
Bol. Mat. 17(2), 143–164 (2010) 143

Pasting and reversing operations
over some rings

Primitivo B. Acosta–Humánez1
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Bogotá, Colombia
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Introduction

Pasting and Reversing are common processes. The first attempt, due to
the first author, intended to interpret these natural processes as math-
ematical operations dates back to 1992. One year later, he gave some
lectures about the case of the natural numbers in several Colombian
mathematical meetings, such as Semana de Matemáticas y F́ısica de la
Universidad del Tolima. These lectures were published ten years later;
see [2]. Recently, in 2008, these operations of pasting and reversing were
applied to obtain families of simple permutations; see [1, 3].

Following the same structure presented in [1, 2, 3], in this work we
introduce pasting and reversing operations for the case of the ring of
polynomials. Pasting and reversing operations provide new ways of ex-
pressing some properties of natural numbers presented in [18]. Finally,
we start the study of some properties of differential rings. Following dif-
ferential Galois theory, see [19], we start the analysis of these operations
over linear differential operators. There is a wide bibliography where the
definition of ring, as well as its properties, can be found. In particular,
the ring theory is presented in [10].

We say that R is a differential ring if there exists a derivation ∂ such
that, ∀a, b ∈ R, we have

∂(a+ b) = ∂a+ ∂b ,

∂(a · b) = ∂a · b+ a · ∂b ;

for more details see [19]. In particular, we are interested in the ring of
polynomials C[x] and in linear differential operators L defined as

L :=

n∑
k=0

ak ∂
k ,

where ak ∈ K, and K is a differential field. The set of operators L is a
differential ring.

1 Pasting and reversing over polynomials

In this section we introduce the operations of pasting and reversing over
the ring of polynomials and over the set of natural numbers, where some
aspects of recreational mathematics are shown.
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1.1 Polynomial case

We only consider polynomials P such that x - P (x). For convenience, we
write P as follows:

P (x) =

n∑
k=0

an−kx
n−k.

Clearly, 1+deg(P ) = Ç(P ) is the number of coefficients of the polynomial
P .

Definition 1. (Reversing, palindromic and antipalindromic polynomi-
als.) Consider P ∈ C[x] written as

P (x) =
n∑

k=0

an−kx
n−k. (1)

The reversing of P , denoted by P̃ , is given by

P̃ (x) =
n∑

k=0

bn−k x
n−k , (2)

where bn−k = ak and k = 0, 1, · · · , n. The polynomial P is called palin-
dromic whether P̃ = P , respectively, the polynomial P is called antipalin-
dromic whether P̃ = −P .

Thus, Definition 1 leads us to the following results.

Proposition 2. Consider the polynomials P and P̃ as in equations (1),
(2) respectively. The following statement holds.

1. P̃ (x) = xnP
(
1
x

)
, where n+ 1 = Ç(P ).

2. P̃
(
1
α

)
= 0 if and only if P (α) = 0.

3. P̃ (x) = (−1)n(α1x − β1)(α2x − β2) · · · (αnx − βn) if and only if
P (x) = (β1x− α1) · · · (βnx− αn).

4. ˜̃P = P .

5. Ç(P ) = Ç(P̃ ).

6. P̃ +Q = P̃ + Q̃, for Ç(P ) = Ç(Q).

7. P̃ ·Q = P̃ · Q̃.
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Proof.

1. By equation (1), we can see that

xn P

(
1

x

)
= xn

n∑
k=0

an−k

(
1

x

)n−k

,

hence

xn P

(
1

x

)
=

n∑
k=0

an−k x
k =

n∑
k=0

ak x
n−k .

In this way, by equation (2), we have xnP
(
1
x

)
= P̃ (x).

2. Due to x - P (x), α 6= 0. Now, by item 1, taking x =
(
1
α

)
, we have

P̃

(
1

α

)
=

(
1

α

)n

P (α) .

By hypothesis P (α) = 0, for instance P̃
(
1
α

)
= 0. We proceed in a

similar way for the converse.

3. From item 1, we have

P̃ (x) = xn
(
β1

(
1

x

)
− α1

)
· · ·
(
βn

(
1

x

)
− αn

)
.

Thus,

P̃ (x) = (β1 − α1 x) · · · (βn − αn x) ,

or, equivalently,

P̃ (x) = (−1)n (α1 x− β1) · · · (αn x− βn) .

We proceed in a similar way for the converse.

4. Assume P (x) and P̃ (x) as in item 3. Thus, we have

˜̃P (x) = (−x)n
(
α1

(
1

x

)
− β1

)
· · ·
(
αn

(
1

x

)
− βn

)
,
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therefore

˜̃P (x) = (β1 x− α1) · · · (βn x− αn) ,

as needed.

5. From item 3 we observe that deg(P ) = deg(P̃ ), thus Ç(P ) = Ç(P̃ ).

6. Assume that

P (x) =
n∑

k=0

an−k x
n−k ,

Q(x) =

n∑
k=0

bn−k x
n−k .

Setting R = P +Q, we have

R(x) =
n∑

k=0

cn−kx
n−k ,

with cj = aj + bj and j = 0, · · · , n. Now, by equation (2) it follows
that

R̃(x) =
n∑

k=0

ck x
n−k =

n∑
k=0

ak x
n−k +

n∑
k=0

bk x
n−k ,

which means, again by equation (2), that R̃ = P̃ + Q̃. Thus, we

conclude that P̃ +Q = P̃ + Q̃.

7. Assume that

P (x) = (β1 x− α1) · · · (βn x− αn) ,

Q(x) = (γ1 x− µ1) · · · (γm x− µm) .

Setting R = P ·Q, we have

R(x) = (β1 x− α1) · · · (βn x− αn) (γ1 x− µ1) · · · (γm x− µm) .
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By item 3 of Proposition (2), we have

R̃(x) = (−1)n+m (α1 x− β1) · · · (βn x− αn)

× (γ1 x− µ1) · · · (γm x− µm)

= [(−1)n (α1 x− β1) · · · (βn x− αn)]

× [(−1)m (γ1 x− µ1) · · · (γm x− µm)]

= P̃ (x) · Q̃(x) .

as desired. �

Remark 3. From the beginning we assumed x - P (x), for instance, items
2 and 5 are false whether x | P (x). We recall that items 4 and 5 can
also be proven using only Definition 1, i.e., equations (1) and (2).

There are some specific known cases in which we can use the re-
versing operation over special families of polynomials such as the Bessel
polynomials; see [5, 9].

Proposition 2 and Definition 1 lead us to the following results; see
also [14].

Proposition 4. Let P be a palindromic or antipalindromic polynomial
with roots α1, · · · , αn, with n+ 1 = Ç(P ). Then,

αk+j = 1/αj , Ç(P ) ∈ {2k + 1, 2k + 2}, j = 1, · · · , k.

Furthermore, if Ç(P ) = 2k + 2 and P is palindromic (respectively an-
tipalindromic), then α2k+1 = −1 (respectively α2k+1 = 1).

Proof. By Definition 1 and Proposition 2, P (αj) = 0 implies that

P̃

(
1

αj

)
= ±P

(
1

αj

)
= 0 ,

for j = 1, · · · , Ç(P ) − 1. Thus, for Ç(P ) = 2k + 1 we can arrange
αk+j = 1/αj , j = 1, · · · , k. In the same way, for Ç(P ) = 2k+2, we have
αk+j = 1/αj , j = 1, · · · , k and α2k+1 = 1/α2k+1, hence α2k+1 = ±1. If

P = P̃ , then the signs of its coefficients must be preserved, so that α2k+1

must be −1. Finally, if P̃ = −P , then the signs of the coefficients must
be interchanged, so that α2k+1 must be 1. �

Proposition 5. The following statements hold.
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1. The sum of two palindromic polynomials, with the same degree, is
also a palindromic polynomial.

2. The product of two palindromic polynomials is also a palindromic
polynomial.

3. The sum of two antipalindromic polynomials, with the same degree,
is also an antipalindromic polynomial.

4. The product of two antipalindromic polynomials is a palindromic
polynomial.

5. The product of a palindromic polynomial with an antipalindromic
polynomial is an antipalindromic polynomial.

Proof.

1. Let P and Q be palindromic polynomials. By item 6 of Proposition

2 we have P̃ +Q = P̃ + Q̃ = P + Q. Consequently, P + Q is a
palindromic polynomial.

2. Let P and Q be palindromic polynomials. By item 7 of Proposition

2 we have P̃ ·Q = P̃ ·Q̃ = P ·Q. Consequently, P ·Q is a palindromic
polynomial.

3. Let P and Q be antipalindromic polynomials. By item 6 of Propo-

sition 2 we have P̃ +Q = P̃ + Q̃ = −P −Q = −(P +Q). Conse-
quently, P +Q is an antipalindromic polynomial.

4. Let P and Q be antipalindromic polynomials. By item 7 of Propo-

sition 2 we have P̃ ·Q = P̃ ·Q̃ = (−P ) ·(−Q) = PQ. Consequently,
P ·Q is a palindromic polynomial.

5. Let P be a palindromic polynomial and let be Q an antipalindromic

polynomial. By item 7 of Proposition 2 we have P̃ ·Q = P̃ · Q̃ =
P · (−Q) = −P · Q. Consequently, P · Q is an antipalindromic
polynomial. �

The following definition corresponds to a natural example of orthog-
onal polynomials; see [6, 15, 16].

Definition 6. (Chebyshev polynomials of the first kind.) The Chebyshev
polynomials of the first kind, denoted by Tn, are defined by the trigono-
metric identity
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Tn(w) = cos(n arccosw) = cosh(n arccoshw) ,

with n ∈ Z+, which is equivalent to the identities:

Tn(cos(α)) = cos(nα) ,

Tn(cosh(α)) = cosh(nα) .

Lemma 7. If w = 1
2(z +

1
z ), then

1
2(z

n + 1
zn ) = Tn(w)

Proof. By Definition 6, we write

T1(w) = cos(α) = w ,

...

Tn(w) = cos(nα) ,

which lead us to

Tn(w) =
einα + e−inα

2
=

(
eiα
)n

+
(
eiα
)−n

2
=

1

2
(zn + z−n) .

In particular, w = 1
2(z +

1
z ). �

The following result has been suggested by V. Sokolov.

Proposition 8. Let P2n be a palindromic polynomial with coefficients
ai, 0 ≤ i ≤ 2n. Then

P2n(z)

2zn
=

n∑
k=0

an−k Tk(w) , (3)

where w = 1
2

(
z + 1

z

)
.

Proof. By hypothesis, P2n(z) = a2nz
2n + a2n−1z

2n−1 + · · · + a1z + a0.
Now, due to P2n = P̃2n, we have ai = a2n−i, i = 0, · · · , 2n. Thus, dividing
P2n(z) by 2zn, we obtain

P2n(z)

2zn
=

a2nz
n + a2n−1z

n−1 + · · ·+ a2n−1z
1−n + a2nz

−n

2
.

Rearranging the common coefficients we have
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P2n(z)

2zn
=

a2n
2

(
zn +

1

zn

)
+

a2n−1

2

(
zn−1 +

1

zn−1

)
+ · · ·+ 1

2
an .

With the change of variable w = 1
2(z + 1

z ) and Lemma 7, the right-
hand side is a2nTn(w) + a2n−1Tn−1(w) + · · ·+ anT0(w) when ai = a2n−i,
i = 0, .., 2n. Thus we arrive at the expression given in equation (3). �

The concept of palindromic and antipalindromic polynomials is rather
ancient. There are a lot of references about these polynomials using the
concept of Reciprocal Polynomials; see for example [4, 7, 8, 11, 13, 17]
and references therein. We recall, using the previous references, that P

is the reciprocal of Q if Q = P̃ = P ∗,

P (z) = an z
n + an−1 z

n−1 + · · ·+ a1 z + a0 ,

Q(z) = P̃ (z) = a0 zn + a1 zn−1 + · · ·+ an−1 z + an ,

where z = a+ bi, z = a− bi.

On the other hand, P is self–reciprocal if P = P ∗ = P̃ . Furthermore,
if b = 0, then P = P̃ , which means that P is a palindromic polynomial.
The same argument can be applied to antipalindromic polynomials.

Now, we introduce the definition of the operation of pasting over
polynomials.

Definition 9. Pasting of the polynomials P and Q, denoted by P � Q,
is given by

P �Q := xÇ(Q)P +Q.

The following properties are consequences of Definition 9.

Proposition 10. Let P,Q,R be polynomials. The following statements
hold:

1. P̃ � Q̃ = Q̃ � P

2. (P �Q) �R = P � (Q �R)

Proof.
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1. Let P,Q be polynomials, where

P (x) =

s∑
`=0

as−` x
s−` ,

Q(x) =

k∑
j=0

bk−j x
k−j .

Then, by Definition 9 and assuming R = Q � P , we have

R(x) = xs+1
k∑

j=0

bk−j x
k−j +

s∑
`=0

as−` x
s−`

=

k+s+1∑
i=0

ck+s+1−i x
k+s+1−i ,

where the coefficients cm are given by

cm =

{
am, 0 ≤ m ≤ s,
bm, s+ 1 ≤ m ≤ k + s+ 1.

By Definition 1, we obtain

P̃ (x) =
s∑

`=0

a` x
s−` ,

Q̃(x) =

k∑
j=0

bj x
k−j ,

R̃(x) =

k+s+1∑
i=0

ci x
k+s+1−i .

By Definition 9, we have

R̃(x) =

k+s+1∑
i=0

ci x
k+s+1−i = xk+1

s∑
`=0

a` x
s−` +

k∑
j=0

bj x
k−j .
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Therefore, R̃ = P̃ � Q̃.

2. Let P,Q,R be polynomials such that

P (x) =
k∑

i=0

ak−i x
k−i ,

Q(x) =

j∑
i=0

bj−i x
j−i ,

R(x) =
∑̀
i=0

dl−i x
`−i ,

where, Ç(P ) = k + 1, Ç(Q) = j + 1 and Ç(R) = ` + 1. We write
(P �Q) �R according to Definition 1 as follows

x`+1

(
xj+1

k∑
i=0

ak−i x
k−i +

j∑
i=0

bj−i x
j−i

)
+
∑̀
i=0

d`−i x
`−i .

This can be rewritten as

xj+`+2
k∑

i=0

ak−i x
k−i +

(
x`+1

j∑
i=0

bj−i x
j−i +

∑̀
i=0

d`−i x
`−i

)
,

or, equivalently,

xj+`+2
k∑

i=0

ak−i x
k−i +

(
j∑

i=0

bj−i x
j−i �

∑̀
i=0

d`−i x
`−i

)
.

Consequently,

(P � Q) � R = P � (Q � R) .

�
As a consequence of Proposition 4, which is adapted for pasting of

polynomials, we present the following result.
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Proposition 11. Let P be a polynomial. The linear polynomial x+1 is
divisor of the polynomial P � P̃ .

Proof. Owing to Ç(P � P̃ ) is even and P � P̃ is palindromic, then, by
Proposition 4, −1 is a root of P � P̃ , so that x+ 1 | P � P̃ . �

1.2 The case of natural numbers

The properties presented above for the polynomial case are useful to
demonstrate properties of natural numbers choosing x = 10. For natural
numbers, Ç is called digital cipher ; see [2].

We recall that, due to previous results, the reversing of n ∈ N is given
by

ñ =

r∑
j=0

aj 10
r−j ,

where n =
∑r

j=0 ar−j10
r−j .

In a natural way, we introduce the concept of palindromic numbers:
n is palindromic if and only if n = ñ. In the same way, the pasting of

n, m ∈ N is given by 10Ç(m)n+m.
For the case of natural numbers Propositions 2, 10 and 11, can be

summarized in the following result.

Proposition 12. Let n, m, p ∈ N. The following statements hold:

1. ˜̃n = n

2. ñ � m̃ = m̃ � n

3. (m � n) � p = m � (n � p)

4. If n is palindromic and Ç(n) is even, then 11 is a divisor of n.

5. 11|n � ñ.

In general, the properties presented in the polynomial case for the
operations of the ring (+, ·) are not true for natural numbers, although
by imposing some restrictions we can get similar results.

Applying pasting and reversing operations to natural numbers we can
rewrite some mathematical games such as the one presented in [18]. It
will be convenient to introduce the following notation:

♦n
k=0 ak := a0 � a1 � · · · � an . (4)
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The following mathematical games can be found in [18], but here we
use an approach based on the previous results.

1. (♦n
k=09 − k) · 9 + 9 − (n + 2) = ♦n+1

k=08, where n ≤ 9. This can be
expanded as:

9× 9 + 7 = 88

98× 9 + 6 = 888

987× 9 + 5 = 8888

9876× 9 + 4 = 88888

98765× 9 + 3 = 888888

987654× 9 + 2 = 8888888

9876543× 9 + 1 = 88888888

98765432× 9 + 0 = 888888888

987654321× 9− 1 = 8888888888

2. We know that 12 = 1. Now, for 0 < n < 9, we have

(♦n
k=0 1)

2 = ♦n
k=0 (k + 1) � ˜♦n−1

k=0 (k + 1) .

This can be expanded as:

1× 1 = 1

11× 11 = 121

111× 111 = 12321

1111× 1111 = 1234321

11111× 11111 = 123454321

111111× 111111 = 12345654321

1111111× 1111111 = 1234567654321

11111111× 11111111 = 123456787654321

111111111× 111111111 = 12345678987654321

The pasting operation is also useful to obtain powers of natural num-
bers: (n �m)k, where 0 ≤ m ≤ 9 and k ∈ N. The following proposition,
which summarizes the propositions 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 and
2.9 in [2], gives us some ideas to obtain similar results for k > 2.
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Proposition 13. Let 0 ≤ m, p, q, r, s ≤ 9. Then,

(n � m)2 = n ((n+ p) � q) + r) � s , (5)

where p � q = 2m and r � s = m2.

Proof. We can see that (n �m)2 = (10n+m)2 = 100n2 + 20nm+m2,
which leads us to 10n(10(n+ p)+ q)+10r+ s thus proving the result. �

As an immediate consequence of Proposition 13, which summarizes
the corollaries 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 and 2.9 in [2], we present
the following corollary.

Corollary 14. Let x = α � s, where s ∈ {0, 1, 4, 5, 6, 9} and α ∈ N. If
x− r = n((n+ p) � q), where p � q = 2m, r ∈ {0, 1, 2, 3, 4, 6, 8}, p ∈ {0, 1}
and q ∈ {0, 2, 4, 6, 8}, then

√
x = n �m.

Remark 15. Using this approach we can recover the classical result about
the square of odd natural numbers having five as a divisor: (n � 5)2 =
n(n+1) � 25. In the same way, for α, n ∈ N,

√
α � 25 = n � 5 if and only

if α = n(n+ 1). Finally, the interested reader can obtain similar results
for (n � (m � 5))2, with 0 ≤ m ≤ 9, as well as for their square roots.

2 Pasting and reversing over differential opera-
tors

We consider linear differential operators

L = an ∂
n + an−1 ∂

n−1 + · · ·+ a1 ∂ + a0 ,

with a0 6= 0, ai ∈ K, where i = 0, 1, · · · , n and K is a differential field ;
see [19]. Solutions of linear differential equations are related with the
factorization of linear differential operators; see [12].

From now on the term differential operator will always mean linear
differential operator. For convenience, we write L as follows:

L =
n∑

k=0

an−k ∂
n−k .

As in previous cases, we denote by Ç(L) the number of coefficients
of the differential operator L. For instance, if the order of L is n, then
Ç(L) = n+ 1.
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Definition 16. (Reversing, palindromics and antipalindromics of differ-
ential operators.) Consider the differential operator

L =
n∑

k=0

an−k ∂
n−k , (6)

with a0 6= 0 and ai ∈ K. The reversing of L, denoted by L̃, is given by

L̃ =

n∑
k=0

bn−k ∂
n−k , (7)

with bn−k = ak and k = 0, 1, · · · , n. The differential operator L is called

palindromic whether L̃ = L, respectively, the differential operator L is
called antipalindromic whether L̃ = −L.

Definition 16 leads us to the following result.

Proposition 17. Let L and L̃ be differential operators as in equations
(6) and (7), respectively. The following statements hold.

1.
˜̃L = L.

2. Ç(L) = Ç(L̃).

3. L̃+R = L̃+ R̃, for Ç(L) = Ç(R).

Proof. Items 1 and 2 are consequences of the Definition 16. Item 3 is
demonstrated in a way similar to the polynomial case. �
Remark 18. In general, there is no relationship between kerL and

ker L̃. Using differential Galois theory [19], it can be shown that e−
x2

2 ∈
ker(∂2 + 1 − x2), while there are not Liouvillian functions in ker((1 −
x2)∂2 + 1).

As a particular case, we have the following result.

Proposition 19. Assume Ç(L) = 2, y ∈ kerL and u ∈ ker L̃. Then
(∂ ln y)(∂ lnu) = 1.

Proof. Solving the linear differential equations Ly = 0 and L̃u = 0, we
obtain

e
−

∫ a0
a1 ∈ kerL ,

with e
−

∫ a1
a0 ∈ ker L̃. Thus, (∂ ln y)(∂ lnu) = 1. �

Proposition 17 and Definition 16 lead us to the following results.
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Proposition 20. Let L and R be palindromic and antipalindromic dif-
ferential operators respectively, with Ç(L) = Ç(R) = 2k. Then, there
exist differential operators S and T such that

L = S(∂ + 1) ,

with R = T (∂ − 1).

Proof. We see that e−x ∈ ker(∂ + 1) and ex ∈ ker(∂ − 1). Now, due to

L̃ = L, a2k−1−i = ai and ∂2k−1−ie−x = −∂ie−x. In this way, e−x ∈ kerL,
which means that there exist S such that L = S(∂ + 1). On the other

hand, owing to R̃ = −R, a2k−1−i = −ai and ∂2k−1−iex = ∂iex. In this
way, ex ∈ kerR, which means that there exist T such that R = T (∂−1).
�

We recall that differential operators T and S are left divisors of L
and R respectively. In the same way, ∂ + 1 and ∂ − 1 are right divisors
of L and R respectively. For further details see [12].

Proposition 21. The following statements hold.

1. The sum of two palindromic differential operators, with the same
order, is also a palindromic differential operator.

2. The sum of two antipalindromic differential operators, with the
same order, is also an antipalindromic differential operator.

Proof. We proceed exactly as in Proposition 5 for the polynomial case,
using Definition 16 and item 3 of Proposition 17. �

Now we introduce the definition of pasting operation over differential
operators.

Definition 22. Pasting of the differential operators L and R, denoted

by L � R, is given by: L � R := L∂Ç(R) +R.

The following properties, adapted from Proposition 10, are conse-
quences of Definition 22.

Proposition 23. Let L, R and S be differential operators. The following
statements hold:

1. L̃ � R̃ = R̃ � L

2. (L � R) � S = L � (R � S)
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Proof.

1. Let L,R be differential operators,

L =
s∑

`=0

as−` ∂
s−` ,

R =

k∑
j=0

bk−j ∂
k−j .

Then, by Definition 22 and assuming S = R � L we have

S =

 k∑
j=0

bk−j ∂
k−j

 ∂s+1 +

s∑
`=0

as−` ∂
s−`

=

k+s+1∑
i=0

ck+s+1−i ∂
k+s+1−i ,

where the coefficients cm are given by

cm =

{
am, 0 ≤ m ≤ s,
bm, s+ 1 ≤ m ≤ k + s+ 1.

By Definition 16, we obtain

L̃ =
s∑

`=0

a` ∂
s−` ,

R̃ =
k∑

j=0

bj ∂
k−j ,

S̃ =

k+s+1∑
i=0

ci ∂
k+s+1−i .

Therefore, by Definition 22 we have
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S̃ =

k+s+1∑
i=0

ci ∂
k+s+1−i =

(
s∑

`=0

a` ∂
s−`

)
∂k+1 +

k∑
j=0

bj ∂
k−j .

We conclude that S̃ = L̃ � R̃.

2. Let L, R, S be differential operators such that

L =
k∑

i=0

ak−i ∂
k−i ,

R =

j∑
i=0

bj−i ∂
j−i ,

S =
∑̀
i=0

d`−i ∂
`−i .

where, Ç(L) = k + 1, Ç(R) = j + 1 and Ç(S) = ` + 1. We write
(L � R) � S by means of Definition 16 as follows

((
k∑

i=0

ak−i ∂
k−i

)
∂j+1 +

j∑
i=0

bj−i ∂
j−i

)
∂`+1 +

∑̀
i=0

d`−i ∂
`−i .

This can be rewritten as:

(
k∑

i=0

ak−i ∂
k−i

)
∂j+`+2+

((
j∑

i=0

bj−i ∂
j−i

)
∂`+1 +

∑̀
i=0

d`−i ∂
`−i

)
,

or, equivalently, as

(
k∑

i=0

ak−i ∂
k−i

)
∂j+`+2 +

(
j∑

i=0

bj−i ∂
j−i �

∑̀
i=0

d`−i ∂
`−i

)
.

Therefore,
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(L � R) � S = L � (R � S) .

�
As a consequence of Proposition 20, which is adapted for pasting of

polynomials, we present the following result.

Proposition 24. Let L be a differential operator. The operator ∂+1 is
a right divisor of the differential operator L � L̃.

Proof. Owing to the fact that Ç(L�L̃) is even and L�L̃ is palindromic,
by Proposition 20, we have e−x ∈ kerP � P̃ , so that T (∂ + 1) = P � P̃ ,
for some differential operator T . �

The following results are particular cases of differential operators,
where the differential field is K = C.

Proposition 25. Consider L and L̃ as in equations (6) and (7), respec-
tively, with K = C. The following statements hold.

1. L̃ = ∂n
∑n

k=0 an−k∂
k−n, where L =

∑n
k=0 an−k∂

n−k.

2. xke−λix ∈ ker L̃ if and only if xkeλix ∈ kerL.

3. L̃ = (−1)n(α1∂ − β1)(α2∂ − β2) · · · (αn∂ − βn) if and only if L =
(β1∂ − α1)(β2∂ − α2) · · · (βn∂ − αn), αi, βi ∈ C.

4. L̃ · R = L̃ · R̃.

5. If L is a palindromic (or antipalindromic) differential operator such
that {xi1eλ1x, · · · , xireλrx} ⊂ kerL, then eλk+jx = e−λjx, with r ∈
{2k, 2k + 1} and j = 1, · · · , k.

6. The product of two palindromic differential operators is also a palin-
dromic differential operator.

7. The product of two antipalindromic differential operators is a palin-
dromic differential operator.

8. The product of a palindromic differential operator with an antipalin-
dromic differential operator is an antipalindromic differential oper-
ator.

Proof. It follows from the fact that the characteristic polynomial sat-
isfies the same properties (see Propositions 2, 4, 5) and due to ∂a = a∂
for all a ∈ C. �
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Final remarks

This paper is a starting point to develop several research projects such
as the applications of pasting and reversing over:

1. vector spaces and matrices;

2. polynomials in several variables;

3. general differential operators;

4. Ore extensions or other kind of non–commutative polynomial rings,
as for example Weyl algebras and Heisenberg algebras;

5. general difference and q–difference operators;

6. general simple permutations and combinatorial dynamics; and

7. in physics, particularly in supersymmetric quantum mechanics.

There are works in which this approach can be applied; see for ex-
ample [4, 8, 14] for the polynomial case. In particular, palindromic and
antipalindromic polynomials have been applied to analyze time-reversible
systems and conserved quantities, see [14], with a similar approach. We
hope that the material presented here can be useful for further studies.
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