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Probabilistic semihyperrings

Semihiperanillos probabiĺısticos

Bijan Davvaz1,a

Abstract. In this paper, we study the concept of fuzzy T -sub-semihyperrings
of a semihyperring. We define a probabilistic version of semihyperrings using
random sets. We show that fuzzy sub-semihyperrings defined by triangular
norms are consequences of probabilistic semihyperrings under certain condi-
tions.
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Resumen. En este trabajo, estudiamos el concepto de T -sub-semihiperanillo
difuso de un semihiperanillo. Definimos una versión probabiĺıstica de semi-
hiperanillos usando conjuntos aleatorios. Se muestra que los sub-semihiperanillos
difusos definidos por normas triangulares son consecuencias de los semihiperanil-
los probabiĺısticos bajo ciertas condiciones.
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1. Semihyperrings and fuzzy sets

A semiring is a system consisting of a non-empty set S together with two
binary operations on S called addition and multiplication (denoted in the usual
manner) such that (1) S together with the addition is a (commutative) monoid
with identity element 0; (2) S together with the multiplication is a semigroup;
(3) a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c, for all a, b, c ∈ S; (4)
The element 0 ∈ S is an absorbing element, i.e., x · 0 = 0 · x = 0 for all x ∈ S.
In the following table we present some examples of semirings which occur in
combinatorics [4].

S addition multiplication zero element
R+ + · 0
R+ max + 0

R+ (am + bm)1/m · 0
[a, b] max min a

R ∪ {+∞} and or 0
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Semihyperrings are a generalization of semirings. The concept of semihyper-
rings is studied by Vougiouklis [12], Davvaz [3], Ameri and Hedayati [1], and
many others. In what follows, we summarize some basic definitions about
algebraic hyperstructures and semihyperrings.

A mapping ◦ : H × H → ρ∗(H), where ρ∗(H) denotes the family of all
non-empty subsets of H, is called a hyperoperation on H. The couple (H, ◦) is
called a hypergroupoid. In the above definition, if A and B are two non-empty
subsets of H and x ∈ H, then we denote

A ◦B =
⋃
a∈A
b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦B = {x} ◦B.

A hypergroupoid (H, ◦) is called a semihypergroup if for every x, y, z ∈ H,
x ◦ (y ◦ z) = (x ◦ y) ◦ z, that is⋃

u∈y◦z
x ◦ u =

⋃
v∈x◦y

v ◦ z.

Definition 1.1. A semihyperring is an algebraic hypersructure (R,+, ·) which
satisfies the following axioms:

(1) (R,+) is a commutative semihypergroup with a zero element 0 satisfying
x+ 0 = 0 + x = {x}, i.e., (i) For all x, y, z ∈ R, x+ (y+ z) = (x+ y) + z,
(ii) For all x, y ∈ R, x + y = y + x, (iii) There exists 0 ∈ R such that
x+ 0 = 0 + x = {x} for all x ∈ R;

(2) (R, ·) is a semihypergroup;

(3) The multiplication · is distributive with respect to the hyperoperation +,
that is, x · (y + z) = x · y + x · z and (x + y) · z = x · z + y · z for all
x, y, z ∈ R;

(4) The element 0 ∈ R is an absorbing element, i.e., x · 0 = 0 · x = 0 for all
x ∈ R.

A semihyperring R is called commutative if (R, ·) is a commutative semi-
hypergroup. A non-empty subset A of a semihyperring (R,+, ·) is called a
subsemihyperring of R if for all x, y ∈ A, x+y ⊆ A and x ·y ⊆ A. A non-empty
subset I of a semihyperring (R,+, ·) is called a left (resp. right) hyperideal of
(R,+, ·) if for all x, y ∈ I, x + y ⊆ I and r · x ⊆ I for all x ∈ I and r ∈ R
(resp. x · r ⊆ I). A non-empty subset I of R is called a hyperideal of R if it
is both left and right hyperideal of R, that is, x + y ⊆ I, for all x, y ∈ I and
x · r, r · x ⊆ I, for all x ∈ I and r ∈ R.

Example 1.2. Let (S,+, ·, 0) be a semiring. We define

x⊕ y = 〈x, y〉, the ideal generated by x, y,
x� y = x · y.

Then, (S,⊕,�, 0) is a semihyperring.
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Example 1.3. Let R = {0, a, b, c} be a set with two hyperoperations ⊕ and
� as follows:

⊕ 0 a b c
0 0 a b c
a a a {0, a, b} {0, a, c}
b b {0, a, b} {0, b} {0, b, c}
c c {0, a, c} {0, b, c} {0, c}

� 0 a b c
0 0 0 0 0
a 0 0 0 0
b 0 0 0 {0, a}
c 0 0 {0, a} {0, b}

Then, (R,⊕,�) is a semihyperring [6].

Zadeh [14] introduced the concept of a fuzzy set. Let X be a non-empty
set. A map µ : X → [0, 1] is called a fuzzy subset of X. Let µ and ν be two
fuzzy subsets of X. Then, µ ∩ ν and µ ∪ ν are defined as follows: (µ ∩ ν)(x) =
min{µ(x), ν(x)} and (µ ∪ ν)(x) = max{µ(x), ν(x)}, for all x ∈ X. Rosenfeld
[9] applied this concept to the theory of groups. If S is a semigroup and µ
be a fuzzy subset of S, then µ is called a fuzzy subsemigroup if it satisfies
min{µ(x), µ(y)} ≤ µ(xy) for all x, y ∈ S. Since then many papers concerning
various fuzzy algebraic structures have appeared in literature. A fuzzy ideal
of a semiring (S,+, ·, 0) is a fuzzy subset µ satisfying the following conditions:
min{µ(x), µ(y)} ≤ µ(x + y) and min{µ(x), µ(y)} ≤ µ(xy), for all x, y ∈ S. In
what follows let R denote a semihyperring (R,+, ·, 0).

Definition 1.4. A fuzzy subset µ of a semihyperring R is called a fuzzy sub-
semihyperring if

(1) min{µ(x), µ(y)} ≤ infz∈x+y{µ(z)},

(2) min{µ(x), µ(y)} ≤ infz∈x·y{µ(z)},

for all x, y ∈ R.

2. Triangular norms

In mathematics, a t-norm (or, triangular norm) is a kind of binary operation
used in the framework of probabilistic metric spaces and in multi-valued logic,
specifically in fuzzy logic. A t-norm generalizes intersection in a lattice and
conjunction in logic. The name triangular norm refers to the fact that in
the framework of probabilistic metric spaces t-norms are used to generalize
triangle inequality of ordinary metric spaces. The concept of a triangular norm
was introduced by Menger [8] in order to generalize the triangular inequality
of a metric. The current notion of a t-norm and its dual operation is due to
Schweizer and Sklar [10]. Anthony and Sherwood [2] redefined a fuzzy subgroup
of a group by using the notion of t-norm.

A t-norm is a mapping T : [0, 1] × [0, 1] → [0, 1] satisfying, for all x, y, z ∈
[0, 1],
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(1) T (x, 1) = x,

(2) T (x, y) = T (y, x),

(3) T (x, T (y, z)) = T (T (x, y), z)),

(4) T (x, y) ≤ T (x, z) whenever y ≤ z.

These four axioms are independent in the sense that none of them can be
deduced from the other three. Let T be a t-norm on [0, 1]. The following are
the four basic t-norms TM , TP , TL, and TD given by, respectively:

TM (x, y) = min(x, y), (minimum)
TP (x, y) = x · y, (product)
TL(x, y) = max(x+ y − 1, 0), (Lukasiewicz t-norm)

TD(x, y) =

{
0 if (x, y) ∈ [0, 1)2

min(x, y) otherwise.
(drastic product)

Let T1 and T2 be two t-norms. T2 is said to be dominate T1 and write T1 � T2
if for all a, b, c, d ∈ [0, 1],

T1(T2(a, c), T2(b, d)) ≤ T2(T1(a, b), T1(c, d))

and T1 is said weaker then T2 or T2 is stronger then T1 and write T1 ≤ T2 if for all
x, y ∈ [0, 1], T1(x, y) ≤ T2(x, y). Since a triangular norm T is a generalization
of the minimum function, Anthony and Sherwood in [2] replaced the axiom
min{µ(x), µ(y)} ≤ µ(xy) occurring in the definition of a fuzzy subgroup by the
inequality T (µ(x), µ(y)) ≤ µ(xy).

3. Fuzzy T-sub-semihyperrings

Let IT = {x ∈ [0, 1] | T (x, x) = x}, i.e., the set of all T -idempotent elements
of [0, 1].

Definition 3.1. Let T be a t-norm. A fuzzy subset µ of semihyperring R is a
T -sub-semihyperring of R if the following axioms hold.

(1) Im(µ) ⊆ IT ,

(2) T (µ(x), µ(y)) ≤ infz∈x+y{µ(z)}, for all x, y ∈ R,

(3) T (µ(x), µ(y)) ≤ infz∈x·y{µ(z)}, for all x, y ∈ R.

Theorem 3.2. Let T be a t-norm and µ be a fuzzy subset of R such that
Im(µ) ⊆ IT and b =sup Im(µ). Then, the following conditions are equivalent.

(1) µ is a T -sub-semihyperring of R,

(2) µ−1[a, b] is a sub-semihyperring of R whenever a ∈ IT and 0 < a ≤ b.
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Proof. (1⇒2): Suppose that a ∈ IT and 0 < a ≤ b. If x, y ∈ µ−1[a, b],
then infz∈x+y{µ(z)} ≥ T (µ(x), µ(y)) ≥ T (a, a) = a and infz∈x·y{µ(z)} ≥
T (µ(x), µ(y)) ≥ T (a, a) = a. Thus, we obtain x + y ⊆ µ−1[a, b] and x · y ⊆
µ−1[a, b]. Therefore, µ−1[a, b] is a sub-semihyperring of R.

(2⇒1): Let x, y ∈ R. Since Im(µ) ⊆ IT , it follows that µ(x) and µ(y) are
in IT . We have

T (T (µ(x), µ(y)), T (µ(x), µ(y))) = T (T (µ(x), T (µ(y), µ(x))), µ(y))
= T (T (µ(x), T (µ(x), µ(y))), µ(y))
= T (T (µ(x), µ(x)), T (µ(y), µ(y)))
= T (µ(x), µ(y)),

and so T (µ(x), µ(y)) ∈ IT . Assume that a = T (µ(x), µ(y)). If a = 0,
then T (µ(x), µ(y)) = 0 ≤ infz∈x+y{µ(z)}. So, let 0 < a = T (µ(x), µ(y)) ≤
min{µ(x), µ(y)} ≤ µ(x) ≤ b. Hence, x, y ∈ µ−1[a, b], which implies x + y ⊆
µ−1[a, b]. Therefore T (µ(x), µ(y)) ≤ infz∈x+y{µ(z)}. Similarly, we obtain
T (µ(x), µ(y)) ≤ infz∈x·y{µ(z)}.

Corollary 3.3. Let A be a non-empty subset of R. Then, the character-
istic function χA is a T -sub-semihyperring of R if and only if A is a sub-
semihyperring of R.

Corollary 3.4. Let T be a t-norm and {µi}i∈I be a family of T -sub-semihyper-
rings of R. Then

⋂
i∈I

µi is a T -sub-semihyperring of R.

Definition 3.5. Let R,R′ be two semihyperrings and µ, ν be T -sub-semihyper-
rings of R,R′, respectively. The product of µ, ν is defined to be the fuzzy subset
µ× ν of R×R′ with (µ× λ)(x, y) = T (µ(x), λ(x)), for all (x, y) ∈ R×R′.

Lemma 3.6. By the above definition, µ×ν is a T -sub-semihyperring of R×R′.

Proof. Suppose that (x1, x2), (y1, y2) ∈ R×R′. For every (z1, z2) ∈ (x1, x2)+
(y1, y2) we have

(µ× λ)(α1, α2) = T (µ(α1), λ(α2))
≥ T (T (µ(x1), µ(y1)), T (λ(x2), λ(y2))
= T (T (T (µ(x1), µ(y1)), λ(x2), λ(y2)))
= T (T (λ(x2), T (µ(x1), µ(y1)), λ(y2)))
= T (T (T (λ(x2), µ(x1)), µ(y1), λ(y2)))
= T (λ(y2), T (µ(y1), T (λ(x2), µ(x1)))
= T (T (µ(x1), λ(x2)), T (µ(y1), λ(y2))
= T ((µ× λ)(x1, x2), (µ× λ)(y1, y2)).

Taking the infimum over all (z1, z2) ∈ (x1, x2) + (y1, y2) we have

inf
(z1,z2)∈(x1,x2)+(y1,y2)

{(µ× λ)(z1, z2)} ≥ T ((µ× λ)(x1, x2), (µ× λ)(y1, y2)).
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Similarly, we obtain

inf
(z1,z2)∈(x1,x2)·(y1,y2)

{(µ× λ)(z1, z2)} ≥ T ((µ× λ)(x1, x2), (µ× λ)(y1, y2)).

4. Probabilistic fuzzy semihyperrings

If µ is a fuzzy subset of R, then for any t ∈ [0, 1], the set µt = {x ∈ R | µ(x) ≥ t}
is called a level subset of µ.

Theorem 4.1. Let R be a semihyperring and µ a fuzzy subset of R. Then µ
is a fuzzy sub-semihyperring of R if and only if for any t ∈ [0, 1], µt (when it
is non-empty), is a sub-semihyperring of R.

Proof. In Theorem 3.2, take T = min.

In the theory of probability we start by (Ω,A, P ), with Ω set of elementary
events and A, σ-algebra of subsets of ω called events. A probability on A is
defined as a countable additive and positive function P such that P (Ω) = 1.

The following definition is an extract from [11, 13].
Given a universe of discourse U , for each arbitrary u ∈ U , let

.
u:= {A | u ∈ A and A ⊆ U}.

For each A in the power set of U , let

.

A:= { .u | u ∈ A}.

An ordered pair (ρ(U),B) is said to be an hyper-measurable structure on U if
B is a σ-field in ρ(U) and satisfies the following condition:

.

U⊆ B.

Definition 4.2. Given a probability space (Ω,A, P ) and hyper-measurable
structure (ρ(U),B) on U , a random set on U is defined to be a mapping r :
Ω→ ρ(U) that is A− B measurable, that is,

∀C ∈ B, r−1(C) = {ω | ω ∈ Ω and r(ω) ∈ C} ∈ A.

Definition 4.3. Let R be a semihyperring and (Ω,A, P ) be a probability
space. Let r : Ω → ρ(R) be a random set, where ρ(R) is the set of all subsets
of R. If for any ω ∈ Ω, r(ω) is a sub-semihyperring of R, then the falling
shadow S of the random set r, i.e., S(x) = P ({ω|x ∈ r(ω)}) is called a π-fuzzy
sub-semihyperring of R.

Based on the concept of a falling shadow, we establish a theoretical approach
of the fuzzy sub-semihyperrings.
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Theorem 4.4. Let S be a π-fuzzy sub-semihyperring of semihyperring R.
Then, for all x, y ∈ R, we have

(1) infz∈x+y{S(z)} ≥ TL(S(x), S(y)),

(2) infz∈x·y{S(z)} ≥ TL(S(x), S(y)).

Proof. (1) We know r(ω) is a sub-semihyperring of R. Now, let x, y ∈ r(ω),
then x+ y ⊆ r(ω). So, for every z ∈ x+ y we have

{ω| z ∈ r(ω)} ⊇ {ω| x ∈ r(ω)} ∩ {ω| y ∈ r(ω)}.

Then, we obtain

S(z) = P (ω| z ∈ r(ω))
≥ P ({ω|x ∈ r(ω)} ∩ {ω| y ∈ r(ω)})
≥ P (ω| x ∈ r(ω)) + P (ω| y ∈ r(ω))− P (ω| x ∈ r(ω) or y ∈ r(ω))
≥ S(x) + S(y)− 1.

Hence, we have infz∈x+y{S(z)} ≥ TL(S(x), S(y)).
(2) The proof is similar to (1).

Theorem 4.5. (1) Let H denote the set of all sub-semihyperrings of a semihy-
perring R. Let Hx = {A | A ∈ H, x ∈ A} for each x ∈ R. Let (H, σ) be a mea-
surable space where σ is a σ-algebra that contains {Hx| x ∈ R} and P a prob-
ability measure on (H, σ). We define µ : H → [0, 1] as follows: µ(x) = P (Hx)
for x ∈ R. Then, µ is a fuzzy TL-sub-semihyperring of R.

(2) Suppose that there exists A ∈ σ such that A is a chain with respect to
the set inclusion relation and P (A) = 1. Then, µ is a fuzzy sub-semihyperring
of R.

Proof. (1) If x, y ∈ R, then Hz ⊇ Hx ∪Hy for all z ∈ x+ y. Then, we have

µ(z) = P (Hz) ≥ P (Hx ∩Hy) ≥ max{P (Hx) +P (Hy)− 1, 0} = TL(µ(x), µ(y)).

Therefore, infz∈x+y{µ(z)} ≥ TL(µ(x), µ(y)). In a similar way, we obtain
infz∈x·y{µ(z)} ≥ TL(µ(x), µ(y)).

(2) Since P is a probability measure and P (A) = 1 we have P (Hx ∩ A) =
P (Hx) for all x ∈ H. Therefore for every z ∈ x+ y we have

µ(z) = P (Hz) ≥ P (Hx ∩Hy) = P (Hx ∩ A) ∩ (Hy ∩ A).

Since A with the set inclusion forms a chain, it follows that either Hx ∩ A ⊆
Hy ∩ A or Hy ∩ A ⊆ Hx ∩ A. Therefore, we obtain

µ(z) ≥ min{P (Hx ∩ A), P (Hy ∩ A)} = min{µ(x), µ(y)},

and so infz∈x+y{µ(z)} ≥ min{µ(x), µ(y)}. Similarly, we obtain infz∈x·y{µ(z)}
≥ min{µ(x), µ(y)}.
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Let (Ω, σ, P ) = ([0, 1], σ,m), where σ is a Borel field on [0, 1] and m the usual
Lebesgue measure. Let µ be a fuzzy subset of R and µt = {x ∈ R | µ(x) ≥ t}
be a level subset of µ. Then,

r : [0, 1]→ ρ(R)
t 7−→ µt

is a measurable function. This notion was firstly investigated by Goodman in
[5], also see [11, 7].

Theorem 4.6. Let R be a semihyperring and µ be a fuzzy subsemihyperring of
R. Then, there exists a probability space (Ω,A, P ) such that for some A ∈ A,
µ(x) = P (A).

Proof. Suppose Ω = H, the set of all sub-semihyperring of R. Consider r :
[0, 1] → H given by t 7−→ µt. Then, r is a measurable function and so r is a
random set. Let

A = {A| A ∈ H, r−1(A) ∈ σ}

and P = m ◦ r−1. It is easy to see that (H,A, P ) is a probability space. If
we put Hx = {A| A ∈ H, x ∈ A}, then for x ∈ R we have µt ∈ Hx for all
t ∈ [0, µ(x)] and µs 6∈ Hx for all s ∈ (µ(x), 1]. So, r−1(Hx) = [0, µ(x)] and so
Hx ∈ A. Now we obtain P (Hx) = m ◦R−1(Hx) = m([0, µ(x)]) = µ(x).
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Bolet́ın de Matemáticas 23(2) 115-123 (2016)


