) spaces. In this direction,
Holsztyński [8] proved:

Theorem 1.1. Let K and S be compact Hausdorff spaces. If T : C(K) → C(S) is an

into isometry, then there are a closed subset ∆ of S, a continuous surjection ψ : ∆ → K
and a continuous function σ : ∆ → K with |σ(s)| = 1 for all s ∈ ∆ such that

Tf(s) = σ(s)f(ψ(s)) for all f ∈ C(K) and all s ∈ ∆.

In [2], it is established the following generalization of Theorem 1.1 for extremely regular
spaces. According to [6], a closed subspace A of C(K) is called extremely regular if for
each k ∈ K and each neighborhood U of k and each 0 < ε < 1, there exists f ∈ A
satisfying ‖f‖ = f(k) = 1 and |f(w)| < ε for all w ∈ K \ U .

Theorem 1.2. Let K and S be compact Hausdorff spaces. Let A be an extremely regular

subspace of C(K) and B a closed subspace of C(S). Suppose that T : A → B is an into

isometry. Then there exist a closed subset ∆ of S, a continuous function ψ from ∆ onto

K and a continuous function σ : ∆ → K with |σ(s)| = 1 for all s ∈ ∆ such that

Tf(s) = σ(s)f(ψ(s)) for all s ∈ ∆ and f ∈ A.

The aim of this note is to give an alternative proof of Theorem 1.2. The paper is divided
as follows: in the second section we generalize a result which is proved by Plebanek in
the setting of C(K) spaces (see [9, Theorem 3.3]). In third section, we prove Theorem
1.2.

2. Preliminaries

Following [7, p. 222], we identify dual space C(K)∗ with the space of regular countably
additive bounded measures, and we denote it by M(K). We always consider M(K)
equipped with the weak∗ topology inherited from C(K)∗. The total variation of a mea-
sure µ ∈M(K) on a Borel set E is denoted by |µ|(E), and its norm by ‖µ‖ = |µ|(K).

LetK and S be compact Hausdorff spaces. Throughout the paper A denotes an extremely
regular subspace of C0(K). Also B will be a closed subspace of C(S). If s ∈ S is fixed
and T : A→ B is an embedding, νs will denote any norm-preserving extension to C(K)
of the functional T ∗δs : A → R defined as T ∗δs(f) = Tf(s) for f ∈ A. Also let us
assume that T satisfies r‖f‖ ≤ ‖Tf‖ ≤ ‖f‖ for all f ∈ A, where r > 0. Analogously if
E = TA ⊂ B and k ∈ K is given, let µk be any norm-preserving extension to C(S) of
the functional (T−1)∗δk : E → R.

Before stating our first result, we need to establish a notation.
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Let k ∈ K be given and Vk any fundamental system of open neighborhoods of k. Consider
the set Ck = Vk × (0,∞). In Ck we define a partial order as follows: (U, t) ≺ (V, s) iff
V ⊂ U and s < t. Note that (Ck,≺) is a directed set. It is easy to see that there exists
a net (f(U,t))(U,t)∈Ck

in A satisfying

1. ‖f(U,t)‖ = f(U,t)(k) = 1;

2. |f(U,t)(w)| < t for all w ∈ K \ U.

We will write {(U, t), f(U,t)}(U,t)∈Ck
↔ {k} to indicate that the above conditions are

satisfied.

Lemma 2.1. Let A be an extremely regular subspace of C(K) and k ∈ K given. Suppose

that {(U, t), f(U,t)}(U,t)∈Ck
↔ {k}. If µ ∈M(K), then

lim
(U,t)∈Ck

∫

K

f(U,t) dµ = µ({k}).

Proof. The statement is obvious if ‖µ‖ = 0, so we assume that ‖µ‖ 6= 0. Let ε > 0 be
given. Since |µ| is regular, there isW ⊂ K open with k ∈W such that |µ|(W \{k}) < ε/2.
Let U0 ∈ Vk be such that U0 ⊂W . If (U0, ε/2‖µ‖) ≺ (V, t), we have
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≤ |µ|(V \ {k}) + t|µ|(K \ V ) < ε. �XXX

The next two results are proved in [9] for C(K) spaces. However, we noted that they
are also valid for extremely regular subspaces of C(K). So, for sake of completeness we
include a proof here.

Lemma 2.2. Let k ∈ K be fixed. If µ = µk, then ‖νs‖ ≥ r µ-almost everywhere.

Proof. Let N = {s ∈ S : ‖δs|E‖ < 1}. We show that µ(N) = 0. For 0 < h < 1, define
Nh = {s ∈ S : ‖δs|E‖ ≤ h}; then Nh is closed and N =

⋃

h<1Nh. It suffices to prove
that |µ|(Nh) = 0 for all h ∈ (0, 1). If ε > 0 is given, then there is f ∈ A with ‖Tf‖ ≤ 1
such that ‖µ‖ − ε < |µ(Tf)|. Thus,

‖µ‖ − ε < |µ(Tf)|
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∣

∣

∣

∣

∫

S

Tf dµ

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Nh

Tf dµ

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

S\Nh

Tf dµ

∣

∣

∣

∣

∣

≤ h|µ|(Nh) + |µ|(S \Nh).
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Since ‖µ‖ = |µ|(Nh) + |µ|(S \Nh), we infer that |µ|(Nh) ≤ ε/1− h. Thus, |µ|(Nh) = 0,
by the arbitrariness of ε.

Now let s ∈ S \ N ; then ‖δs|E‖ ≥ 1. For a positive number ε there exists f ∈ A
with ‖Tf‖ ≤ 1 such that |Tf(s)| > 1 − ε. From the fact ‖f‖ ≤ 1/r, we infer that
r(1 − ε) < ‖νs‖. So, the result follows when ε→ 0. �XXX

If h is a real valued function defined on a topological space X , the oscillation of h at x
on a set A is

oscx(h,A) = inf
U

sup{|h(x′)− h(x′′)| : x′, x′′ ∈ U ∩ A},

where the infimum is taken over all open neighborhoods U of x.

Lemma 2.3. Let k ∈ K and ε > 0 be fixed. Consider the measure µ = µk. Suppose that

there is a compact subset F of S such that

1. ‖νs‖ ≥ r for all s ∈ F ;

2. oscs(‖νs‖, F ) ≤ ε for all s ∈ F ;

3. |µ|(S \ F ) < ε.

Then, there is s ∈ F such that |νs({k})| ≥ r − 2ε.

Proof. Let δ > 0 be given and let U ⊂ K be open with k ∈ K. Since A is extremely
regular, there exists fU ∈ A such that ‖fU‖ = fU (k) = 1 and |fU (w)| < δ for all
w ∈ K \ U . We will show that there is sU ∈ F satisfying |TfU(sU )| > r − ε. Indeed, if
|TfU (s)| < r − ε for all s ∈ F , then

1 = fU (k) = µ(TfU )

=

∫

S

TfU dµ =

∫

F

TfU dµ+

∫

S\F

TfU dµ

< (r − ε)|µ|(F ) + ε

≤
r − ε

r
+ ε ≤ 1,

which is absurd. Now if sU ∈ F satisfies |TfU(sU )| > r − ε, then
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∣

∣

∣

∣

≤ |νsU |(U) + δ,

since ‖νsU ‖ = ‖T ∗δsU ‖ ≤ 1. So if δ → 0, then r− ε ≤ |νsU |(U). Let Vk be a fundamental
system of open neighborhoods of k and consider the net (sU )U∈Vk

in F . Since F is
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compact, there is a subnet (sU )U∈W converging to s ∈ F. By (2), so we may assume that
‖νsU ‖ ≤ ‖νs‖+ ε for all U ∈ W .

Now, if U ⊂ K is open with k ∈ U, then we have |νs|(U) ≥ r − 2ε. Indeed, by Urysohn
Lemma [7, Proposition 4.32] there exists g : K → [0, 1] continuous such that g = 1 on an
open set V containing k and g = 0 outside U . Thus, if W ∈ W satisfies W ⊂ V , then
|vsW |(g) ≥ |vsW |(W ) ≥ r − ε. Whence,

|νsW |(1− g) ≤ |νsW |(K)− (r − ε) ≤ |νs|(K)− r + 2ε.

Since νsW → νs in the weak∗ topology, by [9, Lemma 2.1] and the above inequality we
have

|νs|(1− g) ≤ |νs|(K)− r + 2ε.

Therefore, |νs|(U) ≥ |νs|(g) ≥ r − 2ε. Regularness of νs implies |νs({k})| ≥ r − 2ε, and
the proof is complete. �XXX

The proof of the next result follows as in [9, Theorem 3.3] by using Lemmas 2.2 and 2.3.

Theorem 2.4. Let K and S be compact Hausdorff spaces. Suppose that T : A→ B is an

embedding. For each k ∈ K we have

sup{|T ∗δs({k})| : s ∈ S} ≥
1

‖T ‖‖T−1‖
.

3. Proof of Theorem 1.2

Since T is an isometry we have ‖T ‖ = ‖T−1‖ = 1. For k ∈ K we set

∆k = {s ∈ S : |T ∗δs({k})| = 1}.

By Theorem 2.4 we have ∆k 6= ∅ for each k ∈ K.

Claim 3.1. If k1, k2 ∈ K and k1 6= k2, then ∆k1
∩∆k2

= ∅.

If not, let s ∈ S be such that s ∈ ∆k1
∩∆k2

. Then

|T ∗δs({k1})| = 1 and |T ∗δs({k2})| = 1.

By taking a, b ∈ K with aT ∗δs({k1}) = 1 and bT ∗δs({k2}) = 1, we infer from definition
of variation that

1 ≥ ‖T ∗δs‖ ≥ |T ∗δs|({k1, k2})

≥ |aT ∗δs({k1}) + bT ∗δs({k2})| = 2,

which is absurd. This proves the claim.

Claim 3.2. Let k ∈ K be given. If s ∈ ∆k, then there is as ∈ K with |as| = 1 such that
Tf(s) = asf(k) for all f ∈ A.
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Indeed, if s ∈ ∆k, then as = T ∗δs({k}) ∈ K and |as| = 1. On the other hand, T ∗δs =
asδk + µ, where µ ∈M(K) satisfies µ({k}) = 0. So, it follows that

1 ≥ ‖T ∗δs‖ = |as|+ ‖µ‖

= 1 + ‖µ‖.

So, ‖µ‖ = 0, which means that µ = 0. Hence T ∗δs = asδk, that is, Tf(s) = asf(k) for
all f ∈ A, as claimed.

Set ∆ =
⋃

k∈K ∆k, and let ψ : ∆ → K and σ : ∆ → K be defined as ψ(s) = k and
σ(s) = as, respectively, iff s ∈ ∆k, where as is determined as in Claim 3.2. Note that ψ
is well-defined by Claim 3.1. The surjectivity of ψ is consequence from the fact ∆k 6= ∅
for each k ∈ K. Clearly, |σ(s)| = 1 for all s ∈ S. Also, by Claim 3.2 we have

Tf(s) = σ(s)f(ψ(s)) for all f ∈ A and s ∈ ∆. (2)

Claim 3.3. ψ : ∆ → K and σ : ∆ → K are continuous.

Let s ∈ ∆ be given and (sα) a net in ∆ such that sα → s. Suppose that ψ(sα) = kα 6→
ψ(s) = k. Thus, there is a compact neighborhood V ⊂ K of k such that for all α, there
is α′ ≥ α with kα′ 6∈ V . Since A is extremely regular, there exists f ∈ A such that
‖f‖ = f(k) = 1 and |f(w)| < 1/2 for all w ∈ K \ V . Note that |Tf(s)| = |f(ψ(s))| =
|f(k)| = 1. By continuity of Tf , there is α0 such that |Tf(sα)| > 1/2 for all α ≥ α0. By
taking α′ ≥ α0 with kα′ 6∈ V , we have 1/2 > |f(kα′)| = |f(ψ(sα′))| = |Tf(sα′)| > 1/2,
which is impossible.

Now we prove continuity of σ. Let s ∈ ∆ be given and ψ(s) = k. Take f ∈ A such
that ‖f‖ = f(k) = 1. By Equation (2) we have σ(s) = Tf(s), and continuity follows
immediately.

Claim 3.4. ∆ is closed.

Let (sα) be a net in ∆ and suppose that sα → s for some s ∈ S. Write ψ(sα) = kα for
all α. By compactness of K, we may assume that kα → k for some k ∈ K. By Claim
3.2 we have |Tf(sα)| = |f(ψ(sα))| = |f(kα)| for all f ∈ A. Thus, |Tf(s)| = |f(k)| for all
f ∈ A. Let (f(U,t))(U,t)∈Ck

be a net in A such that {(U, t), f(U,t)}(U,t)∈Ck
↔ {k}. Then

|Tf(U,t)(s)| = |f(U,t)(k)| = 1 for all (U, t) ∈ Ck. Once again by Lemma 2.1, we have

lim
(U,t)∈Ck

∫

K

f(U,t) dT
∗δs = T ∗δs({k}).

So, |T ∗δs({k})| = 1, that is, s ∈ ∆.
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