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Abstract

Through simulation, we study and compare the large-numbers behav-
ior of the sample mean and the sample median as estimators of their re-
spective corresponding population parameters. We only consider skewed,
continuous distributions that do have a mean and a unique median. With
respect to the pertinent probabilities, our results throw some light on the
speed of convergence, the effect of the skewness, and, intriguinly, also
suggest the existence of a couple of changepoints or change-intervals. We
propose some questions for further study.

Keywords: change-interval; comparing estimators; convergence rate; simula-
tion; skewness effect.

Resumen

Se presentan los resultados de un estudio de simulación donde hemos
comparado el comportamiento de la media y la mediana de muestras como
estimadores de sus respectivos parámetros, según crece el tamaño de la
muestra. Sólo consideramos distribuciones continuas y sesgadas cuyas
medias existen y cuyas medianas son únicas. Con respecto a las proba-
bilidades en cuestión, nuestros resultados esclarecen ambos la rapidez de
convergencia y el efecto del sesgo. Además, nos intriga ver que, al parecer,
existen puntos de cambio o intervalos de cambio, donde cambia el com-
portamiento de los estimadores. Para concluir, proponemos varios temas
para futuras investigaciones.

Palabras clave: comparación de estimadores; efecto del sesgo; intervalo de
cambio; rapidez de convergencia; simulación.

Mathematics Subject Classification: 60F05, 65C05, 65C50, 65C60.

1 Introduction

“There has been a sea change for the mathematics of probability: computer sim-
ulation is replacing theorems” [2, p. 222].

In a beginner’s statistics course, students learn about the sample mean and
the sample median, and the fact that the sample median is robust or resistant,
but the sample mean is not. Consequently, some students tend to see the sample
median surrounded by an aura of sanctity. In praise of the sample mean, the
students also learn the following nice property: as the sample size increases,
the probability that the sample mean will differ from the population mean by
less than an arbitrarily prescribed distance or tolerance tends to one. This is a
somewhat rough statement of the law of large numbers, which is often illustrated
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by a graphic such as the one we see in [4, p. 288]. Unfortunately, such graphics
might give students the impression that, for sample sizes 5000 and larger, it is
almost sure that the sample mean is within a hairline of the population mean.
Our results make it clear that, in general, this is not so. The law of large numbers
is an intuitive, easy-to-understand statement. Indeed, it is comforting to know
that, as the amount of information increases, so do the chances that the sample
mean is arbitrarily near the value we are trying to estimate. However, the law of
large numbers tells us nothing about the speed of convergence; our study throws
some light on this matter.

In this paper, we are only concerned with continuous distributions that do
have a mean and a unique median.

Generally, at the undergraduate level, little or nothing is said about the
large-numbers behavior of the sample median, even in the standard
mathematical-statistics course. An exception is Freund’s book, where we find
the following result [3, p. 324].

Theorem 1. Suppose the population density fX is continuous and nonzero at
the population median med(X), which satisfies∫ med(X)

−∞
fX(x) dx =

1

2
.

Then, for large n, the sampling distribution of the sample median for random
samples of size 2n+1 is approximately normal, with the mean med(X) and the
variance

1

8 {fX (med (X))}2 n
.

As Freund notes, the preceding theorem has the following consequence for
a normal population fX . In this case, the mean E(X) and the median med(X)
are equal and

fX (E (X)) = fX (med (X)) =
1√

2πVar(X)
.

So, although they do it differently, for a sample of size n, the sample mean X̄n

and the sample median X̃n are estimating the same number. However, for large
samples of size 2n+ 1, we find that, approximately, the variances ratio

Var(X̃2n+1)

Var(X̄2n+1)
=

πVar(X)/4n

Var(X)/(2n+ 1)
=

π(2n+ 1)

4n
→ π

2
, as n → ∞.
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Thus, for large samples from a normal population, the sample mean is approxi-
mately π/2 ≈ 1.6 times less variable —and therefore that much more
dependable— than the sample median.

It is natural to ask about a law of large numbers for the sample median. It is
also natural to ask, as the sample size n increases, how do the sample mean X̄n

and the sample median X̃n compare as estimators of the respective correspond-
ing parameters E(X) and med(X). We investigate these matters empirically,
through simulation. The notions of a consistent estimator and of convergence
in probability are relevant to our study; we give more details in Section 4. We
conclude with a few questions for further study.

For notation, we always use E(X) and med(X) for the population mean
and the population median, respectively. We do so because, as is generally done,
we use µ and σ for the two lognormal-distribution parameters, respectively the
population mean and the population standard deviation of the random variable
ln(X). Thus, in this paper, µ and σ never stand for the population mean and the
population standard deviation of a distribution we study.

Additional information about the median and order statistics in general is
available in [1].

2 The simulation

In a symmetric distribution, the mean and the median are the same. Therefore,
we only considered skewed distributions, all skewed to the right, and with pair-
wise different skewness coefficients ranging from 1.6 to 414.4. The skewness
coefficient —skewness, for short— of a distribution fX is defined by

µ3

{Var(X)}3/2
,

where µ3 is the third moment about the mean of the random variable X .
The eight distributions we studied are listed in Table 1, along with some

properties that are pertinent to our investigation. In a skewed distribution, the
longer tail acts as a sort of magnet that strongly pulls the mean in that tail’s di-
rection; on the median, such magnetic effect is not so appreciable. Therefore, for
each distribution in Table 1, we list the value of
|E(X) − med(X)|, which we regard as a rough, quick-and-dirty measure of
skewness.
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Table 1: Distributions in the study.

distribution E(X) med(X) |E(X)−med(X)| skewness
chi-square, df = 3 3 2.4 0.6 1.6

gamma, shape = 1.05 and rate = 1 1.05 0.74 0.31 1.95
gamma, shape = 0.9 and rate = 1 0.9 0.60 0.30 2.11

F , df1 = 1 and df2 = 7 1.4 0.5 0.9 14
lognormal, µ = 1 and σ = 1.5 8.4 2.7 5.7 33.5
lognormal, µ = 1 and σ = 1.8 13.7 2.7 11.0 136.4
lognormal, µ = 1 and σ = 1.9 16.5 2.7 13.8 233.7
lognormal, µ = 1 and σ = 2 20.1 2.7 17.4 414.4

The graphs of the distributions in the study are shown in Figure 1. In all
cases, the range of values in the horizontal axis is the same. We do this to
help facilitate good visual comparisons of the right tails between the different
distributions.

We wanted to investigate the behavior of the estimators X̄n and X̃n in rela-
tion to the respective corresponding parameters E(X) and med(X), as the sam-
ple size increases. That is, we wanted to study the probabilities
P (|X̄n −E(X)| < ε) and P (|X̃n −med(X)| < ε), for ε > 0, as n → ∞. The
law of large numbers tells us that, for arbitrary ε > 0, P (|X̄n−E(X)| < ε) → 1,
as n → ∞. But we wanted actual numerical data; that is, we wished to know
what happens along the way as n → ∞. In particular, we wanted to com-
pare P (|X̄n − E(X)| < ε) and P (|X̃n − med(X)| < ε) for different values
of ε and n. We were also curious about how likely it is that the estimators
stray toward the other, wrong parameter; therefore, we computed estimates for
P (|X̄n −med(X)| < ε) and P (|X̃n − E(X)| < ε) as well. For the tolerance
ε, we chose the values 0.1, 0.01, and 0.001, and for the sample size n we chose
25, 100, 500, 1000, 5000, and 10,000.

The simulation was designed and performed to assure that, with 99% proba-
bility, each resulting estimate is within 0.005 of the true value. Thus, to compute
each estimate, we used 66,564 samples, the minimum required to satisfy the
desired estimation specifications. To determine the number of samples, we as-
sumed that 1

2 is the true value of the proportion being estimated; in this context,
that assumption is the most conservative possible supposition for the unknown
parameter value. We did the simulation with the software R.
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Figure 1: Distributions in the study.
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Table 2: Probability estimates. Distribution: chi-square with 3 degrees of freedom;
skewness = 1.6.

ε n P (|X̄n −E(X)| < ε) P (|X̃n −med(X)| < ε) P (|X̄n −med(X)| < ε) P (|X̃n − E(X)| < ε)

0.1 25 0.1591 0.1483 0.0763 0.0700
100 0.3159 0.2945 0.0097 0.0246
500 0.6390 0.5990 0 0

1000 0.8041 0.7613 0 0
5000 0.9963 0.9921 0 0

10000 0.99995 0.99980 0 0

0.01 25 0.0159 0.0149 0.0072 0.0073
100 0.0341 0.0311 0.0007 0.0027
500 0.0743 0.0687 0 0

1000 0.1010 0.0928 0 0
5000 0.2262 0.2110 0 0

10000 0.3190 0.2950 0 0

0.001 25 0.0016 0.0013 0.0007 0.0007
100 0.0032 0.0032 0.0001 0.0002
500 0.0071 0.0069 0 0

1000 0.0101 0.0101 0 0
5000 0.0224 0.0214 0 0

10000 0.0335 0.0288 0 0

Table 3: Probability estimates. Distribution: gamma with shape = 1.05 and rate = 1;
skewness = 1.95.

ε n P (|X̄n −E(X)| < ε) P (|X̃n −med(X)| < ε) P (|X̄n −med(X)| < ε) P (|X̃n − E(X)| < ε)

0.1 25 0.3729 0.3719 0.1400 0.1306
100 0.6713 0.6702 0.0158 0.0308
500 0.9708 0.9683 0 3.0× 10−5

1000 0.9979 0.9974 0 0
5000 1 1 0 0

10000 1 1 0 0

0.01 25 0.0377 0.0379 0.0133 0.0123
100 0.0773 0.0779 0.0004 0.0019
500 0.1722 0.1690 0 0

1000 0.2442 0.2424 0 0
5000 0.5098 0.5053 0 0

10000 0.6704 0.6644 0 0

0.001 25 0.0036 0.0035 0.0013 0.0015
100 0.0083 0.0081 3.0× 10−5 0.0002
500 0.0172 0.0169 0 0

1000 0.0247 0.0244 0 0
5000 0.0559 0.0539 0 0

10000 0.0788 0.0775 0 0
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Table 4: Probability estimates. Distribution: gamma with shape = 0.9 and rate = 1;
skewness = 2.11.

ε n P (|X̄n −E(X)| < ε) P (|X̃n −med(X)| < ε) P (|X̄n −med(X)| < ε) P (|X̃n − E(X)| < ε)

0.1 25 0.3990 0.4194 0.1319 0.1227
100 0.7051 0.7245 0.0108 0.0232
500 0.9815 0.9839 0 0

1000 0.9991 0.9991 0 0
5000 1 1 0 0

10000 1 1 0 0

0.01 25 0.0405 0.0429 0.0119 0.0115
100 0.0829 0.0869 0.0002 0.0012
500 0.1831 0.1899 0 0

1000 0.2594 0.2696 0 0
5000 0.5458 0.5526 0 0

10000 0.7124 0.7228 0 0

0.001 25 0.0044 0.0042 0.0013 0.0012
100 0.0078 0.0091 0 0.0001
500 0.0187 0.0197 0 0

1000 0.0267 0.0273 0 0
5000 0.0573 0.0611 0 0

10000 0.0865 0.0867 0 0

Table 5: Probability estimates. Distribution: F with df 1 = 1 and df 2 = 7; skewness
= 14.

ε n P (|X̄n −E(X)| < ε) P (|X̃n −med(X)| < ε) P (|X̄n −med(X)| < ε) P (|X̃n − E(X)| < ε)

0.1 25 0.1560 0.3265 0.0176 0.0093
100 0.2952 0.5987 0 0
500 0.5932 0.9353 0 0

1000 0.7499 0.9899 0 0
5000 0.9880 1 0 0

10000 0.9995 1 0 0

0.01 25 0.0158 0.0333 0.0016 0.0009
100 0.0292 0.0668 0 0
500 0.0663 0.1465 0 0

1000 0.0933 0.2044 0 0
5000 0.2018 0.4384 0 0

10000 0.2823 0.5848 0 0

0.001 25 0.0016 0.0033 0.0001 9.0× 10−5

100 0.0026 0.0060 0 0
500 0.0069 0.0142 0 0

1000 0.0091 0.0209 0 0
5000 0.0197 0.0454 0 0

10000 0.0297 0.0643 0 0
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Table 6: Probability estimates. Distribution: lognormal with µ = 1 and σ = 1.5;
skewness = 33.5.

ε n P (|X̄n −E(X)| < ε) P (|X̃n −med(X)| < ε) P (|X̄n −med(X)| < ε) P (|X̃n − E(X)| < ε)

0.1 25 0.0204 0.0788 0.0034 0.0003
100 0.0387 0.1585 0 0
500 0.0779 0.3378 0 0

1000 0.1107 0.4635 0 0
5000 0.2337 0.8337 0 0

10000 0.3220 0.9499 0 0

0.01 25 0.0022 0.0078 0.0003 3.0× 10−5

100 0.0036 0.0157 0 0
500 0.0072 0.0354 0 0

1000 0.0113 0.0491 0 0
5000 0.0239 0.1112 0 0

10000 0.0329 0.1541 0 0

0.001 25 0.0003 0.0008 1.5× 10−5 1.5× 10−5

100 0.0004 0.0016 0 0
500 0.0008 0.0037 0 0

1000 0.0011 0.0049 0 0
5000 0.0025 0.0112 0 0

10000 0.0032 0.0149 0 0

Table 7: Probability estimates. Distribution: lognormal with µ = 1 and σ = 1.8;
skewness = 136.4.

ε n P (|X̄n −E(X)| < ε) P (|X̃n −med(X)| < ε) P (|X̄n −med(X)| < ε) P (|X̃n − E(X)| < ε)

0.1 25 0.0095 0.0651 0.0012 1.5× 10−5

100 0.0166 0.1319 0 0
500 0.0314 0.2840 0 0

1000 0.0440 0.3942 0 0
5000 0.0901 0.7524 0 0

10000 0.1234 0.8976 0 0

0.01 25 0.0010 0.0062 7.5× 10−5 0
100 0.0016 0.0130 0 0
500 0.0032 0.0297 0 0

1000 0.0042 0.0411 0 0
5000 0.0093 0.0925 0 0

10000 0.0116 0.1289 0 0

0.001 25 0.0001 0.0006 0 0
100 0.0001 0.0014 0 0
500 0.0004 0.0029 0 0

1000 0.0004 0.0040 0 0
5000 0.0009 0.0093 0 0

10000 0.0010 0.0126 0 0
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Table 8: Probability estimates. Distribution: lognormal with µ = 1 and σ = 1.9;
skewness = 233.7

ε n P (|X̄n −E(X)| < ε) P (|X̃n −med(X)| < ε) P (|X̄n −med(X)| < ε) P (|X̃n − E(X)| < ε)

0.1 25 0.0065 0.0618 0.0010 1.5× 10−5

100 0.0113 0.1253 0 0
500 0.0229 0.2700 0 0

1000 0.0312 0.3755 0 0
5000 0.0640 0.7273 0 0

10000 0.0884 0.8788 0 0

0.01 25 0.0006 0.0059 0.0001 1.5× 10−5

100 0.0011 0.0125 0 0
500 0.0022 0.0283 0 0

1000 0.0032 0.0389 0 0
5000 0.0062 0.0874 0 0

10000 0.0084 0.1225 0 0

0.001 25 3.0× 10−5 0.0006 4.5× 10−5 0
100 9.0× 10−5 0.0013 0 0
500 0.0002 0.0027 0 0

1000 0.0004 0.0039 0 0
5000 0.0006 0.0089 0 0

10000 0.0008 0.0119 0 0

Table 9: Probability estimates. Distribution: lognormal with µ = 1 and σ = 2; skew-
ness = 414.4.

ε n P (|X̄n −E(X)| < ε) P (|X̃n −med(X)| < ε) P (|X̄n −med(X)| < ε) P (|X̃n − E(X)| < ε)

0.1 25 0.0048 0.0590 0.0009 0
100 0.0078 0.1193 0 0
500 0.0171 0.2564 0 0

1000 0.0230 0.3586 0 0
5000 0.0438 0.7024 0 0

10000 0.0622 0.8589 0 0

0.01 25 0.0004 0.0056 0.0001 0
100 0.0009 0.0119 0 0
500 0.0017 0.0271 0 0

1000 0.0025 0.0368 0 0
5000 0.0040 0.0833 0 0

10000 0.0059 0.1166 0 0

0.001 25 4.5× 10−5 0.0006 3.0× 10−5 0
100 7.5× 10−5 0.0013 0 0
500 0.0001 0.0025 0 0

1000 0.0003 0.0037 0 0
5000 0.0004 0.0083 0 0

10000 0.0007 0.0113 0 0

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 25(2): 169–184, Jul–Dec 2018



LARGE-NUMBERS BEHAVIOR OF THE SAMPLE MEAN AND THE . . . 179

Table 10: Difference of the probability estimates as the skewness increases.

P (|X̃n −med(X)| < ε)− P (|X̄n − E(X)| < ε)
ε skewness n = 25 n = 100 n = 500 n = 1000 n = 5000 n = 10,000

0.1 1.6 −0.0108 −0.0214 −0.0400 −0.0428 −0.0042 −0.00015
1.95 −0.0010 −0.0011 −0.0025 −0.0005 0 0
2.11 0.0204 0.0194 0.0024 0 0 0
14 0.1705 0.3035 0.3421 0.2400 0.0120 0.0005

33.5 0.0584 0.1198 0.2599 0.3528 0.6000 0.6279
136.4 0.0556 0.1153 0.2526 0.3502 0.6623 0.7742
233.7 0.0553 0.1140 0.2471 0.3443 0.6633 0.7904
414.4 0.0542 0.1115 0.2393 0.3356 0.6586 0.7967

0.01 1.6 −0.0010 −0.0030 −0.0056 −0.0082 −0.0152 −0.0240
1.95 0.0002 0.0006 −0.0032 −0.0018 −0.0045 −0.0060
2.11 0.0024 0.0040 0.0068 0.0102 0.0068 0.0104
14 0.0175 0.0376 0.0802 0.1111 0.2366 0.3025

33.5 0.0056 0.0121 0.0282 0.0378 0.0873 0.1212
136.4 0.0052 0.0114 0.0265 0.0369 0.0832 0.1173
233.7 0.0053 0.0114 0.0261 0.0357 0.0812 0.1141
414.4 0.0052 0.0110 0.0254 0.0343 0.0793 0.1107

0.001 1.6 −0.0003 0.0000 −0.0002 0.0000 −0.0010 −0.0047
1.95 −0.0001 −0.0002 −0.0003 −0.0003 −0.0020 −0.0013
2.11 −0.0002 0.0013 0.0010 0.0006 0.0038 0.0002
14 0.0017 0.0034 0.0073 0.0118 0.0257 0.0346

33.5 0.0005 0.0012 0.0029 0.0038 0.0087 0.0117
136.4 0.0005 0.0013 0.0025 0.0036 0.0084 0.0116
233.7 0.00057 0.00121 0.0025 0.0035 0.0083 0.0111
414.4 0.000555 0.001225 0.0024 0.0034 0.0079 0.0106

3 Results and conclusions

The probability estimates resulting from the simulation were rounded to the
number of decimal places shown in Tables 2 through 9; however, a table entry is
“1” or “0” if and only if that’s what R returned.

Because of the sample-median’s robustness, we were interested in the be-
havior of the difference P (|X̃n − med(X)| < ε) − P (|X̄n − E(X)| < ε) as
the skewness increases. Therefore, we used the simulation results to investigate
this difference; see Table 10, whose entries were computed using the estimates
in Tables 2 through 9.

Among all these results, we find that a couple are as anticipated, while others
are not a priori evident. From these tables, we note some observations. The
following results are numbered merely to facilitate the referencing in this section
and in Section 4; in particular, such numbering is not intended to convey rank or
importance.

1. As the tolerance ε decreases, and for the same sample size n, the estimated
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probabilities also decrease. This is an unsurprising, anticipated conclu-
sion.

2. As the sample size increases, and for the same tolerance ε, the estimated
probabilities also increase. This is another unsurprising conclusion.

3. The skewness appears to affect and determine the order relation between
the probabilities P (|X̄n − E(X)| < ε) and P (|X̃n −med(X)| < ε).

• When the skewness is 1.6, the estimates in Table 2 show that, for the
same ε and n, it is always true that

P (|X̄n −E(X)| < ε) > P (|X̃n −med(X)| < ε), (1)

except in a couple of instances when ε = 0.001. However, we note
that the difference between these two probabilities decreases as the
sample size increases from 5000 to 10,000.

• When the skewness is 14 or larger, the estimates in Tables 5–9 show
that, for the same ε and n, the order relation in (1) is reversed and
then we always have

P (|X̄n −E(X)| < ε) < P (|X̃n −med(X)| < ε).

In particular, in Table 9, which pertains to the largest skewness we
consider, it appears that P (|X̃n −med(X)| < ε) is always substan-
tially larger than the corresponding P (|X̄n − E(X)| < ε).

• When the skewness is 1.95, the estimates in Table 3 show that, for
the same ε and n,

P (|X̄n −E(X)| < ε) > P (|X̃n −med(X)| < ε), (2)

nearly always. However, when the skewness increases to 2.11, the
estimates in Table 4 show that the opposite is true, with the order
relation in (2) reversed and, generally,

P (|X̄n −E(X)| < ε) < P (|X̃n −med(X)| < ε).

4. The results in the previous item number 3 suggest the existence of a
changepoint or a change-interval near the skewness value of 2. That
is, such results suggest the existence of real numbers a and b such that
a < 2 < b and:
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• if the skewness is less than a, then

P (|X̄n −E(X)| < ε) > P (|X̃n −med(X)| < ε);

• if the skewness is between a and b, then we have both

P (|X̄n − E(X)| < ε) > P (|X̃n −med(X)| < ε)

and P (|X̄n − E(X)| < ε) < P (|X̃n −med(X)| < ε),

depending upon ε or n;

• and if the skewness is larger than b, then

P (|X̄n −E(X)| < ε) < P (|X̃n −med(X)| < ε).

Such change-interval is an unanticipated, intriguing, and interesting
finding.

5. For ε := 0.1, as n → ∞, the convergence of the probabilities

P (|X̄n − E(X)| < ε) → 1 and P (|X̃n −med(X)| < ε) → 1

is well supported by the estimates in Tables 2–5. However, and also for
ε := 0.1, as the skewness increases, the data in Tables 6–9 illustrate
the convergence well for P (|X̃n − med(X)| < ε), but, in comparison,
P (|X̄n − E(X)| < ε) appears to converge much more slowly.

6. When ε := 0.01 or ε := 0.001, as n → ∞, the estimates in Tables 2–4
suggest that P (|X̄n − E(X)| < ε) and P (|X̃n − med(X)| < ε) have
nearly equal convergence rates. However, and also for ε := 0.01 or
ε := 0.001, as the skewness increases, the data in Tables 5–9 suggest
that the convergence rate for P (|X̃n−med(X)| < ε) is faster than that of
P (|X̄n − E(X)| < ε).

7. When ε := 0.01 or ε := 0.001, and the sample size n = 10,000, both
estimated probabilities P (|X̄n−E(X)| < ε) and P (|X̃n−med(X)| < ε)
in Tables 2–9 are often still quite small. This suggests that, as n → ∞,
these probabilities converge slowly when ε := 0.01 or smaller.

8. Overall, X̄n and X̃n appear faithful to their purpose as estimators of the
respective parameters E(X) and med(X). Indeed, the estimated proba-
bilities for P (|X̄n − med(X)| < ε) and P (|X̃n − E(X)| < ε) that X̄n

and X̃n stray toward the other, wrong parameter are nearly always equal
to 0.
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9. Table 10 shows the difference

P (|X̃n −med(X)| < ε)− P (|X̄n − E(X)| < ε)

of the probability estimates. From that table we note three items.

• A glance at the table reveals that most entries are positive. This
means that in our study we generally find that

P (|X̃n −med(X)| < ε) > P (|X̄n − E(X)| < ε),

which we attribute to the sample-median’s robustness, since we only
consider skewed distributions.

• In general, looking across each table row, we find that, as the sample
size increases, the entries increase in magnitude. Moreover, sepa-
rately for each value of ε, such increase is more pronounced when
the skewness is 33.5 or larger.

• Looking down the table’s columns, and separately for each value of
ε and n, we find that the entries stabilize and become nearly constant
when the skewness is 33.5 or larger. Moreover, for such skewness
values, and separately for each n, the entries decrease proportionally
to the decrease in ε from 0.1 to 0.01 to 0.001. Such entries appear
to vary regularly enough that they would seem to be predictable with
reasonable certainty in terms of ε, n, and the skewness.

The preceding observations suggest the existence of a
changepoint or a change-interval (c, d) so that the differences

P (|X̃n −med(X)| < ε)− P (|X̄n − E(X)| < ε)

become nearly constant when the skewness is larger than d, and sep-
arately for each ε and n. From our results, it seems that the value
of d is somewhere between 14 and 33.5. Of course, such change-
interval is only interesting when the values of ε, n, and the skewness
are within a certain range, to be determined by further research; see
Section 4.

This change-interval is another unanticipated, intriguing, and
interesting finding.

4 Further study

For completeness, we recall a theorem and two definitions that are relevant to
our investigation; these three items are related.
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Theorem 2 (Weak law of large numbers). Let (Yk)∞k=1 be a sequence of inde-
pendent and identically distributed random variables whose mean θ := E(Yk)
exists. Then, for all ε > 0,

lim
n→∞

P

(∣∣∣∣∣ 1n
n∑

k=1

Yk − θ

∣∣∣∣∣ < ε

)
= 1.

The sequence of random variables (Yn)
∞
n=1 converges in probability to the

random variable Y if, for all ε > 0,

lim
n→∞

P (|Yn − Y | < ε) = 1.

The sequence of estimators (Yn)∞n=1 is consistent for the parameter θ if, for
all ε > 0,

lim
n→∞

P (|Yn − θ| < ε) = 1.

As mentioned earlier, we assume that the population mean exists and that
the population median is unique. Then the sample mean X̄n and the sample
median X̃n converge in probability to—and are consistent for—the respective
parameters E(X) and med(X).

Following are some questions that we propose for further study.

• In general, does the change-interval (a, b) mentioned in item number 4 of
Section 3 exist? Is it possible to express the endpoints a and b as functions
of ε, n, and the skewness? If so, how?

As both ε → 0 and n → 0, it is reasonable to believe that

P (|X̄n − E(X)| < ε) → 0 and P (|X̃n −med(X)| < ε) → 0.

Therefore, when both ε and n are very small, we anticipate that

P (|X̄n −E(X)| < ε) ≈ P (|X̃n −med(X)| < ε) ≈ 0,

and then such notion of a change-interval is not interesting.

• In items 5, 6, and 7 of Section 3, we made some comments regarding

lim
n→∞

P (|X̄n−E(X)| < ε) = 1 and lim
n→∞

P (|X̃n−med(X)| < ε) = 1.

The speed of convergence is always an interesting issue which, however,
appears to have been overlooked for the limits we study. Therefore, we
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ask: Given ε > 0, what can be said about the convergence rate for the
limits

lim
n→∞

P (|X̄n−E(X)| < ε) = 1 and lim
n→∞

P (|X̃n−med(X)| < ε) = 1?

Our results suggest that, in general, such convergence rate is slow. In
particular, is it possible to express the convergence rate explicitly in terms
of the distribution’s skewness? And, if so, how?

• Can the stabilized, nearly constant entries in Table 10 be predicted, as
mentioned in item number 9 of Section 3? If so, how?

• In general, does the change-interval (c, d) mentioned in item number 9 of
Section 3 exist? Is it possible to express the endpoints c and d as functions
of ε, n, and the skewness? If so, how?

Since both X̄n and X̃n are consistent for their respective parameters
E(X) and med(X), for each ε > 0 and skewness value, there must exist
a natural number N such that, for all n ≥ N ,

P (|X̃n −med(X)| < ε)− P (|X̄n − E(X)| < ε) ≈ 0.

Therefore, when the sample size n is greater than or equal to such N , the
notion of a change-interval is not interesting in this context.
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