Probabilistic semihyperrings

Semihiperanillos probabilísticos

Bijan Davvaz^{1,a}

Abstract. In this paper, we study the concept of fuzzy T-sub-semihyperrings of a semihyperring. We define a probabilistic version of semihyperrings using random sets. We show that fuzzy sub-semihyperrings defined by triangular norms are consequences of probabilistic semihyperrings under certain conditions.

Keywords: semihyperrings, fuzzy set, probability space.

Resumen. En este trabajo, estudiamos el concepto de *T*-sub-semihiperanillo difuso de un semihiperanillo. Definimos una versión probabilística de semi-hiperanillos usando conjuntos aleatorios. Se muestra que los sub-semihiperanillos difusos definidos por normas triangulares son consecuencias de los semihiperanillos probabilísticos bajo ciertas condiciones.

Palabras claves: Semihiperanillos, conjunto difuso, espacio de probabilidad.

Mathematics Subject Classification: 03E72, 60A05, 16Y99.

Recibido: marzo de 2016

Aceptado: septiembre de 2016

1. Semihyperrings and fuzzy sets

A semiring is a system consisting of a non-empty set S together with two binary operations on S called addition and multiplication (denoted in the usual manner) such that (1) S together with the addition is a (commutative) monoid with identity element 0; (2) S together with the multiplication is a semigroup; (3) $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$, for all $a, b, c \in S$; (4) The element $0 \in S$ is an absorbing element, i.e., $x \cdot 0 = 0 \cdot x = 0$ for all $x \in S$. In the following table we present some examples of semirings which occur in combinatorics [4].

S		addition	multiplication	zero element		
\mathbb{R}^+		+	•	0		
\mathbb{R}^+		max	+	0		
\mathbb{R}^+		$(a^m + b^m)^{1/m}$	•	0		
[a, b]	max	min	a		
$\mathbb{R} \cup \{+$	$\infty\}$	and	or	0		

¹Department of Mathematics, Yazd University, Yazd, Iran

^adavvaz@yazd.ac.ir

Bijan Davvaz

Semihyperrings are a generalization of semirings. The concept of semihyperrings is studied by Vougiouklis [12], Davvaz [3], Ameri and Hedayati [1], and many others. In what follows, we summarize some basic definitions about algebraic hyperstructures and semihyperrings.

A mapping $\circ : H \times H \to \rho^*(H)$, where $\rho^*(H)$ denotes the family of all non-empty subsets of H, is called a *hyperoperation* on H. The couple (H, \circ) is called a *hypergroupoid*. In the above definition, if A and B are two non-empty subsets of H and $x \in H$, then we denote

$$A \circ B = \bigcup_{\substack{a \in A \\ b \in B}} a \circ b, \ A \circ x = A \circ \{x\} \text{ and } x \circ B = \{x\} \circ B.$$

A hypergroupoid (H, \circ) is called a *semihypergroup* if for every $x, y, z \in H$, $x \circ (y \circ z) = (x \circ y) \circ z$, that is

$$\bigcup_{u \in y \circ z} x \circ u = \bigcup_{v \in x \circ y} v \circ z.$$

Definition 1.1. A *semihyperring* is an algebraic hypersructure $(R, +, \cdot)$ which satisfies the following axioms:

- (1) (R, +) is a commutative semihypergroup with a zero element 0 satisfying x + 0 = 0 + x = {x}, i.e., (i) For all x, y, z ∈ R, x + (y + z) = (x + y) + z, (ii) For all x, y ∈ R, x + y = y + x, (iii) There exists 0 ∈ R such that x + 0 = 0 + x = {x} for all x ∈ R;
- (2) (R, \cdot) is a semihypergroup;
- (3) The multiplication \cdot is distributive with respect to the hyperoperation +, that is, $x \cdot (y+z) = x \cdot y + x \cdot z$ and $(x+y) \cdot z = x \cdot z + y \cdot z$ for all $x, y, z \in R$;
- (4) The element $0 \in R$ is an absorbing element, i.e., $x \cdot 0 = 0 \cdot x = 0$ for all $x \in R$.

A semihyperring R is called *commutative* if (R, \cdot) is a commutative semihypergroup. A non-empty subset A of a semihyperring $(R, +, \cdot)$ is called a *subsemihyperring* of R if for all $x, y \in A, x+y \subseteq A$ and $x \cdot y \subseteq A$. A non-empty subset I of a semihyperring $(R, +, \cdot)$ is called a *left* (resp. *right*) *hyperideal* of $(R, +, \cdot)$ if for all $x, y \in I, x+y \subseteq I$ and $r \cdot x \subseteq I$ for all $x \in I$ and $r \in R$ (resp. $x \cdot r \subseteq I$). A non-empty subset I of R is called a *hyperideal* of R if it is both left and right hyperideal of R, that is, $x + y \subseteq I$, for all $x, y \in I$ and $x \cdot r, r \cdot x \subseteq I$, for all $x \in I$ and $r \in R$.

Example 1.2. Let $(S, +, \cdot, 0)$ be a semiring. We define

 $x \oplus y = \langle x, y \rangle$, the ideal generated by x, y, $x \odot y = x \cdot y$.

Then, $(S, \oplus, \odot, 0)$ is a semihyperring.

Boletín de Matemáticas 23(2) 115-123 (2016)

Example 1.3. Let $R = \{0, a, b, c\}$ be a set with two hyperoperations \oplus and \odot as follows:

\oplus	0	a	b	c	\odot	0	a	b	c
0	0	a	b	c	0	0	0	0	0
a	a	a	$\{0, a, b\}$	$\{0, a, c\}$	a	0	0	0	0
b	b	$\{0, a, b\}$	$\{0,b\}$	$\{0, b, c\}$	b	0	0	0	$\{0, a$
c	c	$\{0, a, c\}$	$\{0, b, c\}$	$\{0, c\}$	c	0	0	$\{0,a\}$	$\{0, b$

Then, (R, \oplus, \odot) is a semihyperring [6].

Zadeh [14] introduced the concept of a fuzzy set. Let X be a non-empty set. A map $\mu : X \to [0, 1]$ is called a *fuzzy subset* of X. Let μ and ν be two fuzzy subsets of X. Then, $\mu \cap \nu$ and $\mu \cup \nu$ are defined as follows: $(\mu \cap \nu)(x) =$ min{ $\mu(x), \nu(x)$ } and $(\mu \cup \nu)(x) = \max{\{\mu(x), \nu(x)\}}$, for all $x \in X$. Rosenfeld [9] applied this concept to the theory of groups. If S is a semigroup and μ be a fuzzy subset of S, then μ is called a *fuzzy subsemigroup* if it satisfies min{ $\mu(x), \mu(y)$ } $\leq \mu(xy)$ for all $x, y \in S$. Since then many papers concerning various fuzzy algebraic structures have appeared in literature. A *fuzzy ideal* of a semiring $(S, +, \cdot, 0)$ is a fuzzy subset μ satisfying the following conditions: min{ $\mu(x), \mu(y)$ } $\leq \mu(x + y)$ and min{ $\mu(x), \mu(y)$ } $\leq \mu(xy)$, for all $x, y \in S$. In what follows let R denote a semihyperring $(R, +, \cdot, 0)$.

Definition 1.4. A fuzzy subset μ of a semihyperring R is called a *fuzzy sub-semihyperring* if

- (1) $\min\{\mu(x), \mu(y)\} \le \inf_{z \in x+y} \{\mu(z)\},\$
- (2) $\min\{\mu(x), \mu(y)\} \le \inf_{z \in x \cdot y}\{\mu(z)\},\$

for all $x, y \in R$.

2. Triangular norms

In mathematics, a t-norm (or, triangular norm) is a kind of binary operation used in the framework of probabilistic metric spaces and in multi-valued logic, specifically in fuzzy logic. A t-norm generalizes intersection in a lattice and conjunction in logic. The name triangular norm refers to the fact that in the framework of probabilistic metric spaces t-norms are used to generalize triangle inequality of ordinary metric spaces. The concept of a triangular norm was introduced by Menger [8] in order to generalize the triangular inequality of a metric. The current notion of a t-norm and its dual operation is due to Schweizer and Sklar [10]. Anthony and Sherwood [2] redefined a fuzzy subgroup of a group by using the notion of t-norm.

A t-norm is a mapping $T : [0,1] \times [0,1] \rightarrow [0,1]$ satisfying, for all $x, y, z \in [0,1]$,

Bijan Davvaz

- (1) T(x,1) = x,
- (2) T(x,y) = T(y,x),
- (3) T(x, T(y, z)) = T(T(x, y), z)),
- (4) $T(x,y) \leq T(x,z)$ whenever $y \leq z$.

These four axioms are independent in the sense that none of them can be deduced from the other three. Let T be a t-norm on [0,1]. The following are the four basic t-norms T_M, T_P, T_L , and T_D given by, respectively:

$T_M(x,y) = \min(x,y),$	(\min)
$T_P(x,y) = x \cdot y,$	(product)
$T_L(x,y) = \max(x+y-1,0),$	(Lukasiewicz t-norm)
$T_D(x,y) = \begin{cases} 0 & \text{if } (x,y) \in [0,1)^2 \\ \min(x,y) & \text{otherwise.} \end{cases}$	(drastic product)

Let T_1 and T_2 be two t-norms. T_2 is said to be *dominate* T_1 and write $T_1 \ll T_2$ if for all $a, b, c, d \in [0, 1]$,

$$T_1(T_2(a,c), T_2(b,d)) \le T_2(T_1(a,b), T_1(c,d))$$

and T_1 is said weaker then T_2 or T_2 is stronger then T_1 and write $T_1 \leq T_2$ if for all $x, y \in [0, 1], T_1(x, y) \leq T_2(x, y)$. Since a triangular norm T is a generalization of the minimum function, Anthony and Sherwood in [2] replaced the axiom $\min\{\mu(x), \mu(y)\} \leq \mu(xy)$ occurring in the definition of a fuzzy subgroup by the inequality $T(\mu(x), \mu(y)) \leq \mu(xy)$.

3. Fuzzy T-sub-semihyperrings

Let $I_T = \{x \in [0,1] \mid T(x,x) = x\}$, i.e., the set of all T-idempotent elements of [0,1].

Definition 3.1. Let T be a t-norm. A fuzzy subset μ of semihyperring R is a T-sub-semihyperring of R if the following axioms hold.

- (1) $\operatorname{Im}(\mu) \subseteq I_T$,
- (2) $T(\mu(x), \mu(y)) \leq \inf_{z \in x+y} \{\mu(z)\}, \text{ for all } x, y \in R,$
- (3) $T(\mu(x), \mu(y)) \leq \inf_{z \in x \cdot y} \{\mu(z)\}, \text{ for all } x, y \in R.$

Theorem 3.2. Let T be a t-norm and μ be a fuzzy subset of R such that $Im(\mu) \subseteq I_T$ and $b = sup Im(\mu)$. Then, the following conditions are equivalent.

- (1) μ is a T-sub-semihyperring of R,
- (2) $\mu^{-1}[a,b]$ is a sub-semihyperring of R whenever $a \in I_T$ and $0 < a \le b$.

Boletín de Matemáticas 23(2) 115-123 (2016)

Proof. $(1\Rightarrow2)$: Suppose that $a \in I_T$ and $0 < a \leq b$. If $x, y \in \mu^{-1}[a, b]$, then $\inf_{z\in x+y}\{\mu(z)\} \geq T(\mu(x), \mu(y)) \geq T(a, a) = a$ and $\inf_{z\in x\cdot y}\{\mu(z)\} \geq T(\mu(x), \mu(y)) \geq T(a, a) = a$. Thus, we obtain $x + y \subseteq \mu^{-1}[a, b]$ and $x \cdot y \subseteq \mu^{-1}[a, b]$. Therefore, $\mu^{-1}[a, b]$ is a sub-semihyperring of R.

 $(2\Rightarrow 1)$: Let $x, y \in R$. Since $\text{Im}(\mu) \subseteq I_T$, it follows that $\mu(x)$ and $\mu(y)$ are in I_T . We have

$$\begin{aligned} T(T(\mu(x),\mu(y)),T(\mu(x),\mu(y))) &= T(T(\mu(x),T(\mu(y),\mu(x))),\mu(y)) \\ &= T(T(\mu(x),T(\mu(x),\mu(y))),\mu(y)) \\ &= T(T(\mu(x),\mu(x)),T(\mu(y),\mu(y))) \\ &= T(\mu(x),\mu(y)), \end{aligned}$$

and so $T(\mu(x), \mu(y)) \in I_T$. Assume that $a = T(\mu(x), \mu(y))$. If a = 0, then $T(\mu(x), \mu(y)) = 0 \le \inf_{z \in x+y} \{\mu(z)\}$. So, let $0 < a = T(\mu(x), \mu(y)) \le \min\{\mu(x), \mu(y)\} \le \mu(x) \le b$. Hence, $x, y \in \mu^{-1}[a, b]$, which implies $x + y \subseteq \mu^{-1}[a, b]$. Therefore $T(\mu(x), \mu(y)) \le \inf_{z \in x+y} \{\mu(z)\}$. Similarly, we obtain $T(\mu(x), \mu(y)) \le \inf_{z \in x \cdot y} \{\mu(z)\}$.

Corollary 3.3. Let A be a non-empty subset of R. Then, the characteristic function χ_A is a T-sub-semihyperring of R if and only if A is a subsemihyperring of R.

Corollary 3.4. Let T be a t-norm and $\{\mu_i\}_{i \in I}$ be a family of T-sub-semihyperrings of R. Then $\bigcap_{i \in I} \mu_i$ is a T-sub-semihyperring of R.

Definition 3.5. Let R, R' be two semihyperrings and μ, ν be T-sub-semihyperrings of R, R', respectively. The product of μ, ν is defined to be the fuzzy subset $\mu \times \nu$ of $R \times R'$ with $(\mu \times \lambda)(x, y) = T(\mu(x), \lambda(x))$, for all $(x, y) \in R \times R'$.

Lemma 3.6. By the above definition, $\mu \times \nu$ is a T-sub-semihyperring of $R \times R'$.

Proof. Suppose that (x_1, x_2) , $(y_1, y_2) \in R \times R'$. For every $(z_1, z_2) \in (x_1, x_2) + (y_1, y_2)$ we have

$$\begin{aligned} (\mu \times \lambda)(\alpha_1, \alpha_2) &= T(\mu(\alpha_1), \lambda(\alpha_2)) \\ &\geq T(T(\mu(x_1), \mu(y_1)), T(\lambda(x_2), \lambda(y_2)) \\ &= T(T(T(\mu(x_1), \mu(y_1)), \lambda(x_2), \lambda(y_2))) \\ &= T(T(\lambda(x_2), T(\mu(x_1), \mu(y_1)), \lambda(y_2))) \\ &= T(T(T(\lambda(x_2), \mu(x_1)), \mu(y_1), \lambda(y_2))) \\ &= T(\lambda(y_2), T(\mu(y_1), T(\lambda(x_2), \mu(x_1))) \\ &= T(T(\mu(x_1), \lambda(x_2)), T(\mu(y_1), \lambda(y_2)) \\ &= T((\mu \times \lambda)(x_1, x_2), (\mu \times \lambda)(y_1, y_2)). \end{aligned}$$

Taking the infimum over all $(z_1, z_2) \in (x_1, x_2) + (y_1, y_2)$ we have

$$\inf_{(z_1,z_2)\in(x_1,x_2)+(y_1,y_2)} \{(\mu \times \lambda)(z_1,z_2)\} \ge T((\mu \times \lambda)(x_1,x_2),(\mu \times \lambda)(y_1,y_2)).$$

Boletín de Matemáticas 23(2) 115-123 (2016)

Bijan Davvaz

Similarly, we obtain

$$\inf_{(z_1,z_2)\in(x_1,x_2)\cdot(y_1,y_2)}\{(\mu\times\lambda)(z_1,z_2)\}\geq T((\mu\times\lambda)(x_1,x_2),(\mu\times\lambda)(y_1,y_2)).$$

4. Probabilistic fuzzy semihyperrings

If μ is a fuzzy subset of R, then for any $t \in [0, 1]$, the set $\mu_t = \{x \in R \mid \mu(x) \ge t\}$ is called a *level subset* of μ .

Theorem 4.1. Let R be a semihyperring and μ a fuzzy subset of R. Then μ is a fuzzy sub-semihyperring of R if and only if for any $t \in [0,1]$, μ_t (when it is non-empty), is a sub-semihyperring of R.

Proof. In Theorem 3.2, take
$$T = \min$$
.

In the theory of probability we start by (Ω, \mathbb{A}, P) , with Ω set of elementary events and \mathbb{A} , σ -algebra of subsets of ω called *events*. A *probability* on \mathbb{A} is defined as a countable additive and positive function P such that $P(\Omega) = 1$.

The following definition is an extract from [11, 13].

Given a universe of discourse U, for each arbitrary $u \in U$, let

$$\dot{u} := \{ A \mid u \in A \text{ and } A \subseteq U \}.$$

For each A in the power set of U, let

$$\dot{A} := \{ \dot{u} \mid u \in A \}.$$

An ordered pair $(\rho(U), \mathbb{B})$ is said to be an *hyper-measurable structure* on U if \mathbb{B} is a σ -field in $\rho(U)$ and satisfies the following condition:

$$\dot{U} \subseteq \mathbb{B}.$$

Definition 4.2. Given a probability space (Ω, \mathbb{A}, P) and hyper-measurable structure $(\rho(U), \mathbb{B})$ on U, a random set on U is defined to be a mapping $r : \Omega \to \rho(U)$ that is $\mathbb{A} - \mathbb{B}$ measurable, that is,

$$\forall C \in \mathbb{B}, \ r^{-1}(C) = \{ \omega \mid \omega \in \Omega \text{ and } r(\omega) \in C \} \in \mathbb{A}.$$

Definition 4.3. Let R be a semihyperring and (Ω, \mathbb{A}, P) be a probability space. Let $r : \Omega \to \rho(R)$ be a random set, where $\rho(R)$ is the set of all subsets of R. If for any $\omega \in \Omega$, $r(\omega)$ is a sub-semihyperring of R, then the falling shadow S of the random set r, i.e., $S(x) = P(\{\omega | x \in r(\omega)\})$ is called a π -fuzzy sub-semihyperring of R.

Based on the concept of a falling shadow, we establish a theoretical approach of the fuzzy sub-semihyperrings.

Boletín de Matemáticas 23(2) 115-123 (2016)

Theorem 4.4. Let S be a π -fuzzy sub-semihyperring of semihyperring R. Then, for all $x, y \in R$, we have

- (1) $\inf_{z \in x+y} \{ S(z) \} \ge T_L(S(x), S(y)),$
- (2) $\inf_{z \in x \cdot y} \{ S(z) \} \ge T_L(S(x), S(y)).$

Proof. (1) We know $r(\omega)$ is a sub-semihyperring of R. Now, let $x, y \in r(\omega)$, then $x + y \subseteq r(\omega)$. So, for every $z \in x + y$ we have

$$\{\omega \mid z \in r(\omega)\} \supseteq \{\omega \mid x \in r(\omega)\} \cap \{\omega \mid y \in r(\omega)\}.$$

Then, we obtain

$$S(z) = P(\omega | z \in r(\omega))$$

$$\geq P(\{\omega | x \in r(\omega)\} \cap \{\omega | y \in r(\omega)\})$$

$$\geq P(\omega | x \in r(\omega)) + P(\omega | y \in r(\omega)) - P(\omega | x \in r(\omega) \text{ or } y \in r(\omega))$$

$$\geq S(x) + S(y) - 1.$$

Hence, we have $\inf_{z \in x+y} \{S(z)\} \ge T_L(S(x), S(y))$. (2) The proof is similar to (1).

Theorem 4.5. (1) Let \mathbb{H} denote the set of all sub-semihyperrings of a semihyperring R. Let $H_x = \{A \mid A \in \mathbb{H}, x \in A\}$ for each $x \in R$. Let (\mathbb{H}, σ) be a measurable space where σ is a σ -algebra that contains $\{H_x \mid x \in R\}$ and P a probability measure on (\mathbb{H}, σ) . We define $\mu : H \to [0, 1]$ as follows: $\mu(x) = P(H_x)$ for $x \in R$. Then, μ is a fuzzy T_L -sub-semihyperring of R.

(2) Suppose that there exists $\mathbb{A} \in \sigma$ such that \mathbb{A} is a chain with respect to the set inclusion relation and $P(\mathbb{A}) = 1$. Then, μ is a fuzzy sub-semihyperring of R.

Proof. (1) If $x, y \in R$, then $H_z \supseteq H_x \cup H_y$ for all $z \in x + y$. Then, we have

$$\mu(z) = P(H_z) \ge P(H_x \cap H_y) \ge \max\{P(H_x) + P(H_y) - 1, 0\} = T_L(\mu(x), \mu(y)).$$

Therefore, $\inf_{z \in x+y} \{\mu(z)\} \geq T_L(\mu(x), \mu(y))$. In a similar way, we obtain $\inf_{z \in x \cdot y} \{\mu(z)\} \geq T_L(\mu(x), \mu(y))$.

(2) Since P is a probability measure and $P(\mathcal{A}) = 1$ we have $P(H_x \cap \mathcal{A}) = P(H_x)$ for all $x \in H$. Therefore for every $z \in x + y$ we have

$$\mu(z) = P(H_z) \ge P(H_x \cap H_y) = P(H_x \cap \mathcal{A}) \cap (H_y \cap \mathcal{A}).$$

Since \mathcal{A} with the set inclusion forms a chain, it follows that either $H_x \cap \mathcal{A} \subseteq H_y \cap \mathcal{A}$ or $H_y \cap \mathcal{A} \subseteq H_x \cap \mathcal{A}$. Therefore, we obtain

$$\mu(z) \ge \min\{P(H_x \cap \mathcal{A}), P(H_y \cap \mathcal{A})\} = \min\{\mu(x), \mu(y)\},\$$

and so $\inf_{z \in x+y} \{\mu(z)\} \ge \min\{\mu(x), \mu(y)\}$. Similarly, we obtain $\inf_{z \in x \cdot y} \{\mu(z)\} \ge \min\{\mu(x), \mu(y)\}$.

Boletín de Matemáticas 23(2) 115-123 (2016)

Let $(\Omega, \sigma, P) = ([0, 1], \sigma, m)$, where σ is a Borel field on [0, 1] and m the usual Lebesgue measure. Let μ be a fuzzy subset of R and $\mu_t = \{x \in R \mid \mu(x) \ge t\}$ be a level subset of μ . Then,

$$r: [0,1] \to \rho(R)$$
$$t \longmapsto \mu_t$$

is a measurable function. This notion was firstly investigated by Goodman in [5], also see [11, 7].

Theorem 4.6. Let R be a semihyperring and μ be a fuzzy subsemihyperring of R. Then, there exists a probability space (Ω, \mathbb{A}, P) such that for some $A \in \mathbb{A}$, $\mu(x) = P(A)$.

Proof. Suppose $\Omega = \mathbb{H}$, the set of all sub-semihyperring of R. Consider $r : [0,1] \to \mathbb{H}$ given by $t \mapsto \mu_t$. Then, r is a measurable function and so r is a random set. Let

$$\mathbb{A} = \{ A \mid A \in \mathbb{H}, \ r^{-1}(A) \in \sigma \}$$

and $P = m \circ r^{-1}$. It is easy to see that $(\mathbb{H}, \mathbb{A}, P)$ is a probability space. If we put $H_x = \{A \mid A \in \mathbb{H}, x \in A\}$, then for $x \in R$ we have $\mu_t \in H_x$ for all $t \in [0, \mu(x)]$ and $\mu_s \notin H_x$ for all $s \in (\mu(x), 1]$. So, $r^{-1}(H_x) = [0, \mu(x)]$ and so $H_x \in \mathbb{A}$. Now we obtain $P(H_x) = m \circ R^{-1}(H_x) = m([0, \mu(x)]) = \mu(x)$. \Box

References

- R. Ameri and H. Hedayati, On k-hyperideals of semihyperrings, J. Discrete Math. Sci. Cryptogr. 10 (2007), 41–54.
- [2] J. M. Anthony and H. Sherwood, Fuzzy groups redefined, J. Math. Anal. Appl. 69 (1979), 124–130.
- [3] B. Davvaz, Rings derived from semihyperrings, **20** (2003), no. 2, 245–252.
- [4] _____, Fuzzy hyperideals in ternary semihyperrings, Iran J. Fuzzy Systems 6 (2009), no. 4, 21–36.
- [5] I. R. Goodman, Fuzzy sets as equivalence classes of random sets, in Recent Development in Fuzzy Sets and Possibility Theory, ed R. Yager. Pergamona, New York (1982), 327–342.
- [6] X. Huang, Y. Yin, and J. Zhan, Characterizations of semihyperrings by their (ε_γ, ε_γ ∨ q_δ)-fuzzy hyperideals, J. Appl. Math. (2013), 13–.
- [7] Q. D. Li and E. S. Lee, On random α-cuts, J. Math. Anal. Appl. 190 (1995), 546–558.

Boletín de Matemáticas 23(2) 115-123 (2016)

Probabilistic semihyperrings

- [8] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A. 8 (1942), 535–537.
- [9] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512–517.
- [10] B. Schweizer and A. Sklar, Statistical metric space, Pacific J. Math. 10 (1960), 313–334.
- [11] S. K. Tan, P. Z. Wang, and E. S. Lee, Fuzzy set operations based on the theory of falling shadows, J. Math. Anal Appl. 174 (1996), 242–255.
- [12] T. Vougiouklis, On some representations of hypergroups, Ann. Sci. Univ. Clermont-Ferrand II Math. 26 (1990), 21–29.
- [13] P. Z. Wang, Fuzzy Sets and Falling Shadows of Random Sets, Beijing Normal University Press, China, 1985.
- [14] L. A. Zadeh, *Fuzzy sets*, Inform. Control 8 (1965), 338–353.