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Boundedness and Stability Properties‘qf
Some Integrodifferential Systems
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Abstré.ct

In this paper we study the behavior of solutions of a Volterra integrodif-
ferential system of the form (1). :

1. Introduction

We consider a system of Volterra integrodifferential equations:

' (t) =A(t)_:t(t)+/()th(t—s)z(s)ds+z(t)H(t,x(t),a(t)), (1)

z (0) = =z, ' (2)
o(t) = f(t)+ /0 k(t,s,z(s))ds,

where 0 < ¢ < 00, A(t) and B (t) are n x n matices, x, o, f,k, and H are
n—vector functions. The system will be studied as a perturbation of the linear
system: '

< t
V=400~ [ B - e)u(s)ds, 3)
v =y |

Here y is n—vector. The study of system (1) (2) is motxved by recent studJes
‘and applications (see (7] an: their references).

*1.S.P.H., Matemiticas, Rpto P.D. Coello, Holguin 81000, CUBA.




10

JUAN E. NAPOLES VALDES & JOSE R. VELAZQUEZ CODINA,

We know the solutions of (1) exist on {0, 00), and are continmuous by converting
(1)-(2) to an integral system of the form: ‘ ' S

:z:(t)=F(t)+/0tE(t—s).1:(s)ds,

SR W I T T B

wrhere Eel AT . PR STV FE S
per i, YO F (t) =g # /(; z(s)H (s,z(s),0(8))dsy . .
and

. . t }
E(t-s) =A(s)+/ B (u —'s) du,
defining Picard’s successive approximations and proving uniform convergence
(see [1]). :
Boundedness of solution of (1) is the key problem. A solution z (t) of (1) satis-

fying the initial condition (2) may be expressed by the variation of parameters
formula as:

x(t)=R(t)mo+/:R(t—s)m(s)H(s,x(s),a'(s‘)i)ds,‘ t>0,  (4)

where R (t — s) is an n x n matrix which is the unique solution of equation:

. — 8) - t
U9 ~ ApRr@e-9+ [ Ba-RE-ww,

R(0) = I,

where I is theidentity matrix (see Grossman and Miller [4] for details).

Let R™ depnote real n—dimensional Euclidian space ‘of column vectors with
norm |- |, J denotes the set of all ¢ such that 0 <t < oo. For p in the interval
1 <'p < 400, LP? is the usual Lebesgue space of measurable functions f with
norm: R 14 A : ’ :

‘Jﬂpé(ﬂéuanafﬁé+&1

" LLP is the set of all functions wich are 1ocally LPinJ. Let C [X,Y] denote the

space of continuous functions from X to Y, where X and Y are convenient

.spaces.. We shall assume that H € C[J x R" x R*R", f € C[J,R"] and

k € C[J x J x R*,R"). Many stability results jn, integro-differential systemms
of the type: B "

Har

ml(t)=A(t)m(t)+/tB(t,s)a:(s)ds+f(t), (5)
0
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have been obtain by constructing Liapunov’s functionals. Such functionals
for (5) require that A(t) be negative, however in this paper we present our
results without this condition. It was investigated in [2] relations between
stability properties of solutions of (5) under various, assumptions on A, B and
the dimension n (f = 0), furthermore, asymptotic stablhty, uniform asymp-
totic stability and boundedness of all solutions of some perturbed stability. and
boundedness of all solutions fo some perturbed form of (5) are also presented.
In [1] Burton considered (5) with A constant and:B = B (t —:s)..and showed
that the theory of existence, uniqueness, dimensionality of solutions space,
and the variation fo parameters formula are virtually mdlstmgmshable from
the corresponding elementary theory of ordinary differential equations.

In [5) Mauhfoud considered (5) with f = 0 and studied the stability of solutions
of (5) via the construction fo Liapunov’s functionals for (5).

This approach is similar to the one used by Burton and Mahfoud in (3], but
they wrote (5) in a general form, using a method of decomposition.

Mahfoud in [6] gave sufficient conditions to insure that (5) has bounded so-
lutions, the method used in new and the main result unifies, improves, and
extends earlier results. ’

Our results here are more general and apply to (1) whether A is stable, iden-
tically zero or completely unstable.

The system (1)-(2) has been considered in [7] under the same assumption, but

the techniques used here are quite different. In partxcular our results contam
those in [7]. ‘

2. Propertiesv of solutions

The following lemma play a central role in this paper.

Lemma 1. Let z (t),a (t) and b (t) continuous and no-negative real functions
on J. If ¢(t) is a continuous and posmve funct:on, defined on J, for wich the
inequality: .

(1=7)e t)</ b(s)z (s)ds, t€J, y€[0,1)NR, (6)
holds. Then ”

a(t)e(t) )
z(t) < - : 1/2° (7)
(1=1) (‘1‘— §) + [(1 -v)? (%)2 - a[:g(s)b(s)ds]

11
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where 0 < t < 400,

. DL o 2y -
.t1=max{t€.]:/(;a(s)b(s ds<(—L—-4—7¥—-}

with0<p<2,a>0.

Proof. Since c(t) is positive and non decreasing then it follows fro.r"n.(ﬁ.)'tha_t:

z(t) EIONRIOEIOP <z h(s)a(s)

“" NSt h e “Sewh i o Y
Let - - b(s)z ( ) - : .
I = P 0= - ®
then we have; . ‘ b(2) (t) _
Multiplying (8) by b (t) we obtain: ' ;
PN P OO ESON G IOE: (s) -
(1=1) c(t) < ‘ / c(s) : (11)

Toprove (7), notice thé;.t from (9), (10) and (11) we deduce that 1-7) p2 (t) <

2z (t) 2/ (t); 0 < p < 2, hence |
(-9 () Saa @O+ [2 0] - @)

Integrating (12) from 0 to ¢ we have:

Cih e ¢ - L e
?z(t)quo.a(s)b(s)ds-}-‘zz(t).u o m

‘This last inéqtialiéy‘ ‘can be written as (z — z1) (z — z2) > 0, where:

vz

_ 2
z12(t) ='g‘_21)-£ + [(1 — )2 (_g_) o Ata (s)b(s) ds] .

Thus,

: _ . i g 12
R [(1-7)2 (g)s—a'/ota(s)'b(s)ds] |
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Using (8) we obtain:

2(t) o
@ =

z (t)

ol (4

(- 7) a(t); + 2

and thus:

'(,.(1—7)?c(—t)<

. ' 2 . 1/2
< a(t)+:((:)) [('1 27)P_[(1—,7)2(_I21) _au/:a(s)b(s)ds] },

yielding the desired inequality. &

Remark 1. when v = 0, from condition (6) we obtain the inéquality (33),
Theorem 4 of [8], on the other, our result is obtained under milder conditions.

Remark 2. Ify=0,P =2 and a = 2 we obtain the mequahty (33), Theorem
4 of [8].

Remark 3. The value

Loy

z(t) = 1} [1—2/(:a(é)b(s)d3]l/_2«..

-given in (36), of [8] was not admxsszb]e since this value of z (t) will give us a
lower bound for z (t); however, we can consider

_ 2 " L1172
z(t) = (1_21‘)‘5 +;[(1 *7)2 ('121) —a/O a(s)b(s)ds]v

when 0 <'p < 1, because (1 — ~) — (1 — 7‘)%’ >(1-9) g, and then:

(1-7) (1 _ -';i) > [(1 — ) (52’-)2 - a[)ta(s)b(s)'ds} 1/2..

IS DR
In this case we obtain:

x(t); | T a@)e) . -
(1-(1-5)+ [(1_«,')2 (%,)2_0/0 a(s)b(s)ds]

13
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Now, we give some simple criteria on the boundedness of solutions of (1)-2.

Theorem 1. Lety (t) be a solution of (3) such that the corresponding solution
z (t) of (1)~(2) is a continuous function. In addition we assume that the
conditions:

|R(t—s)H (s, (s),0(s))| < b(s), (1)
lz ()] > (1—7)c(t), (16)
oIS FEEd <K a>0 KRS, a7
b 22
/ a(s)b(s)ds=M < Ll___'y_)_ﬁ, (18)
0 4o .

are fulfilled, and a(t),b(t),c(t) are the same of Lemma 1, then z (t) is
bounded on 0 < t < t3.< 400, where: A o

)

— P
(—1———-22——}, 0<p<2;a>0.

t1 = te J: 3)b ds <
1. max{ [ato)b(e)as < S0

Proof. Since

t
z(t):y(t)+/0 R(t—s)z(s)H (s, (38),0(s))ds,

then by (15), (16) and‘(v17) we obtain:

aaf)e(®) , Iz (0 .
o)< el EOL Fowp@ia  a9)

From Lemma 1:

I (8)] < a(t)c (t)2 t 7
a-m(- g) + [(1 — )2 (,1}) - a/o a(s)b(s) ds] _‘

now, by (17) and (18), we conclude that z (t) is bounded. §
Corollary 1. If in the Theorem 1, we put:
|[R(t —s)H (s,z (8),0 (s))] < b(s)exp (Bs), .ﬁ >0, | (20)

< H B exp -0, ey
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and in addition, we suppose the condition:
a(t)e(t)< k1, k1eRy ) (22)

then
z(t) 00 ast—oo. Com et L (283)

Proof. . As : ‘

; _
JOEMORY N ICPEOEICIORIOTS
using (20) and (22) we obtain:

|z ()] exp (Bt) <
a(t)c(t) -
= 20-9"
t >
+(—1—‘_“5;§-;—)l—(5exp 8t) /0 b(s)1z (s)] exp (Bs) . |
Let z1 (t) = z (t)exp (8t). From Theorem 1 we see that |z; (t)] < K, from
which (23) follows. The Theorem is proved. i '

Remaik: 4. Notice the advantage of condition (20) over (15).. .~ =

Theorem 2. Let y (t) be a solution of (3) and =z (t) as in the above theorem.
If the following conditions: :

 PBlan. e

£ () H (5,5 (3),0 (D] < ¢ () [l2 0] + ' 0], (25)
b(t) |zol + |z (t) H (5,2 (s),0 (s))] S a(t), (26)
- /0 * [ai(s) 5 b (s) E (s,r, \)] dAds < 00, @27)

;vyhere . I PR

Bl = [ e ([0 (O + B () exp (A ) - 1 ar)ax.
B(t) = /()tc (s) D (s) exp-(ﬁ-t:[b:(/\) +c(A)+b(A)c(A)] cb\) ds ;

and
t

D@ =zo+a(®+ [ale)ds, .
. A L

hold. . :
Then from boundeduess of i {L) we obtain the boundedness of z (t).
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Proof. Since P
t
z(t) = R(t):l:o+j R(t—s)x(s)H (s,z(s),o(s))ds,
0

then it follows from here:
OR tOR

' (t) = zog— + A —z (8)H (s,z(s),0(s))ds +z(t)H (t,z(t),0(t)).

Thus, in view of (24)-(26) we obtain:

o' (8)] < a(t)+b(t)/0 c(s) [|z ()| + |’ (s)]] ds
Now, from Theorem 1 of [8] we have
l" ()] < a(t) +b(t) E (s,r, 7).

Integration of both sides from 0 to t yields:

201 [ l0(6) +b() B (o7, )] de +]aal,

then, it follows that (27) implies that |z (t)] < k, k € R}, i.e., z (¢) is bounded.

The proof i is now complete ']

Corollary 2. If the condition:
3M > 1:8lz (1) < (M -1) |z’ (t)],
b(t)

S| < iew oo, s>,

lz () H (t,z(t),0 (t))l <ec(t)[z(t) + ' (t) + Bz ()],

b (6) ool + |z () H (2 (6), 0 () exp (8t) < 22,

and (27) hold. Then z(t) — 0'as t — oo.
Proof. From (29), (30) and (31) we obtajn:-

J:v’ (t)l <
a(t)
- M

b(t)

exp (—pAt)

(28)

(29)
(30)

(31)

(32)

+T/I— exp (—Bt) /Otc (s) [|l= (t)| exp (Bs) + |’ (s_)“+ Bz (s)] exp (ﬂs)] ds
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but this is:equivalent to:

|2’ (t)] exp (Bt) <
a t )
< 28,20 e @)iem (30) + fir (o) exp (50)1 ] as
From (28) we have:

Mz (t) exp(Bt) 2 [l (®)]+8 Iw.(t)l]'exp (8t) -
> |2’ (t)exp (Bt) + Bz (t) exp (Bt)| (33)
= |=e@exp (8e).
Therefore we transforms (33)in: . . '
|iz (¢) exp (81)] | < .
< a(t)+5(2) / {12 (s)lexp (85) + l[z (s) exp (Bs)] |} ds.
From this and the notation z; (t) = z (¢ )exp (Bt) it follows that
lz3 (¢)] < a(t)+b (t) /otc (s) [lz1 (8)] + |27 (s)]] ds. (34)

Thus - v
. |y (t)| < a(t)+b(t) E (s,7, 7). , (35)
After integrating both sides from 0 to ¢ by (33) we deduce

[ 3150 exp ey as / = ) exp ) lds
- > l/o [z (s) exp (Bs)] ds|

IV

and hence .
M [ |a' () exp (8s) ds > Iz (6 exp (61)  wol. (36)
The integration of (36) between 0 and ¢, (33) and (36) yields:
Iz (£) exp (Bt) — 20| < M /0 “[6(5) + b () E (5, \)] ds.
Therefore:
2 ) exp (61) < M [ a(s) + b(s) B (r,, ] ds + o]

Hence |z (t)| exp (Bt) < Mk + |zg|, for some k, and we conclude that |z (t)] <
[Mk + |zo|)exp (=Bt) — 0 ast — oco. §

17
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Remark 5. Notice that in Theorem 2 and your corollary, it is not necessary
the monotony of c (t).

Now, may be easily obtained the following result:

Corollary 3. Under conditions of Corollary 1 or 2, the zero solution of (1)-(2)
is asymptotically stable, ..

(1)
2]
3]
[4]
[5]
(6]
(7]
(8]
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