
Tomeu et al.

ANN. MULT. GPU PROG.

A Parallel Model for the Belousov-

Zhabotinsky Oscillating Reaction

with Python and Java

 Antonio J. Tomeu1*, Alberto G. Salguero1 and Manuel I . Capel2

Abstract

The programing language Python has been rapidly
gaining in popularity and it has now become the first
choice for implementing all kinds of systems in different
software development fields. Programmers now use it for
parallel processing on multicore and manycore
architectures through specific modules such as Numba,
PyCuda or mpi4Py. Much analysis work has been
conducted to compare the performance of Python and
commonly-used programming languages such as Java.
This article presents a further comparison by solving the
Belousov-Zhabotinsky oscillating reaction problem with
both languages by using symmetrical multiprocessing
with data partition.

Keywords: Belousov-Zhabotinsky oscillating reaction, barrier,
concurrency, threads, Java, multiprocessing, Python,
processes, speedup locks, mutual exclusion, synchronization

1. Introduction

Python is an extremely powerful, dynamic programming
language which is quickly becoming widely used in all
areas of technical and scientific computing, including
parallel processing on all kinds of platforms in order to
improve application performance [2]. It was ranked first in
The 2017 Top Programming Languages Classification
[19] followed by C [5] and Java in second and third place.
As a multipurpose language, Python provides native
support to parallel processing through two modules:
threading and multiprocessing. The first of these enables
multithread programming which is very similar both in
terms of use and philosophy to other languages such as
Java, C # and C ++ [9, 15, 16], and incorporates all the
standard support for synchronizing threads with locks,
traffic lights, and condition variables. Nevertheless, it is
useless to attempt efficient parallel programming with
Python threads [23] since there is an intrinsic restriction
that prevents it. The Python interpreter incorporates a
global interpreter lock (GIL) to prevent parallel thread
execution. In fact, the GIL forces a thread to acquire a
lock for execution, and stops concurrent access to
Python objects from different threads, thereby protecting
the interpreter memory and causing the memory collector
to work in a suitable way. The diagram in Figure 1 shows
how the Python GIL works for three parallel threads.

*Correspondence:

antonio.tomeu@uca.es
1
Department of Computer

Science. University of Cádiz.

Cádiz, Spain

2
Department of Software

Engineering University of

Granada. Granada, Spain

Annals of Multicore and GPU Programming, vol. 4 (1). ISSN: 2341-3158. 37

mailto:antonio.tomeu@uca.es

Tomeu et al.

Figure 1. Python thread execution with GIL

There is a very clear conclusion to be drawn from the thread time line: it is not
possible to develop parallel programming with threads using Python. If we attempt to
do so, we will obtain sub-unit speedups.

The alternative is for programmers to use a parallel process approach that does
not require the use of GIL. This article presents a simulation model for the Belousov-
Zhabotinsky chemical reaction using a bi-dimensional, cellular automaton. For
comparison purposes, we implement the model with Python and the popular Java in
order to compare both parallel implementations. Our results show that Python offers
worse execution times and speedups than Java, something which is consistent with
other kinds of problems as Table 1 shows.

The article is structured as follows: Section 2 briefly describes the Belousov-
Zhabotinsky chemical reaction; Section 3 provides a basic background to cellular
automata; Section 4 describes the methodology used; Section 5 presents and
discusses our measurements; and finally, Section 6 outlines our conclusions.

2. Introduction

The Belousov-Zhabotinsky reaction (BZ) was the first oscillating chemical reaction to
be discovered by P.B. Belousov in 1950 when he dissolved citric acid in water with
acid bromate and ceric ions to produce an oscillating pattern of yellow tones (Figure
2) as the reaction time progressed. Nowadays, there are many industrial chemical
processes with oscillating reactions and some of these have a great financial impact.
For this reason, it is extremely interesting to describe this type of reaction with
mathematical models and to quickly and efficiently solve these models.

 If two substrates A and B are evenly distributed in a reactive medium, they

produce a new substrate C according to the equation 𝐴 + 𝐵 → 𝐶.

Figure 2. BZ reaction in a Petri dish

When the reaction occurs in a Petri dish, a characteristic oscillating pattern with

complex waves is obtained (Figure 2). It is very simple to write the concentration
time variations for the three substrates using the following dynamic system

approach, where the reaction speed 𝑟 depends on concentrations A and B:

38

Tomeu et al.

�̇� = −𝑟

�̇� = −𝑟

�̇� = 𝑟

From this, it is easy to see that 𝑟 = 𝑘𝐴𝐵 where the 𝑘 constant is usually

determined experimentally. All of these concepts can be extended to include the

presence of stoichiometric coefficients according to the equation 𝛼𝐴 + 𝛽𝐵 → 𝛾𝐶,

where α, β, γ≥0. The law of mass action allows us to reformulate 𝑟 as 𝑟 = 𝑘𝐴𝛼𝐵𝛽
and so we can logically write

�̇� = −𝛼𝑟

�̇� = −𝛽𝑟

�̇� = 𝛾𝑟

and trivially

�̇� = −𝛼𝑘𝐴𝛼𝐵𝛽

�̇� = −𝛽𝑘𝐴𝛼𝐵𝛽

�̇� = 𝛾𝑘𝐴𝛼𝐵𝛽

for initial concentrations of substrates 𝐴0, 𝐵0 and 𝐶0. These equations can
eventually be solved and expressed in the following discrete way:

𝐴𝑡+1 = 𝐴𝑡 + 𝐴𝑡(𝛼𝐵𝑡 − 𝛾𝐶𝑡)
𝐵𝑡+1 = 𝐵𝑡 + 𝐵𝑡(𝛽𝐶𝑡 − 𝛼𝐴𝑡)
𝐶𝑡+1 = 𝐶𝑡 + 𝐶𝑡(𝛾𝐴𝑡 − 𝛽𝐵𝑡)

In these, the amount of each solute at time 𝑡 + 1 depends on the amount of the
solute at time 𝑡, and the concentrations of the other two solutes adjusted by
stoichiometric coefficients.

3. 2d cellular automaton

There are many definitions of cellular automata in literature. In many fields, they
have been used as a tool to model highly complex physical realities such as the
spreading of forest fires, substance percolation, combining solutes from a chemical
reaction or simulating urban traffic. We have chosen the definition established in [30]
and applied it to simulate BZ oscillating reactions. A cellular automaton (CA) will be

defined as a 4-tuple 𝑀 = (ζ, ε, ΝI, ρ) where:

 ζ is a regular discrete network of cells (also called nodes) together with a
set of border conditions for the finite case which are used to define the
neighborhood of cells located at the network border.

 ε is a finite set (usually with an algebraic Abelian ring structure) of states
that the network cell can adopt.

 ΝI is a finite set of cells that define the neighborhood with which a given
network cell can interact.

 ρ is the transition function, that defines how a cell’s state can change
according to time and the state of its neighboring cells ΝI.

In view of these definitions, any cell area can be defined as a network t included

in the real Rd and which uniformly covers a portion of the d-dimensional Euclidean
space. Each cell is labeled by its position 𝑟 ∈ ζ. The layout of the cells is spatially
specified by their connections with their closest neighbors and these connections are
obtained by connecting pairs of cells following a regular pattern. For any spatial
coordinate 𝑟, the neighborhood grid 𝑁𝑏(𝑟) consists of a list of neighboring cells
defined by

𝑁𝑏(𝑟) = {𝑟 + 𝑐𝑖: 𝑐𝑖 ∈ 𝑁𝑏, 𝑖 = 1, ⋯ , 𝑏}

39

Tomeu et al.

where 𝑏 is the coordination number (i.e. the number of the nearest-neighbors in

the grid that directly interact with the cell located at coordinate 𝑟). We use 𝑁𝑏 to

denote any nearest-neighbor pattern with the elements 𝑐𝑖 ∈ 𝑅𝑑 for 𝑖 = 1, ⋯ , 𝑏. For
our model, we choose d=2, so

ζ= {r: r = (r1, r2) ∈ 𝑍2}

The total number of cells available is usually denoted by |ζ|. In computer
simulations, AC use finite grids (|ζ| < ∞), and border conditions must be imposed.
Our simulation will use Moore’s border conditions. The set of neighboring cells

whose state influences a given one is defined by the interaction neighborhood 𝑁𝑏
𝐼(𝑟)

for a given 𝑟 cell, according to the following expression:

Nb
I (r) = {r + ci: ci ∈ Nb

I }

There are a number of ways to choose this neighborhood and for our simulation,

we have chosen the Moore neighborhood where any cell only has its surrounding
cells as neighbors (Figure 3).

Figure 3. Moore neighborhood for cell 𝑟 = (𝑖, 𝑗)

Each cell 𝑟 ∈ ζ has a state 𝑠(𝑟) ∈ ε. The elements in set ε can be numbers,

letters, or symbols. An overall configuration of the automaton 𝑠 ∈ ε|ζ| is determined
by the state of all the cells in the grid. Finally, the time-evolution dynamics of our
model is determined by the function of transition ρ that specifies the changes in any
cell state according to its previous state, and the interaction with its nearest-
neighboring cells and this is given by:

ρ: ε𝜇 → ε

where 𝜇 = |𝑁𝑏
𝐼|. The rule is proved to be spatially homogeneous and does not

therefore explicitly depend on the position of a given cell. Extensions of the definition
to include temporary or spatial homogeneity are feasible. If the CA is deterministic,
the function of transition yields only one feasible change of state, whereas if it is
stochastic, the new state of a cell state is given by a specific probability distribution.

4. Method

From the discrete-equation model of the BZ reaction and using a two-dimensional
cellular automaton [4, 11, 12, 19, 21], it is possible to write an algorithm that is
capable of simulating the time evolution of the reaction. Its pseudocode is illustrated
below.

Algorithm BZ

float [][][] a;

float [][][] b;

float [][][] c;

int p = 0;

int q = 1;

int width = 1600;

xi-1,j-1 xi-1,j xi-1,j+1

xi,j-1 xi,j xi,j+1

xi+1,j-1 xi+1,j xi+1,j+1

40

Tomeu et al.

int height = 1600;

alfa = 1.2f;

beta = 1.0f;

gamma = 1.0f

void setup (){

 a = new float [width][height][2];

 b = new float [width][height][2];

 c = new float [width][height][2];

 for (int x = 0; x < width ; x ++){

 for (int y = 0; y < height ; y ++){

 a[x][y][p] = random (0.0 ,1.0);

 b[x][y][p] = random (0.0 ,1.0);

 c[x][y][p] = random (0.0 ,1.0);

 }

 }

}

void compute (){

 for (int x = 0; x < width ; x++){

 for (int y = 0; y < height ; y++){

 float c_a = 0.0;

 float c_b = 0.0;

 float c_c = 0.0;

 for (int i=x-1; i<=x+1; i++){

 for(int j=y-1; j<=y+1; j++){

 c_a+=a[(i+ width)%width]

 [(j+height)%height][p];

 c_b+=b[(i+ width)%width]

 [(j+height)%height][p];

 c_c+=c[(i+ width)%width]

 [(j+height)%height][p];

 }

 }

 c_a /= 9.0;

 c_b /= 9.0;

 c_c /= 9.0;

 a[x][y][q]= constrain(

c_a+c_a*(alfa*c_b-gamma*c_c));

 b[x][y][q]= constrain(

c_b+c_b*(beta*c_c-alfa*c_a));

 c[x][y][q]= constrain(

c_c+c_c*(gamma*c_a-beta*c_b));

 }

 if(p==0){p = 1; q = 0;}

 else {p = 0; q = 1;}

 }

}

Using this code, we developed and subsequently parallelized programs written in

Python (Figure 4) and single-thread Java to solve the simulation through symmetric
multiprocessing with automatic data partitioning [3, 15] according to the number of
tasks. With Python, and given the very serious limitations imposed by the global
interpreter lock for parallel threads to be efficient, we chose to use the
multiprocessing module to model tasks with processes, and the NumPy module so
that the standard arrays were efficient. In Java, tasks were supported with the
Runnable interface. For both languages, the tasks were executed using a thread
pool executor [7, 8, 10, 13, 20]. It was also necessary to introduce a barrier

41

Tomeu et al.

synchronization condition to resynchronize the tasks after each stage of the
simulation.

5. Measurements and discussion

In order to develop the measurements, we used an Intel (R) Core ™ i5-5440
processor (3.10 GHz) with 8 GB of RAM and the Linux Fedora 24 operating system.
We used Python version 3.6.4 and Java version 1.8.0_111 from Oracle. The grid
size was 1600×1600 nodes, and the simulation was made for a total of 100
iterations. Time measurements were taken for a variable number of tasks between 1
and 16, and these were used to calculate the resulting speedups. The measurement
results are displayed in Figures 5 and 6.

The first characteristic that we should highlight is the very wide difference in
execution times between both languages. This might well attract attention if it were
not for the fact that it has been well described in literature [17] for a very wide range
of problems. Table 1 lists some of these problems and shows the times required to
solve them using the two languages and the amount of memory required.

Problem P(s) J(s) P(Mb) J(Mb)

PIDIGITS 3.43 3.12 12.7 36.7
REGEX 15.22 10.34 447.3 627.2
REV.-COMP. 3.26 1.03 264.5 191.0
K-
NUCLEOTIDE

77.65 8.70 182.7 375.5

BINARY-TREE 93.55 8.34 280.6 293.0
FASTA 59.47 2.33 15.9 43.9
MANDELBROT 225.24 6.04 15.7 76.5
N-CUERPOS 838.39 22.10 10.3 33.1

Table 1. Python versus Java

Figure 4. BZ simulation with Python sequential code

As the figure shows [17], Python is always slower than Java although it generally

uses less memory to solve the problems. It is also apparent how as the
computational load of the problems to be solved increases, this difference becomes
even greater and is particularly pronounced when generating the Mandelbrot set or
in the numerical resolution of the n-bodies problem.

Figure 5 shows the execution times for an increasing number of tasks and we can
see how differences between both languages compare favorably with those already
illustrated in literature for very different types of problems from those in Table 1 while
fully consistent with it. It should also be noted that Python behaves particularly well

42

Tomeu et al.

when the number of parallel processes is equal to the number of physical cores
available on the platform, which in this case is four, while it proves to be very
sensitive to a larger number of tasks, with worse times for these situations.

In view of this, is the limitation presented by Python’s symmetric multiprocessing
so serious? We believe that the answer to this question is yes, but with some
important differences since Python provides scientific computing-oriented modules
which can greatly improve processing times. As an example, in addition to the
NumPy module that we have used, the SciPy module enables even greater
improvements. Table 2 displays the times obtained by rewriting the sequential
version of Python using SciPy.

Sequential Version Time (seconds)

Python 282.39
Python (SciPy) 29.56
Java 7.15

Table 2. Python (with/without SciPy) versus Java

As can be seen, by introducing the SciPy module and using the predefined 2-d

convolution included to recalculate solute concentrations, it is possible to accelerate
the sequential version of Python to a tenth of the original time brining it close to
Java.

Figure 5. Processing time for BZ parallel simulation

Figure 6 illustrates the speedups obtained for the processing times for a different

number of tasks when compared to a sequential version of the simulation. We can
see that Java accelerates computations better than Python, and that the plateau
stage that is reached for this type of curve when tasks exceed the number of
physical cores in Python slopes slightly where acceleration decreases. In both
languages, optimal speedup is clearly achieved when the number of tasks equals
the number of physical cores in line with similar types of problems to the one we are
dealing with.

43

Tomeu et al.

Figure 6. Speedups for BZ parallel simulation

6. Conclusions and future works

From the results obtained, we can conclude that the symmetric multiprocessing with
processes in Python does not improve either the time or acceleration of the results
obtained with Java for the BZ problem and this is fully consistent with literature for a
wide range of different problems as Table 1 shows. Nevertheless, it is still possible
to further accelerate the code in Python by using specially designed, scientific
computing modules which can reduce the execution time to up to a tenth to obtain
execution times for parallel solutions that approach and match those obtained with
other languages used in symmetric multiprocessing.

Our future work will focus on designing simulations of the BZ reaction on GPU
architectures using the Python language and the Numba and/or PyCuda modules.

References

1. Adamatzky, A., De Lacy, B. & Asai, T. Reaction-Diffusion Computers. Elsevier B. V.,
2005.

2. Akhter, S. & Roberts, J. Multicore Programming Increasing Performance through
Software Multithreading. Intel Press, Digital Edition, 2006.

3. Balaji, P. (ed.) Programming Models for Parallel Computing. The MIT Press, 2015.

4. Bandman, O. Mapping Physical Phenomenon to CA-Models. Automata-2008. Theory and
Applications of Cellular Automata, 381-395. Luniver Press, 2008.

5. Batty, M., Memarian, K., Owens, S., Summit, S. & Sewell. P. Clarifying and Compiling
C/C++ Concurrency: from C++11 to Power. POPL'12.
(http://www.cl.cam.ac.uk/~pes20/cppppc/popl079-batty.pdf)

6. Boehm, H. Threads Basics. What Every Programmer Should Know About Memory
Models Issues. HPL Technical Report, 2009
(http://www.hpl.hp.com/techreports/2009/HPL-2009-259html.html)

7. Fernández, J. Java 7 Concurrency Cookbook. Packt Publishing, 2012.

8. Göetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D. y Lea, D. Java Concurrency in
Practice. Addison-Wesley, 2006.

9. Goram. A.K. & From, A. A Comparative analysis between parallale models in C/C++ and
C#/Java. http://kth.diva-portal.org/smash/get/diva2:648395/FULLTEXT01.pdf. 2013.

10. Lea, D. Programación Concurrente en Java. Principios y Patrones de Diseño. Addison
Wesley, 2000.

11. Mikhailov, A. S. and Showalter, K., Control of waves, patterns and turbulence in chemical
systems. Physics Reports 425, 79-194, 2006.

12. Nefedev, K.V. & Peretyako, A.A. Superlinear Speedup of Parallel Calculation of Finite
Number Ising Spins Partition Function. Proceedings of Third International Conference of
High Performance Computing HPC-UA, 282-286, 2013.

13. Oaks, S. & Wong, H. Java Threads, 3rd Edition. O’Reilly, 2004.

14. Rauber, T. & Rünger, G. Parallel Programming for Multicore and Cluster Systems.
Second Edition. Springer-Verlag, 2012.

44

http://kth.diva-portal.org/smash/get/diva2:648395/FULLTEXT01.pdf

Tomeu et al.

15. Ringler, Roger. C# Multithreaded and Parallel Programming. Packt Publishing, 2014.

16. Robbins, K. & Robbins, S. Practical Unix Programming. A Guide to Concurrency,
Communication and Multithreading. Prentice Hall, 1996.

17. The Computer Language Benchmarks Game, 2017. In
https://benchmarksgame.alioth.debian.org/.

18. The Top Programing Languages 2017. In https://spectrum.ieee.org/static/interactive-the-
top-programming-languages-2017

19. Sharifulina, A. & Elokhin, V. Simulation of Heterogeneous Catalytic Reaction by
Asynchronous Cellular Automata on Multicomputer. Parallel Computing Technologies.
Lectures Notes in Computer Science, volume 6873, 204-209, 2011.

20. Subramanian, V. Programming Concurrency on the JVM: Mastering Synchronization,
STM and Actors. The Pragmatic Programmers, 2011

21. Yoshida, R. Self-Oscillating Gels Driven by the Belousov-Zhabotinsky Reaction as Novel
Smart Materials. Advanced Materials, Vol. 22, issue 31, pp. 3463-3483, 2010

22. Zaccone, G. Python Parallel Programming Cookbook. Packt Publishing, 2015

45

https://benchmarksgame.alioth.debian.org/

