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Abstract 

The programing language Python has been rapidly 
gaining in popularity and it has now become the first 
choice for implementing all kinds of systems in different 
software development fields. Programmers now use it for 
parallel processing on multicore and manycore 
architectures through specific modules such as Numba, 
PyCuda or mpi4Py. Much analysis work has been 
conducted to compare the performance of Python and 
commonly-used programming languages such as Java. 
This article presents a further comparison by solving the 
Belousov-Zhabotinsky oscillating reaction problem with 
both languages by using symmetrical multiprocessing 
with data partition. 

Keywords: Belousov-Zhabotinsky oscillating reaction, barrier, 
concurrency, threads, Java, multiprocessing, Python, 
processes, speedup locks, mutual exclusion, synchronization 

1. Introduction 

Python is an extremely powerful, dynamic programming 
language which is quickly becoming widely used in all 
areas of technical and scientific computing, including 
parallel processing on all kinds of platforms in order to 
improve application performance [2]. It was ranked first in 
The 2017 Top Programming Languages Classification 
[19] followed by C [5] and Java in second and third place. 
As a multipurpose language, Python provides native 
support to parallel processing through two modules: 
threading and multiprocessing. The first of these enables 
multithread programming which is very similar both in 
terms of use and philosophy to other languages such as 
Java, C # and C ++  [9, 15, 16], and incorporates all the 
standard support for synchronizing threads with locks, 
traffic lights, and condition variables. Nevertheless, it is 
useless to attempt efficient parallel programming with 
Python threads [23] since there is an intrinsic restriction 
that prevents it. The Python interpreter incorporates a 
global interpreter lock (GIL) to prevent parallel thread 
execution. In fact, the GIL forces a thread to acquire a 
lock for execution, and stops concurrent access to 
Python objects from different threads, thereby protecting 
the interpreter memory and causing the memory collector 
to work in a suitable way. The diagram in Figure 1 shows 
how the Python GIL works for three parallel threads. 
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Figure 1.  Python thread execution with GIL 

 

There is a very clear conclusion to be drawn from the thread time line: it is not 
possible to develop parallel programming with threads using Python. If we attempt to 
do so, we will obtain sub-unit speedups.  

The alternative is for programmers to use a parallel process approach that does 
not require the use of GIL. This article presents a simulation model for the Belousov-
Zhabotinsky chemical reaction using a bi-dimensional, cellular automaton. For 
comparison purposes, we implement the model with Python and the popular Java in 
order to compare both parallel implementations. Our results show that Python offers 
worse execution times and speedups than Java, something which is consistent with 
other kinds of problems as Table 1 shows.  

The article is structured as follows: Section 2 briefly describes the Belousov-
Zhabotinsky chemical reaction; Section 3 provides a basic background to cellular 
automata; Section 4 describes the methodology used; Section 5 presents and 
discusses our measurements; and finally, Section 6 outlines our conclusions. 

2. Introduction 

The Belousov-Zhabotinsky reaction (BZ) was the first oscillating chemical reaction to 
be discovered by P.B. Belousov in 1950 when he dissolved citric acid in water with 
acid bromate and ceric ions to produce an oscillating pattern of yellow tones (Figure 
2) as the reaction time progressed. Nowadays, there are many industrial chemical 
processes with oscillating reactions and some of these have a great financial impact. 
For this reason, it is extremely interesting to describe this type of reaction with 
mathematical models and to quickly and efficiently solve these models. 

 If two substrates A and B are evenly distributed in a reactive medium, they 

produce a new substrate C according to the equation 𝐴 + 𝐵 → 𝐶. 
 

 

 
Figure 2.  BZ reaction in a Petri dish 

 
When the reaction occurs in a Petri dish, a characteristic oscillating pattern with 

complex waves is obtained (Figure 2). It is very simple to write the concentration 
time variations for the three substrates using the following dynamic system 

approach, where the reaction speed 𝑟 depends on concentrations A and B: 
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�̇� = −𝑟 

�̇� = −𝑟 

�̇� = 𝑟 
 
From this, it is easy to see that 𝑟 = 𝑘𝐴𝐵 where the 𝑘 constant is usually 

determined experimentally. All of these concepts can be extended to include the 

presence of stoichiometric coefficients according to the equation 𝛼𝐴 + 𝛽𝐵 → 𝛾𝐶, 

where α, β, γ≥0. The law of mass action allows us to reformulate 𝑟 as 𝑟 = 𝑘𝐴𝛼𝐵𝛽 
and so we can logically write 

 

�̇� = −𝛼𝑟 

�̇� = −𝛽𝑟 

�̇� = 𝛾𝑟 
 
and trivially 

�̇� = −𝛼𝑘𝐴𝛼𝐵𝛽 

�̇� = −𝛽𝑘𝐴𝛼𝐵𝛽 

�̇� = 𝛾𝑘𝐴𝛼𝐵𝛽 
 

for initial concentrations of substrates 𝐴0, 𝐵0 and 𝐶0. These equations can 
eventually be solved and expressed in the following discrete way: 

 

𝐴𝑡+1 = 𝐴𝑡 + 𝐴𝑡(𝛼𝐵𝑡 − 𝛾𝐶𝑡) 
𝐵𝑡+1 = 𝐵𝑡 + 𝐵𝑡(𝛽𝐶𝑡 − 𝛼𝐴𝑡) 
𝐶𝑡+1 = 𝐶𝑡 + 𝐶𝑡(𝛾𝐴𝑡 − 𝛽𝐵𝑡) 

 

In these, the amount of each solute at time 𝑡 + 1 depends on the amount of the 
solute at time 𝑡, and the concentrations of the other two solutes adjusted by 
stoichiometric coefficients. 

3. 2d cellular automaton 

There are many definitions of cellular automata in literature. In many fields, they 
have been used as a tool to model highly complex physical realities such as the 
spreading of forest fires, substance percolation, combining solutes from a chemical 
reaction or simulating urban traffic. We have chosen the definition established in [30] 
and applied it to simulate BZ oscillating reactions. A cellular automaton (CA) will be 

defined as a 4-tuple  𝑀 = (ζ, ε, ΝI, ρ) where: 
 

 ζ is a regular discrete network of cells (also called nodes) together with a 
set of border conditions for the finite case which are used to define the 
neighborhood of cells located at the network border.  

 ε is a finite set (usually with an algebraic Abelian ring structure) of states 
that the network cell can adopt. 

 ΝI is a finite set of cells that define the neighborhood with which a given 
network cell can interact. 

 ρ is the transition function, that defines how a cell’s state can change 
according to time and the state of its neighboring cells ΝI. 

 
In view of these definitions, any cell area can be defined as a network t included 

in the real Rd and which uniformly covers a portion of the d-dimensional Euclidean 
space. Each cell is labeled by its position 𝑟 ∈  ζ. The layout of the cells is spatially 
specified by their connections with their closest neighbors and these connections are 
obtained by connecting pairs of cells following a regular pattern. For any spatial 
coordinate 𝑟, the neighborhood grid 𝑁𝑏(𝑟) consists of a list of neighboring cells 
defined by 

 

𝑁𝑏(𝑟) = {𝑟 + 𝑐𝑖: 𝑐𝑖 ∈ 𝑁𝑏, 𝑖 = 1, ⋯ , 𝑏}           
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where 𝑏 is the coordination number (i.e. the number of the nearest-neighbors in 

the grid that directly interact with the cell located at coordinate 𝑟). We use 𝑁𝑏 to 

denote any nearest-neighbor pattern with the elements 𝑐𝑖 ∈ 𝑅𝑑 for 𝑖 = 1, ⋯ , 𝑏. For 
our model, we choose d=2, so 

 

ζ= {r: r = (r1, r2) ∈ 𝑍2}                              
 

The total number of cells available is usually denoted by |ζ|. In computer 
simulations, AC use finite grids (|ζ| < ∞), and border conditions must be imposed. 
Our simulation will use Moore’s border conditions. The set of neighboring cells 

whose state influences a given one is defined by the interaction neighborhood 𝑁𝑏
𝐼(𝑟) 

for a given 𝑟 cell, according to the following expression: 
 

Nb
I (r) = {r + ci: ci ∈ Nb

I }                           

 
There are a number of ways to choose this neighborhood and for our simulation, 

we have chosen the Moore neighborhood where any cell only has its surrounding 
cells as neighbors (Figure 3). 

 

 

 
Figure 3. Moore neighborhood for cell 𝑟 = (𝑖, 𝑗) 

 

Each cell 𝑟 ∈ ζ has a state 𝑠(𝑟) ∈ ε. The elements in set ε can be numbers, 

letters, or symbols. An overall configuration of the automaton 𝑠 ∈ ε|ζ| is determined 
by the state of all the cells in the grid. Finally, the time-evolution dynamics of our 
model is determined by the function of transition ρ that specifies the changes in any 
cell state according to its previous state, and the interaction with its nearest-
neighboring cells and this is given by: 

 
ρ: ε𝜇 → ε                                                              
 

where 𝜇 = |𝑁𝑏
𝐼|. The rule is proved to be spatially homogeneous and does not 

therefore explicitly depend on the position of a given cell. Extensions of the definition 
to include temporary or spatial homogeneity are feasible. If the CA is deterministic, 
the function of transition yields only one feasible change of state, whereas if it is 
stochastic, the new state of a cell state is given by a specific probability distribution. 

4. Method 

From the discrete-equation model of the BZ reaction and using a two-dimensional 
cellular automaton [4, 11, 12, 19, 21], it is possible to write an algorithm that is 
capable of simulating the time evolution of the reaction. Its pseudocode is illustrated 
below. 

 
Algorithm BZ 

 

float [][][] a; 

float [][][] b; 

float [][][] c; 

 

int p      = 0; 

int q      = 1; 

int width  = 1600; 

xi-1,j-1 xi-1,j xi-1,j+1 

xi,j-1 xi,j xi,j+1 

xi+1,j-1 xi+1,j xi+1,j+1 
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int height = 1600; 

alfa       = 1.2f; 

beta       = 1.0f; 

gamma      = 1.0f 

 

void setup (){ 

  a = new float [width][height][2]; 

  b = new float [width][height][2]; 

  c = new float [width][height][2]; 

  for (int x = 0; x < width ; x ++){ 

    for (int y = 0; y < height ; y ++){ 

      a[x][y][p] = random (0.0 ,1.0); 

      b[x][y][p] = random (0.0 ,1.0); 

      c[x][y][p] = random (0.0 ,1.0); 

    } 

  } 

} 

 

void compute (){ 

  for (int x = 0; x < width ; x++){ 

    for (int y = 0; y < height ; y++){ 

      float c_a = 0.0;  

      float c_b = 0.0; 

      float c_c = 0.0; 

    for (int i=x-1; i<=x+1; i++){ 

      for(int j=y-1; j<=y+1; j++){ 

        c_a+=a[(i+ width)%width] 

  [(j+height)%height][p]; 

        c_b+=b[(i+ width)%width] 

  [(j+height)%height][p]; 

        c_c+=c[(i+ width)%width] 

  [(j+height)%height][p]; 

      } 

    }   

    c_a /= 9.0; 

    c_b /= 9.0; 

    c_c /= 9.0; 

    a[x][y][q]= constrain( 

c_a+c_a*(alfa*c_b-gamma*c_c)); 

    b[x][y][q]= constrain( 

c_b+c_b*(beta*c_c-alfa*c_a)); 

    c[x][y][q]= constrain( 

c_c+c_c*(gamma*c_a-beta*c_b)); 

  } 

 

 if(p==0){p = 1; q = 0;} 

    else {p = 0; q = 1;} 

 } 

} 

 
Using this code, we developed and subsequently parallelized programs written in 

Python (Figure 4) and single-thread Java to solve the simulation through symmetric 
multiprocessing with automatic data partitioning [3, 15] according to the number of 
tasks. With Python, and given the very serious limitations imposed by the global 
interpreter lock for parallel threads to be efficient, we chose to use the 
multiprocessing module to model tasks with processes, and the NumPy module so 
that the standard arrays were efficient. In Java, tasks were supported with the 
Runnable interface. For both languages, the tasks were executed using a thread 
pool executor [7, 8, 10, 13, 20]. It was also necessary to introduce a barrier 
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synchronization condition to resynchronize the tasks after each stage of the 
simulation. 

 

5. Measurements and discussion 

In order to develop the measurements, we used an Intel (R) Core ™ i5-5440 
processor (3.10 GHz) with 8 GB of RAM and the Linux Fedora 24 operating system. 
We used Python version 3.6.4 and Java version 1.8.0_111 from Oracle. The grid 
size was 1600×1600 nodes, and the simulation was made for a total of 100 
iterations. Time measurements were taken for a variable number of tasks between 1 
and 16, and these were used to calculate the resulting speedups. The measurement 
results are displayed in Figures 5 and 6. 

The first characteristic that we should highlight is the very wide difference in 
execution times between both languages. This might well attract attention if it were 
not for the fact that it has been well described in literature [17] for a very wide range 
of problems. Table 1 lists some of these problems and shows the times required to 
solve them using the two languages and the amount of memory required. 

 

Problem P(s) J(s) P(Mb) J(Mb) 

PIDIGITS 3.43 3.12 12.7 36.7 
REGEX 15.22 10.34 447.3 627.2 
REV.-COMP. 3.26 1.03 264.5 191.0 
K-
NUCLEOTIDE 

77.65 8.70 182.7 375.5 

BINARY-TREE 93.55 8.34 280.6 293.0 
FASTA 59.47 2.33 15.9 43.9 
MANDELBROT 225.24 6.04 15.7 76.5 
N-CUERPOS 838.39 22.10 10.3 33.1 

Table 1. Python versus Java 

 

 

 
 

Figure 4. BZ simulation with Python sequential code 

 
As the figure shows [17], Python is always slower than Java although it generally 

uses less memory to solve the problems. It is also apparent how as the 
computational load of the problems to be solved increases, this difference becomes 
even greater and is particularly pronounced when generating the Mandelbrot set or 
in the numerical resolution of the n-bodies problem. 

Figure 5 shows the execution times for an increasing number of tasks and we can 
see how differences between both languages compare favorably with those already 
illustrated in literature for very different types of problems from those in Table 1 while 
fully consistent with it. It should also be noted that Python behaves particularly well 
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when the number of parallel processes is equal to the number of physical cores 
available on the platform, which in this case is four, while it proves to be very 
sensitive to a larger number of tasks, with worse times for these situations. 

In view of this, is the limitation presented by Python’s symmetric multiprocessing 
so serious? We believe that the answer to this question is yes, but with some 
important differences since Python provides scientific computing-oriented modules 
which can greatly improve processing times. As an example, in addition to the 
NumPy module that we have used, the SciPy module enables even greater 
improvements. Table 2 displays the times obtained by rewriting the sequential 
version of Python using SciPy. 

 

Sequential Version Time (seconds) 

Python 282.39 
Python (SciPy) 29.56 
Java 7.15 

Table 2. Python (with/without SciPy) versus Java 

 
As can be seen, by introducing the SciPy module and using the predefined 2-d 

convolution included to recalculate solute concentrations, it is possible to accelerate 
the sequential version of Python to a tenth of the original time brining it close to 
Java. 

 

 

 
 

Figure 5. Processing time for BZ parallel simulation 

 
Figure 6 illustrates the speedups obtained for the processing times for a different 

number of tasks when compared to a sequential version of the simulation. We can 
see that Java accelerates computations better than Python, and that the plateau 
stage that is reached for this type of curve when tasks exceed the number of 
physical cores in Python slopes slightly where acceleration decreases. In both 
languages, optimal speedup is clearly achieved when the number of tasks equals 
the number of physical cores in line with similar types of problems to the one we are 
dealing with.  
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Figure 6. Speedups for BZ parallel simulation 

 

6. Conclusions and future works 

From the results obtained, we can conclude that the symmetric multiprocessing with 
processes in Python does not improve either the time or acceleration of the results 
obtained with Java for the BZ problem and this is fully consistent with literature for a 
wide range of different problems as Table 1 shows. Nevertheless, it is still possible 
to further accelerate the code in Python by using specially designed, scientific 
computing modules which can reduce the execution time to up to a tenth to obtain 
execution times for parallel solutions that approach and match those obtained with 
other languages used in symmetric multiprocessing. 

Our future work will focus on designing simulations of the BZ reaction on GPU 
architectures using the Python language and the Numba and/or PyCuda modules. 
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