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Vol. 19, No 1, p. 1–12, enero-junio de 2001

Counter-rotating relativistic static thin

disks

Omar A. Espitia∗ Guillermo A. Gonzlez†

Abstract

A detailed study of the Counter-Rotating Model (CRM) for generic fi-
nite static axially symmetric thin disks with nonzero radial pressure is
presented. We find a general constraint over the counter-rotating tan-
gential velocities needed to cast the surface energy-momentum tensor of
the disk as the superposition of two counter-rotating perfect fluids. We
also found expressions for the energy density and pressure of the counter-
rotating fluids. Then we shown that, in general, it is not possible to take
the two counter-rotating fluids as circulating along geodesics neither take
the two counter-rotating tangential velocities as equal and opposite. An
specific example is studied where we obtain some CRM with well defined
counter-rotating tangential velocities that are agree with the strong en-
ergy condition, but there are regions of the disk with negative energy
density, in violation of the weak energy condition.

1 Introduction

The study of axially symmetric solutions of Einstein field equations corre-
sponding to disklike configurations of matter has a long history. These were
first studied by Bonnor and Sackfield [1], obtaining pressureless static disks,
and by Morgan and Morgan, obtaining static disks with and without radial
pressure [2, 3]. In connection with gravitational collapse, disks were first stud-
ied by Chamorro, Gregory and Stewart [4]. In the last years, disks models
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with radial tension [5], magnetic fields [6] and magnetic and electric fields [7]
have been also studied. Several classes of exact solutions of the Einstein field
equations corresponding to static and stationary thin disks have been obtained
by different authors [8 – 18], with or without radial pressure.
In the case of static disks without radial pressure, there are two common
interpretations. The stability of these models can be explained by assuming
either the existence of hoop stresses or that the particles on the disk plane
move under the action of their own gravitational field in such a way that as
many particles move clockwise as counterclockwise. This last interpretation,
the “Counter-Rotating Model” (CRM), is frequently made since it can be
invoked to mimic true rotational effects. Even though this interpretation can
be seen as a device, there are observational evidence of disks made of streams
of rotating and counter-rotating matter [19, 20].
Usually has been considered that the CRM can be applied only when we do
not have radial pressure and the azimuthal stress is positive (pressure). These
conditions, however, are very restrictive and, in many cases, we have disks
models that only agree with them in a partial region. Thus, the CRM will
be valid only as a partial interpretation of the corresponding disks. Another,
common, assumption is to take the CRM as representing two fluids that circu-
late in opposite directions with the same tangential velocity. As we will show
in this paper, this is not the case and, in general, the two fluids circulate with
different velocities. Furthermore, in some cases may not be possible to obtain
a CRM if the two tangential velocities are taken as equal and opposite. Also,
commonly is assumed that the two counter-rotating fluids must be taken as
circulating along geodesics. We also will show that this is not necessary and
that only can be made if the radial pressure is constant.
The aim of this paper is a detailed study of the CRM for generic finite static
axially symmetric thin disks with nonzero radial pressure. In section 2 we
present a summary of the procedure to obtain these thin disks models and
obtain the surface energy-momentum tensor of the disk. In the next section,
section 3, we consider the CRM for the disk. We find a general constraint over
the counter-rotating tangential velocities needed to cast the surface energy-
momentum tensor of the disk as the superposition of two counter-rotating
perfect fluids. We also found expressions for the energy density and pres-
sure of the counter-rotating fluids. Then we shown that, in general, there
is not possible to take the two counter-rotating tangential velocities as equal
and opposite neither take the two counter-rotating fluids as circulating along
geodesics. In section 4, we consider an specific example where we obtain some
CRM with well defined counter-rotating tangential velocities. The CRM ob-
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tained are agree with the strong energy condition, but there are regions of the
disks with negative energy density, in violation of the weak energy condition.
Finally, in section 5, we summarize our main results.

2 Relativistic Static Thin Disks

In this section we present, following closely reference [5], a summary of the
procedure to obtain finite static axially symmetric thin disks with nonzero
radial pressure. The metric can be written as the line element,

ds2 = e−2Φ[R2dϕ2 + e2Λ(dr2 + dz2)] − e2Φdt2 , (2.1)

where Φ, Λ and R are functions of r and z only. The Einstein vacuum equa-
tions for this metric are equivalent to the system

R,rr + R,zz = 0 , (2.2a)

(RΦ,r),r + (RΦ,z),z = 0 , (2.2b)

R,zΛ,r +R,rΛ,z − 2RΦ,rΦ,z −R,rz = 0 , (2.2c)

R,rΛ,r −R,zΛ,z −R(Φ,r
2 − Φ,z

2) +R,zz = 0 , (2.2d)

where we assume the existence of the second derivatives of the functions Φ, Λ
and R.
A general solution of the above system can be obtained by the following pro-
cedure. Let ν = r + iz and F(ν) any analytical function of ν. Then we
take

R(r, z) = Re F(ν) , (2.3a)

Z(r, z) = Im F(ν) , (2.3b)

Φ(r, z) = Ψ(R,Z) , (2.3c)

Λ(r, z) = Π(R,Z) + ln |F ′(ν)| , (2.3d)
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where Ψ(R,Z) and Π(R,Z) are solutions of the Weyl equations [21, 22]

(RΨ,R),R + (RΨ,Z),Z = 0 , (2.4a)

Π,R = R(Ψ,R2 −Ψ,Z2) , (2.4b)

Π,Z = 2RΨ,RΨ,Z . (2.4c)

It is easy to see that the condition of integrability of the system (2.4b) – (2.4c)
is guaranteed by the equation (2.4a). Also we can see that this equation
is equivalent with the Laplace equation in flat three-dimensional space for
an axially symmetric function and so Ψ can be taken as a solution for an
appropriated Newtonian source with axial symmetry. Once a solution Ψ is
known, Π is computed from (2.4b) – (2.4c) and so we obtain, from (2.3a) -
(2.3d), a solution of the field equations (2.2a) - (2.2d).
Now if we assume that R, Φ and Λ are symmetrical functions of z and that
the first derivatives of the metric tensor are not continuous on the plane z = 0,
with discontinuity functions

bab = gab,z|z=0+
− gab,z|z=0− = 2 gab,z|z=0+

,

the Einstein equations yield an energy-momentum tensor T b
a = Qb

a δ(z),
where δ(z) is the usual Dirac function with support on the disk and

Qa
b =

1
2
{bazδz

b − bzzδa
b + gazbz

b − gzzba
b + bc

c(g
zzδa

b − gazδz
b )}

is the distributional energy-momentum tensor. The “true” surface energy-
momentum tensor (SEMT) of the disk, Sb

a, can be obtained through the rela-
tion

Sb
a =

∫
T b

a dsn = eΛ−Φ Qb
a , (2.5)

where dsn =
√

gzz dz is the “physical measure” of length in the normal to the
disk direction. For the metric (2.1) we obtain

S0
0 = 2eΦ−Λ

{
Λ,z − 2Φ,z +

R,z
R

}
, (2.6a)

S1
1 = 2eΦ−ΛΛ,z , (2.6b)

S2
2 = 2eΦ−Λ

{R,z
R

}
, (2.6c)
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where all the quantities are evaluated at z = 0+.
We can write the metric and the SEMT in the canonical forms

gab = −VaVb + WaWb + XaXb + YaYb , (2.7a)

Sab = σVaVb + pϕWaWb + prXaXb , (2.7b)

with an orthonormal tetrad eâ
b = {V b,W b, Xb, Y b}, where

V a = e−Φ (1, 0, 0, 0) , (2.8a)

W a =
eΦ

R (0, 1, 0, 0) , (2.8b)

Xa = eΦ−Λ(0, 0, 1, 0) , (2.8c)

Y a = eΦ−Λ(0, 0, 1, 0) . (2.8d)

The energy density, the azimuthal pressure, and the radial pressure are, re-
spectively,

σ = −S0
0 , pϕ = S1

1 , pr = S2
2 , (2.9)

and
% = σ + pϕ + pr (2.10)

is the effective Newtonian density.

3 The Counter-Rotating Model

Now we consider that the SEMT Sab can be written as the superposition of
two counter-rotating perfect fluids that circulate in opposite directions; that
is, based on the two-perfect-fluid model of anisotropic fluids [23], we assume
that Sab can be cast as

Sab = Sab
+ + Sab

− , (3.1)

where Sab
+ and Sab− are, respectively, the SEMT of the prograd and retrograd

counter-rotating fluids.
Let be Ua± = (U0±, U1±, 0, 0) the velocity vectors of the two counter-rotating
fluids. In order to do the decomposition (3.1) we project the velocity vectors
onto the tetrad eâ

b, using the relations [24]

U â
± = eâ

bU
b
± , Ua

± = U ĉ
±eĉ

a. (3.2)
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With the tetrad (2.8) we can write

Ua
± =

V a + U±W a

√
1−U2±

, (3.3)

and thus

V a =

√
1−U2−U+Ua− −

√
1−U2

+U−Ua
+

U+ −U−
, (3.4a)

W a =

√
1−U2

+Ua
+ −

√
1−U2−Ua−

U+ −U−
, (3.4b)

where U± = U 1̂±/U 0̂± are the tangential velocities of the fluids with respect to
the tetrad.
In terms of the metric hab = gab − YaYb of the hypersurface z = 0, we can
write the SEMT as

Sab = (σ + pr)V aV b + (pϕ − pr)W aW b + prh
ab, (3.5)

and so, using (3.4), we obtain

Sab =
f(U−, U−)(1−U2

+) Ua
+U b

+

(U+ −U−)2

+
f(U+, U+)(1−U2−) Ua−U b−

(U+ −U−)2

− f(U+, U−)(1−U2
+)

1
2 (1−U2−)

1
2 (Ua

+U b− + Ua−U b
+)

(U+ −U−)2

+ prh
ab,

where
f(U1,U2) = (σ + pr)U1U2 + pϕ − pr . (3.6)

Thus, in order to cast the SEMT in the form (3.1), the mixed term must be
absent and so the counter-rotating tangential velocities must be related by

f(U+, U−) = 0 , (3.7)
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where we assume that |U±| 6= 1.
Assuming a given choice for the counter-rotating velocities in agree with the
above relation, we can write the SEMT as (3.1) with

Sab
± = (σ± + p±) Ua

±U b
± + p± hab, (3.8)

where

σ+ + p+ =
[

1−U2
+

U− −U+

]
{(σ + pr)U−} , (3.9a)

σ− + p− =
[

1−U2−
U+ −U−

]
{(σ + pr)U+} , (3.9b)

σ+ + σ− = σ + pr − pϕ, (3.9c)

p+ + p− = pr. (3.9d)

Note that the counter-rotating energy densities σ± and pressures p± are not
uniquely defined by the above relations, also for definite values of U±.
Now we analyze the possibility of a complete determination of the vectors Ua±.
As we can see, the constraint (3.7) do not determines U± uniquely, and so
there is a freedom in the choice of Ua±. The simplest, common, possibility is
to take the two counter-rotating tangential velocities as equal and opposite;
that is,

U± = ± U , (3.10)

so that (3.7) is equivalent to

U2 =
[
pϕ − pr

σ + pr

]
. (3.11)

This choice, commonly considered, leads to a complete determination of the
velocity vectors Ua±; however, this can be made only when the above expression
is positive definite. If it is not the case, we will have a CRM valid only in a
portion of the disk.
Another possibility, also commonly assumed, is to take the two counter-rotating
fluids as circulating along geodesics. Let be ω± = U1±/U0± the angular veloci-
ties obtained from the geodesic equation for a test particle,

g11,rω
2 + g00,r = 0, (3.12)
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so that
ω± = ± ω , ω2 = − g00,r

g11,r
. (3.13)

As the spacetime is static, the two geodesic fluids circulate with equal and
opposite velocities and so this is a particular case of the above considered.
In order to see if the geodesic velocities agree with (3.7), we need to compute
f(U+, U−). In terms of ω± we get

U± = −
[
W1

V0

]
ω± , (3.14)

and so, using (2.7a) and (2.7b), we can write

f(U+, U−) =
A + (σ + pr − pϕ)B

g11,rV0
2 , (3.15)

where

A = g11,rS00 + g00,rS11,

B = g00g11,r + g00,rg11.

Using the Einstein equations (2.2a) - (2.2d) and the expressions (2.6a) - (2.6c)
for the SEMT we can show that

f(U+, U−) =
[ R
R,r −RΦ,r

]
dpr

dr
; (3.16)

that is, the counter-rotating fluids circulate along geodesics only if the radial
pressure is constant. In the general case, however, f(U+, U−) 6= 0 for fluids
circulating along geodesics and so it is not possible to obtain a counter-rotating
model with them.
As we can see of the above considerations, for disks built from generic static
axially symmetric metrics, the counter-rotating velocities are not completely
determined by the constraint (3.7). Thus, the CRM is in general undetermined
since the energy density and isotropic pressure can not be explicitly written
without a knowledge of the counter-rotating tangential velocities.

4 A Family of Disks with Some Stable CRM

We will now consider a simple specific example where we can obtain some
CRM with well defined counter-rotating velocities. In order to obtain finite
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static disks with nonzero radial pressure we consider, following reference [5],
a solution of (2.2a) - (2.2d) obtained by taking

F(ν) = ν + α
√

ν2 − 1 , (4.1)

where α ≥ 0, so representing a thin disk located at z = 0, 0 ≤ r ≤ 1. Now we
take a simple solution of Weyl equations (2.4a) - (2.4c) given by [25]

Ψ(R,Z) =
µ

2k
ln

[
R+ + R− − 2k

R+ + R− + 2k

]
, (4.2a)

Π(R,Z) =
µ2

2k2
ln

[
(R+ + R−)2 − 4k2

4 R+ R−

]
, (4.2b)

where µ > 0, k =
√

α2 − 1 and R2± = R2 + (Z ± k)2.
From the above expressions, and using (2.6a) - (2.6c), we can compute the
energy density and azimuthal and radial pressures of the disks. We obtain

σ = pr

[
2µ− α

α
− 1 + µ2r2

1 + k2r2

]
, (4.3a)

pϕ = pr

[
1 + µ2r2

1 + k2r2

]
, (4.3b)

pr = p0

[
1 + k2r2

](µ2−k2)/2k2

, (4.3c)

where p0 = 2α(α− k)µ/k ≥ 0 and 0 ≤ r ≤ 1.
We consider, in the first instance, two cases where we obtain simple expressions
for the SEMT. Let be α = 0, so that pr = pϕ = 0, and

σ =
4µeµπ/2

(1− r2)(µ2+1)/2
. (4.4)

We have a disk of dust with positive energy density, so in agree with all the
energy conditions [26]. On the other hand, the energy density is singular
at the edge of the disk. We can also see that the constraint (3.7) leads to
U± = 0, so this is a “true static disk”, in the sense that we can not obtain a
counter-rotating interpretation for it. This case corresponds to the Bonnor and
Sackfield disk of reference [1]. For the second simple case, we take µ = k > 0,
so that pr = pϕ = 2α(α− k) and

σ = −4(α− k)2 . (4.5)
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The disks so are made of perfect fluids with constant energy density and
pressure. As σ < 0, the disks do not agree with the weak energy condition,
but % > 0, as the strong energy condition requires. For these disks we also
have that U± = 0, so that we do not have a CRM. These are also “true static
disks”.
For any other value of α > 0 and µ 6= k, the radial and azimuthal pressures,
pr and pϕ, are everywhere positive and well behaved for all the values of µ
and α. For the effective Newtonian density we obtain

% =
2µpr

α
, (4.6)

so that is positive everywhere on the disk. Thus, the disks are attractive, in
agreement with the strong energy condition. On the other hand, it is easy to
see that σ < 0 when r = 1, for any value of α and µ, whereas that σ > 0 at
r = 0 only if µ > α. That is, in general, the energy density σ is not positive
everywhere on the disk.
We now consider the CRM for the above disks. As pr is, in general, depen-
dent of r, we can not take the two counter-rotating fluids as circulating along
geodesics. However, we can test the possibility of obtain a well defined CRM
with equal and opposite velocities. In order to do this, we can compute, from
(3.11) and (4.3), the tangential velocity U2 and obtain

U2 =
α(µ2 − k2)r2

(2µ− α) + µ(2k2 − αµ)r2
, (4.7)

and, in order to have a well behaved CRM, we impose the condition

0 ≤ U2 ≤ 1 . (4.8)

We study the above relation for a lot of combinations of the parameters µ and
α. In many of the cases we obtain functions with strong change in the slope,
with regions where U2 is negative and with U > 1. However, in some other
cases we obtain U2 as well behaved functions of r, everywhere positive and
increasing, but always with U2 < 1.
Finally, we can compute σ++σ− and σ±+p± for the above disks. Using (3.9),
(3.11) and (4.3), we obtain

σ+ + σ− = 2 pr

[
µ

α
− 1 + µ2r2

1 + k2r2

]
, (4.9a)

σ± + p± = pr

[
2µ + α

2α
− 1 + µ2r2

1 + k2r2

]
. (4.9b)
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We study the above relations for the values of the parameters µ and α that
leads to well behaved tangential velocities and specific angular momentum. It
is easy to see that, for these values of the parameters, the total energy density
of the CRM, σ++σ−, is positive only in the central region of the disks but it is
negative in the rest, having a maximum at r = 0 and then decrease monotonly.
On the other hand, σ±+p± is always positive for these cases. We see that the
CRM obtained are agree with the strong energy condition, although not with
the weak energy condition.

5 Discussion

We presented a detailed study of the Counter-Rotating Model for generic
finite static axially symmetric thin disks, with nonzero radial pressure. A
general constraint over the counter-rotating tangential velocities was obtained,
needed to cast the surface energy-momentum tensor of the disk in such a way
that can be interpreted as the superposition of two counter-rotating perfect
fluids. The constraint obtained is the generalization of the obtained in [18],
for disks without radial pressure or heat flow, where we only consider counter-
rotating fluids circulating along geodesics. Also, we obtain expressions for
the energy density and pressure of the counter-rotating fluids in terms of the
energy density and azimuthal and radial pressures of the disk.
We shown that, in general, there is not possible to take the two counter-
rotating tangential velocities as equal and opposite neither take the two counter-
rotating fluids as circulating along geodesics. Thus, for disks built from generic
static axially symmetric metrics, the counter-rotating velocities are not com-
pletely determined; that is, the CRM is in general undetermined since the
energy density and isotropic pressure can not be explicitly written without a
knowledge of the counter-rotating tangential velocities.
An specific example was considered of a family of disks where we obtain some
stable CRM with well defined counter-rotating tangential velocities and agree
with the strong energy condition, but with regions of the disks where the
energy density is negative, so in violation of the weak energy condition. We
also found some disks of the family with negative U2 so that was not possible to
obtain CRM for these disks. Were found also two cases of “true static disks”,
in the sense of U± = 0, and so there is not a possible CRM interpretation.
The generalization of the Counter-Rotating Model presented here to the case of
rotating thin disks with or without radial pressure is in consideration. Also,
the generalization for static and stationary disks with magnetic or electric
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fields is being considered.
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