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∆c-rings and its basic properties

∆c-anillos y sus propiedades básicas

J. Miguel Hernández1,a, Hermes Mart́ınez2,b

Abstract. In this paper we introduce a c-derivation δc, ∆c-rings and some
basic properties. Finally, we prove that the radical of a ∆c-ideal is also a
∆c-ideal.
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Resumen. En este art́ıculo introducimos una c-derivación δc, ∆c-anillos y
algunas propiedades básicas. Finalmente, como resultado general se demuestra
que el radical de un ∆c-ideal es también un ∆c-ideal.
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1. Introduction

Differential rings and differential fields are rings and fields (respectively) with
a derivation δ, which is a linear map that satisfies the Leibniz product rule.
There is a branch of mathematics called “Differential algebra” that studies these
algebraic objects and their applications to differential equations. Differential
algebra was introduced and developed by Joseph Ritt and also developed by
Ellis Robert Kolchin, a doctoral student of Ritt. Also differential Galois theory
is a branch of abstract algebra that studies fields equipped with a derivation
function and the solutions of differential equations over a differential base field
[4].

In this paper, we follow the same steps as in [1], but with a c-derivation δc,
which is a map δc : A→ A that satisfies

δc(xy) = δc(x)c(y) + δc(y)c(x),

δc(x+ y) = δc(x) + δc(y),

where c is a fixed ring homomorphism in a commutative ring A with an identity
element containing Q and with characteristic 0. Note that δc depends on c.
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In addition, we introduce the notion of a ∆c-ring which is a ring A with a
c-derivation. A concept of a (α, β)-derivation for bimodules was introduced in
[2].

We give a few examples of ∆c-rings, where it is shown that δc and c not
neccesarily commute.

On the other hand, we study also some sets defined in [3] with the c-
derivation. However, we find that the power rule and the quotient rule of
a c-derivation are different and do not satisfy the generalization of the Leibniz
rule product. Thus we have to add more conditions, in order to define an ideal,
a subring, a multiplicatively closed subsets, and others.

Once introduced the basic properties of commutative algebra, we prove that
the radical of a ∆c-ideal is also a ∆c-ideal.

Throughout this paper the word ring shall mean a commutative ring with
an identity element, containing Q and with characteristic 0. In particular we
work on polynomial rings with one or two variables.

2. ∆c-Rings, ∆c-Subrings and ∆c-Ring
Homomorphisms

In this section, we start with our main definition, the c-derivation δc. Then
we prove the power rule and quotient rule of this c-derivation, and we give the
definition of a ∆c-ring, ∆c-Subrings and ∆c-Ring Homomorphisms.

Definition 2.1. Let A be a ring, and c : A→ A be a ring homomorphism. A
c-derivation on A is a map δc : A→ A such that

δc(xy) = δc(x)c(y) + δc(y)c(x)

δc(x+ y) = δc(x) + δc(y)

for all x, y ∈ A.

Note that δc depends on the ring homomorphism c.

Lemma 2.2. Let A be a ring and δc a c-derivation on A. Then the power rule
is given by δc(xn) = nδc(x)c(xn−1) where x ∈ A and n ∈ N.

Proof. The proof follows by induction over n. Indeed, for n = 1, δc(x) =
δc(x)c(1), so assume that δc(xk) = kδc(x)c(xk−1) for all k < n, thus

δc(xn) = δc(xn−1x)

= δc(xn−1)c(x) + δc(x)c(xn−1)

= (n− 1)δc(x)c(xn−2)c(x) + δc(x)c(xn−1)

= nδc(x)c(xn−1).
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Lemma 2.3. Let A be a ring, and δc a c-derivation on A. Let y ∈ A be an
invertible element, such that c(y)2 6= 0. Then the quotient rule is given by

δc(xy−1) = δc
(
x

y

)
=

(
δc(x)c(y)− δc(y)c(x)

c(y)2

)
.

Proof. For an invertible element x ∈ A, we have

0 = δc(xx−1) = δc(x)c(x−1) + δc(x−1)c(x)

so

δc(x−1) = δc
(

1

x

)
= −δ

c(x)

c(x2)
.

Thus,

δc(xy−1) = δc(x)c(y−1) + δc(y−1)c(x)

= δc(x)c(y−1) +
δc(y)

c(y)2
c(x)

=
δc(x)c(y)− δc(y)c(x)

c(y)2
.

We must prove that the quotient rule is well defined, so we invite the lector
to section (6) for a proof.

We fix a ring homomorphism c, a c-derivation δc : A→ A and ∆c = {δc}.

Definition 2.4. A differential ring is a triple (A, c,∆c), where A is a ring with
a set of derivations ∆c.

From now on we used ∆c instead of the word differential.

Definition 2.5. Let A be a ∆c-ring, and S ⊆ A, then S is a ∆c-subring if it
is a subring of A and preserves the c-derivation, i.e. δc(S) ⊆ S, c(S) ⊆ S for
δc ∈ ∆c.

Definition 2.6. An element a ∈ A is called a constant if δc(a) = 0. Let CA
denote the set of all constant elements.

Lemma 2.7. If A is a ∆c-ring and c(CA) ⊆ CA then CA is a ∆c-subring.

Proof. Let us see that CA is a subring, indeed let a, b ∈ CA then

i) δc(a+ b) = δc(a) + δc(b) = 0 then a+ b ∈ CA.

ii) δc(ab) = δc(a)c(b) + δc(b)c(a) = 0 then ab ∈ CA.

iii) δc(1) = 0 then 1 ∈ CA.
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And δc(CA) ⊆ CA, because if a ∈ CA then δc(a) = 0 ∈ CA, so CA is a
∆c-subring.

First, we show the existence of c-derivations.

Lemma 2.8. Let R be a ring. Fix a ring homomorphism c : R[x, y]→ R[x, y],
then there exists a unique c-derivation on R[x, y] whose constants set is R.

Proof. The existence follows inmediately. Thus we prove uniqueness. Let
∂c, δc : R[x, y]→ R[x, y] be c-derivations such that

∂c(x) = δc(x),

∂c(y) = δc(y).

Then

∂c(xiyj) = ∂c(xi)c(yj) + ∂c(yj)c(xi)

= ∂c(xi)c(yj) + jc(yj−1)∂c(y)c(xi)

= δc(xi)c(yj) + jc(yj−1)δc(y)c(xi)

= δc(xiyj).

So that

∂c

∑
i,j

aijx
iyj

 =
∑
i,j

c(aijx
iyj) =

∑
i,j

c(aij)∂
c(xiyj) =

∑
i,j

c(aij)δ
c(xiyj).

This implies that ∂c(xn) = δc(xn) for all n ∈ N.

Definition 2.9. Let A be a ∆c-ring with δcA the c-derivation of A, and B be
a ∆h-ring with δhB the h-derivation of B. Then a ∆c-ring homomorphism is a
map f : A → B that is a ring homomorphism, and is compatible with δcA and
δhB , i.e. f(δcA(x)) = δhB(f(x)) for all x ∈ A.

If f is bijective then f is an ∆c-isomorphism.

Lemma 2.10. Let A be a ∆c-ring, B be a ∆h-ring and C be a ∆l-ring. If f :
A→ B is ∆c,h-ring homomorphism and g : B → C is ∆h,l-ring homomorphism
then their composition g ◦ f : A→ C is a ∆c,l-ring homomorphism.

Proof. We have

A
f−−→ B

g−−→ C
x 7→ f(x) 7→ g(f(x))

(1)

where g ((fδcA(x))) = g(δhB(f(x))) and g(δhB(y)) = δlC(g(y)). So

δlC(g(f(x))) = g(δhBf(x)) = g(f(δcA(x))).
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3. Examples of ∆c-Rings

Now, we give some examples of ∆c-rings.

Example 3.1. Consider the ring A = Z/pZ[x] for some prime p. We can make
A into a ∆c-ring by considering the Frobenius endomorphism c defined by,

c : Z/pZ[x] → Z/pZ[x]
f 7→ fp,

(2)

where f = a0 + a1x + · · · + anx
n and fp means f to power p. And with

δc : Z/pZ[x]→ Z/pZ[x] an additive map defined by

i) δc(x) = 1.

ii) δc(xn) = nc(xn−1)δc(x) = nc(xn−1).

iii) δc(a) = 0 for all a ∈ Z/pZ.

iv) δc(fg) = δc(f)c(g) + δc(g)c(f) = δc(f)gp + δc(g)fp.

Note that c|CA
6= id, i.e. δ(xp) = 0. Also note that δcc 6= cδc. In fact,

δc (c(f)) = δc(ap0 + ap1x
p + · · ·+ apnx

pn)

= pap
2

1 x
p−1 + · · ·+ pnap

2

n x
pn−1

= 0.

But on the other hand,

c(δc(f)) = c(ap1 + 2ap2x
p + · · ·+ napnx

p(n−1))

= ap
2

1 + 2ap2x
p2 + · · ·+ napn

2x(pn−p)
2

.

Thus δcc 6= cδc.

Example 3.2. Let A = C[t], and define c by,

c : C[t] → C[t]

f 7→ f,
(3)

then,

c(f + g) = f + g = f + g = c(f) + c(g)

c(fg) = fg = fg = c(f)c(g)

c(1) = 1.

Hence c is a homomorphism. Now consider δc : C[t]→ C[t] defined by,

i) δc(t) = 1.
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ii) δc(tn) = nc(tn−1)δc(t) = nc(tn−1).

iii) δc(z) = 0 for all z ∈ C.

Thus C[t] is a ∆c-ring and if a0 ∈ C, c(a0) = a0 6= a0, thus c|C 6= id.

Note that, δcc = cδc.

Example 3.3. Consider the ring C[x, y], and the following ring homomor-
phism,

c : C[x, y] → C[x, y]
x 7→ y,
y 7→ x,

(4)

and c|C = idC. Let δc be the following c-derivation

i) δc(x) = 1.

ii) δc(xn) = nc(xn−1)δc(x) = nc(xn−1).

iii) δc(y) = 0.

iv) δc(z) = 0 for all z ∈ C.

Then C[x, y] is a ∆c-ring and δcc 6= cδc.

It follows by definition that C[x, y] is a ∆c-ring. Let us see that δcc 6= cδc.
So let f ∈ C[x, y], f =

∑
i,j dijx

iyj where dij ∈ C. Then

δcc

∑
i,j

dijx
iyj

 = δc

∑
i,j

dijc(x
i)c(yj)


=
∑
i,j

dijδ
c
(
(yi)(xj)

)
=
∑
i,j

dij
(
δc(yi)c(xj) + δc(xj)c(yi)

)
=
∑
i,j

dij
(
jyj−1xi

)

and,
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cδc

∑
i,j

dijx
iyj

 = c

∑
i,j

dij
(
δc(xiyj)

)
=
∑
i,j

dijc
(
δc(xi)c(yj) + δc(yj)c(xi)

)

=

∑
i,j

dijc
(
δc(xiyj)

)
=
∑
i,j

dijc
(
iyi−1xj

)
=
∑
i,j

dijix
i−1yj

Thus δcc 6= cδc.

4. ∆c-Ideals and Quotient ∆c-Rings

In this section we define ∆c-Ideals and Quotient ∆c-Rings.

Definition 4.1. A ∆c-ideal a of a ∆c-ring A is a subset a ⊆ A such that a is
an ideal, c(a) ⊆ a, and for δc ∈ ∆c, δc(a) ⊆ a.

Example 4.2. Let A be a ∆c-ring and B be a ∆h-ring. Let f : A → B be a
∆c,h-ring homomorphism. If c(ker(f)) ⊆ ker(f) then ker(f) is a ∆c-ideal.

Proof. Let x ∈ ker(f), so

f(δcA(x)) = δhB(f(x)) = δhB(0) = 0

thus δcA(x) ∈ ker(f). And using the fact that c(ker(f)) ⊆ ker(f), then ker f is
a ∆c-ideal.

Example 4.3. Let A be a ∆c-ring and B be a ∆h-ring. Let f : A → B be
a ∆c,h-ring homomorphism. Then if h(Imf) ⊆ Imf then Im(f) = f(A) is a
∆h-ideal. Furthermore f(A) is a ∆h-subring.

Proof. Let y ∈ f(A), so f(x) = y for some x ∈ A and δhB(f(x)) = f(δcA(x)) ∈
f(A). Then using the fact that f(A) is a subring of B, h(Imf) ⊆ Imf , and
that δhB(f(x)) ⊆ f(A) we have that f(A) is a ∆h-subring.

Proposition 4.4. Let A be a ∆c-ring and a be a ∆c-ideal of A. Then A/a has
unique structure of ∆c-ring.
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Proof. [1] It follows as in (Proposition 1.7.7, page 13), but here we give a
detailed proof for δc. Recall that A/a has a ring structure, called the quotient
ring of A module a, with the addition as (x + a) + (y + a) = (x + y) + a and
the multiplication as (x+ a)(y+ a) = (xy) + a, where x, y ∈ A. Now using the
fact that A is a ∆c-ring, define δc in A/a by,

δc : A/a→ A/a
(x+ a) 7→ δc(x) + a.

(5)

So if x + a = y + a then x − y ∈ a, thus δc(x) − δc(y) = a for a ∈ a, then
δc(x) + a = δc(y) + a. Hence δc is well defined.

On the other hand define the homomorphism c in A/a by

c : A/a → A/a
x+ a 7→ c(x) + a,

(6)

which is an homomorphism, because

i) c(x+ y) + a = c(x) + c(y) + a.

ii) c(xy) + a = c(x)c(y) + a.

iii) c(1) + a = 1 + a.

Hence it defines a c-derivation on A/a by

δc ((x+ a)(y + a)) = δc ((xy + a)) = δc(x)c(y) + δc(y)c(x) + a

δc ((x+ y) + a) = δc(x+ y) + a = δc(x) + δc(y) + a.

Consider the surjective ring homomorphism φ : A→ A/a which maps each
x ∈ A to x+a. We claim that φ is a ∆c-ring homomorphism. In fact, let δc be a
c-derivation in A, then δc(φ(x)) = δc(x+a) = δc(x)+a and φ(δc(x)) = δc(x)+a,
thus δcφ = φδc.

Proposition 4.5. Let A be ∆c-ring, B be a ∆h-ring and f : A → B be a
∆c-ring homomorphism. If c(kerf) ⊆ (kerf) then A/ ker(f) ∼= Im(f), under
∆c-isomorphism.

Proof. Consider the following function

g : A/ ker(f) → Im(f)
x+ ker(f) 7→ f(x).

(7)

Now we check that g is well defined, i.e., if x + ker(f) = y + ker(f), then
g(x + ker(f)) = f(x) = g(y + ker(f)) = f(y), but it is equivalent to the
statement that y = x+ z where z ∈ ker(f), therefore f(y) = f(x+ z) = f(x).
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i) It follows by definition that g is a homomorphism.

ii) g is surjective.

iii) g is injective; if g(x+ ker(f)) = f(x) = g(y + ker(f)) = f(y) then

0 = f(x− y), so x− y ∈ ker(f), i.e., x+ ker(f) = y + ker(f).

iv) That g is a ∆c-homomorphism follows by:

g (δcA (x+ ker(f))) = g(δcA(x)+ker(f)) = f(δcA(x)) = δhB(f(x)) = δhB (g(x+ ker(f))) .

On the other hand, using the fact that δcA(kerf) ⊆ (kerf) we have

g(δcA(x+ kerf)) = g(δcA(x) + δcA(kerf))

= g(δcA(x) + kerf)

= f(δcA(x))

= δhB(f(x))

= δhB(g(x+ ker(f))).

Thus A/ ker(f) ∼= Im(f).

5. ∆c-Prime Ideal And ∆c-Maximal Ideal

In this section we define ∆c-prime ideals and ∆c-maximal ideals.

Definition 5.1. A prime ∆c-ideal p of a ∆c-ring A is a subset p ⊆ A such
that p is a prime ideal of A and a ∆c-ideal.

Definition 5.2. Let A be a ∆c-ring. A ∆c-ideal m in A is a maximal ideal if,
m is a ∆c-ideal, m 6= A and if a is a ∆c-ideal such that m ⊂ a ⊂ A then m = a
or a = A.

Proposition 5.3. Let A be a ∆c-ring and m be a maximal ∆c-ideal. Then m
is a ∆c-prime.

Proof. It follows by definition.

Let A be a ∆c-ring then m is a maximal ∆c-ideal if and only if A/m is a
∆c-field.

Theorem 5.4. For any ∆c-ring A there exist at least one ∆c-maximal ideal
m.
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Proof. Let M be the set of all ∆c-ideals of A without the ∆c-ideal A. Notice
that M 6= ∅, because 0 ∈M. And also let {aj : j ∈ J} be an increasing chain

ideals in M where J is a set of indices. Let b =
(⋃

j∈J aj

)
, then

δc

⋃
j∈J

aj

 ⊆
⋃
j∈J

aj

 ,

because, if x ∈
(⋃

j∈J aj

)
, then x ∈ aj for some j ∈ J , where aj is a ∆c-ideal,

so δc(x) ∈
⋃
j∈J aj. So b ∈M and is an upper bound of {aj : j ∈ J}, and by

applying Zorn’s Lemma on M we find that it has a maximal element.

As a remark. Let A be a ∆c-ring, and {aj : j ∈ J} a family of ∆c-ideals.
Then {

∑
j∈J aj : aj ∈ aj} is a ∆c-ideal and the intersection of any family

{aj : j ∈ J} of ∆c-ideals is a ∆c-ideal.

6. ∆c-Rings of Fractions

On Section 2, Lemma 2.3 we mentioned the quotient rule, but we didn’t proved
that it was well defined, so in this section we would do it.

Definition 6.1. Let A be a ∆c-ring. A ∆c- multiplicatively closed subset S
of A is a subset S ⊆ A such that

i) 1 ∈ S,

ii) for all a, b ∈ S, ab ∈ S,

iii) c(S) ⊆ S.

Proposition 6.2. Let A be a ∆c-ring and S ⊆ A, be a ∆c-multiplicatively
closed subset. If c(y)2 6= 0 for any y ∈ S then

δc : S−1A −→ S−1A
x
y −→ δc

(
x
y

)
= δc(x)c(y)−δc(y)c(x)

c(y)2 .
(8)

δc is well defined.

Proof. Let x
y = z

w , then (xw − yz)u = 0 for some u ∈ S, so

0 =δc((xw − yz)u)

=δc(u)c(xw − yz) + δc(xw − yz)c(u).

Multiplying by c(u)

0 = (c(u))2 (δc(x)c(w) + δc(w)c(x)− δc(y)c(z)− δc(z)c(y))
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Now, multiplying last equation by c(w) and adding a zero

0 =(c(u))2
(
δc(x)(c(w))2 + δc(w)c(x)c(w)− δc(w)c(y)c(z) + δc(w)c(y)c(z)

)
− (c(u))2 (δc(y)c(w)c(z) + δc(z)c(y)c(w)) .

Now, multiplying by c(y) and adding another zero

0 =(c(u))2
(
δc(x)(c(w))2c(y) + δc(w) (c(xw − yz)) c(y) + δc(w)(c(y))2c(z)

)
− (c(u))2

(
δc(y)c(wzy) + δc(y)c(xw2)− δc(y)c(xw2) + δc(z)(c(y))2c(w)

)
thus

0 =(c(u))2
(
δc(x)(c(w))2c(y) + δc(w)(c(y))2c(z)

)
− (c(u))2

(
δc(y)

(
c(wzy − xw2)

)
+ δc(y)c(xw2) + δc(z)(c(y))2c(w)

)
then we have that

0 =(c(u))2(δc(x)(c(w))2c(y) + δc(w)(c(y))2c(z)− δc(z)(c(y))2c(w)

− δc(y)c(x)(c(w))2)

=(c(u))2
(
(δc(x)c(y)− δc(y)c(x))(c(w))2 + (δc(w)c(z)− δc(z)c(w))(c(y))2

)
.

Then it follows that

δc
(
x

y

)
= δc

( z
w

)
.

7. ∆c-Radical Ideal

Finally in this section we have a main result. First of all, we define the radical
of a ∆c-ideal, and then prove that the radical of a ∆c-ideal is a ∆c-ideal. And
as a corollary we have that the set of nilpotent elements of a ∆c-ring is a
∆c-ideal.

Definition 7.1. Let A be a ∆c-ring and a a ∆c-ideal. The radical of a is the
set r(a) = {x ∈ A : xn ∈ afor some n ∈ N}.

Theorem 7.2. Let a be any ∆c-ideal of the ∆c-ring A, then if c is an isomor-
phism with c(a) = a then the radical of a is a ∆c-ideal.

Proof. Let x ∈ r (a), then xm ∈ a for some m > 0. So we must prove
that δc(x)n ∈ a for some n > 0. We claim that c−1

(
δc(x)2k

)
xn−k ∈ a for

k = 0, . . . , n.
The proof follows by induction over k. So, if k = 0, then c−1 (1)xn ∈ a,

and the assertion is true.
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Now suppose that for all k < n, c−1
(
δc(x)2k

)
xn−k ∈ a, thus

(n− k)c(xn−k−1)δc(x)2k+1 + 2kδc(x)2k−1δc
(
c−1(δc(x)

)
c(xn−k) ∈ a.

Next, we multiply last equation by δc(x),

(n− k)c(xn−k−1)δc(x)2k+2 + 2kδc(x)2kδc
(
c−1(δc(x)

)
c(xn−k) ∈ a.

Notice that δc(x)2kc(xn−k) ∈ a. So,

kδc(x)2kδc
(
c−1(δc(x)

)
c(xn−k) ∈ a.

Hence
(n− k)c(xn−k−1)δc(x)2k+2 ∈ a

and using the fact that the assertion is true for all k < n, in particular for
k = n− 1 we have that,

δc(x)2(n−1)+2 ∈ a

δc(x)2n ∈ a

c−1(δc(x)2n) ∈ a.

Corollary 7.3. Let A be a ∆c-ring and η (A) be the set of all nilpotent elements
of A. Then η (A) is a ∆c-ideal.

Proof. Notice that c(0) = 0, thus r(0) is a ∆c-ideal.

Example 7.4. Let A be a ring and let A[x] be the ring polynomials in an
ideterminate x with coefficients in A. Define δc by

i) δc(x) = 1.

ii) δc(xn) = nc(xn−1)δc(x) = nc(xn−1).

iii) δc(a) = 0 for all a ∈ A.

and c be any homomorphism. Thus A[x] is a ∆c-ring. Then η (A[x]) is a
∆c-ideal.

Now take f ∈ η (A[x]) then f = a0 + a1x + · · · + anx
n is nilpotent if and

only if a0, . . . , an are nilpotent. So

δc(f) = δc(a0 + a1x+ · · ·+ anx
n)

= c(a1) + · · ·+ nc(an)xn−1 ∈ η (A) .

Because, if ai is nilpotent then c(ai) is also a nilpotent element, so δc(f) is a
nilpotent element.
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