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Abstrat. Beause of its interesting appliations in oding theory, rypto-

graphy, and algebrai ombinatoris, in reent deades a lot of attention has

been paid to the algebrai struture of the ring of polynomials R[x], where R
is a �nite ommutative ring with identity. Motivated by this popularity, in

this paper we determine when R[x] is a prinipal ideal ring. In fat, we prove

that R[x] is a prinipal ideal ring if and only if R is a �nite diret produt of

�nite �elds.
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¾Cuándo R[x] es un anillo de ideales prinipales?

Resumen. Debido a sus interesantes apliaiones en teoría de ódigos, ripto-

grafía y ombinatoria algebraia, en déadas reientes se ha inrementado la

atenión en la estrutura algebraia del anillo de polinomios R[x], donde R es

un anillo onmutativo �nito on identidad. Motivados por esta popularidad,

en este artíulo determinamos uándo R[x] es un anillo de ideales prinipales.

De heho, demostramos que R[x] es un anillo de ideales prinipales, si y sólo

si, R es un produto direto �nito de ampos �nitos.

Palabras lave: Anillo de ideales prinipales, anillo de polinomios, anillos

�nitos.

1. Introdution and preliminaries

Polynomials with oe�ients in a �nite ommutative ring R with identity arise naturally,

for instane, in pratial appliations dealing with oding theory, ryptography and al-

gebrai ombinatoris, e. g. [1℄, [2℄, [3℄, [4℄, [6℄. For some of these appliations, it is

important to know the algebrai struture of either the ring of polynomials R[x] or the
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quotient ring R[x]/A, where A is an ideal of R[x]. In partiular, often one wants to know

when suh rings are prinipal ideal rings (PIR's). Motivated by this question, in this

paper we examine when R[x] is a PIR. We prove that R[x] is a prinipal ideal ring if and

only if R is a �nite diret produt of �nite �elds. To this end, let us start remembering

some fats about ommutative �nite rings with identity.

The most familiar example of a �nite ommutative ring with identity is the ring Zm

of integers modulo m ≥ 2. When m is a omposite number, the Chinese Remainder

Theorem assures that

Zm
∼= Zp

α1

1

× · · · × Zp
α
k

k

,

where m = pα1

1 · · · pαk

k is the prime fatorization of m, and Zp
α1

1

×· · ·×Zp
α
k

k

is the diret

produt of the rings Zp
αi

i

, 1 ≤ i ≤ n. Remember that for eah i (1 ≤ i ≤ k), Zp
αi

i

is a

�nite loal ring with maximal ideal 〈pi〉 (see [5℄). In partiular, note that if α = 1, then
Zp is a �nite �eld (see [4℄). Consequently, the Chinese Remainder Theorem establishes

that Zm is isomorphi to a diret produt of �nite loal rings. This is the simplest ase

of the following result.

Theorem 1.1 (Struture of Finite Commutative Rings, [5℄, Theorem VI.2). Every �nite

ommutative ring with identity is isomorphi to a diret produt of �nite ommutative

loal rings with identity. This deomposition is unique up to the order of the fators.

In view of the previous theorem, if R is a �nite ommutative ring with identity and

R1 × · · · × Rn is the unique deomposition of R as a diret produt of loal rings, then

there exists a ring isomorphism ϕ : R → R1 × · · · ×Rn whih maps eah element r ∈ R
into a unique n-tuple ϕ(r) = (r1, . . . , rn) ∈ R1 × · · · × Rn. This map extends to a ring

isomorphism

Φ : R[x] → R1[x]× · · · ×Rn[x],

de�ned by

p(x) 7→
(

p
(0)
1 + p

(1)
1 x+ · · ·+ p

(k)
1 xk, . . . , p(0)n + p(1)n x+ · · ·+ p(k)n xk

)

, (1)

where p(x) = p0 + p1x+ · · ·+ pkx
k
and ϕ(pi) =

(

p
(i)
1 , . . . , p

(i)
n

)

, 0 ≤ i ≤ k.

Proposition 1.2. Let R1, . . . , Rn be ommutative rings with identity. Then their diret

produt R = R1 × · · · ×Rn is a PIR if and only if Ri is a PIR for eah i, 1 ≤ i ≤ n.

Proof. Let A be an ideal of R and for eah i, 1 ≤ i ≤ n, de�ne Ai = {ai ∈ Ri :
(a1, . . . , ai, . . . , an) ∈ A}. Then Ai is an ideal of Ri and we laim that A = A1×· · ·×An.

The inlusion A ⊆ A1 × · · · × An is lear. To prove the reverse inlusion, let a =
(a1, . . . , an) be an element in A1 × · · · × An. It follows from the de�nition of Ai that

there exist α1, . . . , αn ∈ A suh that a = α1e1+ · · ·+αnen, where ei denotes the element

of R with a 1 in the ith oordinate and 0's elsewhere. Hene, using that A is an ideal of

R1×· · ·×Rn, we have that a ∈ A. Therefore A = A1×· · ·×An, and so A = 〈(a1, · · · , an)〉
if and only if Ai = 〈ai〉 for every i, 1 ≤ i ≤ n. �XXX

In light of Proposition 1.2 and the isomorphism Φ given in (1), R[x] is a PIR if and only

if Ri[x] is a PIR for eah i, 1 ≤ i ≤ n. Hene, in order to determine whenever R[x] is
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a PIR, it is natural to ask when Ri[x] is a PIR. This is the purpose of the next setion.

To illustrate the results of Setion 2, we present in Setion 3 three families of �nite rings

with identity that are relevant in the theory of �nite ommutative rings.

2. Ideals of R[x]

First of all, by a ring R we will always mean a ommutative ring with identity 1 6= 0, and
remember that a ring R is alled loal if it has a unique maximal ideal, or equivalently,

R is a loal ring with maximal ideal M if and only if M = R\U(R), where U(R) denotes
the group of units of R. We usually write (R,M) or (R,M,F ) to denote a loal ring R,
its maximal ideal M and its residue �eld F = R/M (using that M is a maximal ideal of

R, the quotient ring R/M is indeed a �eld).

The simplest ase of a �nite loal ring R is when R is a �nite �eld. In this ase the

ring R[x] of polynomials with oe�ients in R is a PIR. In fat, R[x] is a prinipal ideal

domain (PID). Therefore, in what follows we fous our attention on a �nite loal ring R
whih is not a �eld.

Let (R,M,F ) be a �nite loal ring whih is not a �eld. Note that the natural

surjetive homomorphism

− : R → F indues a surjetive polynomial ring homomor-

phism µ : R[x] → F [x] given by

f0 + f1x+ · · ·+ fnx
n 7→ f0 + f1 x+ · · ·+ fn x

n.

This ring homomorphism lets us dedue some fats about polynomials

f(x) =
∑n

i=0 fix
i ∈ R[x] by using the struture of F [x]. In partiular, note that

µ(f(x)) = 0 if and only if fi ∈ M for all i, 0 ≤ i ≤ n and so, it follows that kerµ is a

proper ideal of R[x]
(

indeed, kerµ is a prime ideal of R[x] beause R[x]/ kerµ ∼= F [x] is

an integral domain

)

.

On the other hand, remember that an element r of a ring R is alled irreduible if it

is neither 0 nor a unit in R and the ondition r = ab, for some a, b ∈ R, implies that

a ∈ U(R) or b ∈ U(R).

Having remembered the above, if f(x) ∈ R[x] is suh that µ(f(x)) is irreduible in

F [x], then f(x) is also irreduible in R[x]. Sine for every �nite �eld K and every

positive integer n there exists an irreduible polynomial in K[x] of degree n (see [4℄),

we onlude that irreduible polynomials in R[x] of degree n exist for every positive

integer n. It is worth to mention that the onverse of this fat does not hold in gen-

eral. That is, if f(x) is an irreduible polynomial in R[x] then µ(f(x)) is not neessar-
ily irreduible in F [x]. For instane, if p ≥ 2 is a prime number, then p ∈ Zp2 [x] is
irreduible in Zp2 [x] but µ(p) = 0 ∈

(

Zp2/〈p〉
)

[x] is not irreduible by de�nition. Fur-

thermore, if f(x) = x2 + 2x + 3 ∈ Z4[x] then f(x) is irreduible in Z4[x]; whereas

µ(f(x)) = x2 + 1 = (x + 1)2 ∈ (Z4/〈2〉) [x] is not irreduible.

Lemma 2.1. Let (R,M) be a loal ring whih is not a �eld, p(x) an irreduible polynomial

in R[x] and θ ∈ M \ {0}. Then 〈p(x), θ〉 is a proper ideal of R[x].

Proof. If µ(p(x)) = 0, then p(x) ∈ kerµ, so that 〈p(x), θ〉 ⊆ kerµ $ R[x]. If µ(p(x)) 6=
0, then we proeed by ontradition. Assume then the existene of some polynomials
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f(x), g(x) ∈ R[x] suh that 1 = f(x)θ + g(x)p(x). This implies that 1 = µ(g(x))µ(p(x)),
whih ontradits the irreduibility of p(x). Hene, for every irreduible polynomial p(x)
in R[x] and θ ∈ M \ {0}, 〈p(x), θ〉 is a proper ideal of R[x]. �XXX

If p(x) = p0 + p1x + · · · + pnx
n ∈ R[x] is an irreduible polynomial in R[x] suh

that µ(p(x)) 6= 0, then deg(µ(p(x))) = k ≥ 1, sine µ(p(x)) an not be a unit

in F [x]. This implies that pk ∈ U(R) and pk+1, . . . , pn ∈ M and so, for eah

nonzero polynomial a(x) ∈ R[x] we have that deg(p(x)a(x)) ≥ k ≥ 1. Consequently,

every nonzero polynomial in 〈p(x)〉 ⊂ R[x] is not a onstant polynomial, and so

M * 〈p(x)〉.

Theorem 2.2. Let (R,M) be a loal ring whih is not a �eld. Then R[x] is not a PIR.

Proof. Let p(x) ∈ R[x] be an irreduible polynomial in R[x] suh that µ(p(x)) 6= 0,
and let θ ∈ M \ {0}. Then we laim that 〈p(x), θ〉 is not a prinipal ideal of R[x].
Assume the ontrary; that is, suppose that there is a polynomial h(x) ∈ R[x] suh
that 〈p(x), θ〉 = 〈h(x)〉. Then there exists f(x) ∈ R[x] suh that p(x) = f(x)h(x).
Using that p(x) is irreduible, we have that f(x) ∈ U(R[x]) or h(x) ∈ U(R[x]). It

follows immediately from Lemma 2.1 that h(x) /∈ U(R[x]), and so f(x) ∈ U(R[x]). This
implies that 〈p(x), θ〉 = 〈h(x)〉 = 〈p(x) · f(x)−1〉 = 〈p(x)〉, whih is a ontradition sine

θ /∈ 〈p(x)〉. In onsequene, 〈p(x), θ〉 is not a prinipal ideal in R[x]. �XXX

Note that we have proved impliitly in Theorem 2.2 that for every loal ring

(R,M,F ) whih is not a �eld, the family of ideals 〈p(x), θ〉, where p(x) is an

irreduible element in R[x] suh that µ(p(x)) 6= 0, and θ is a nonzero element in M ,

onsists entirely of non-prinipal ideals of R[x]. This family ontains an in�nite number

of elements sine irreduible polynomials of degree n in R[x] exist for every integer n ≥ 1.

Theorem 2.3. Let R be a �nite ring. The following statements are equivalent:

1. R[x] is a PIR.

2. R is isomorphi to a diret produt of �nite �elds.

Proof. It follows immediately from Proposition 1.2 and Theorems 1.1, 2.2. �XXX

An equivalent way to state Theorem 2.3 is as follows: R[x] is a not a PIR if and only if

R is isomorphi to a diret produt R1×· · ·×Ri×· · ·×Rn of �nite loal rings suh that

at least one of them is not a �nite �eld, say (Ri,Mi, Fi). In this ase, for all θ ∈ Mi \ {0}
and for all irreduible polynomials p(x) ∈ Ri[x] with µi(p(x)) 6= 0 in Fi[x] we have

that 〈p(x), θi〉 ⊂ Ri[x] is not a prinipal ideal in Ri[x]. In onsequene, by using the ring

isomorphism Φ de�ned in (1), one an easily show that 〈Φ−1(pi(x)·ei), Φ
−1(θi ·ei)〉 ⊂ R[x]

is not a prinipal ideal in R[x].

Another equivalent way to state Theorem 2.3 is derived from the struture theorem for

ommutative PIR's due to Zariski-Samuel (see [7, Theorem 33℄). This result states that

every ommutative PIR is (isomorphi to) a diret sum of PID's and of speial PIR's.

Therefore, Theorem 2.3 shows that Zariski-Samuel theorem an be expressed for the
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ring of polynomials over a �nite ring R as follows: R[x] is a PIR if and only if R[x]
is isomorphi to a diret produt of PID's. Moreover, the isomorphism Φ given in (1)

presents one deomposition of R[x] as a diret produt of PID's. In addition, Theorem

2.2 also implies that for a loal ring (R,M) whih is not a �eld, the ring of polynomials

R[x] annot be a speial PIR.

3. Examples

As a �rst example we present the one that we used to motivate Theorem 1.1. Let m ≥ 2
be an integer. Then

Zm
∼= Zp

α1

1

× · · · × Zp
α
k

k

,

where m = pα1

1 · · · pαk

k is the prime fatorization of m. Sine Zp
αi

i

is a �nite �eld if

and only if αi = 1, it follows from Theorem 2.3 that Zm[x] is a PIR if and only if

α1 = · · · = αk = 1.

In order to generalize the previous example, let us to onsider the ring Zpα
, where p is

a prime number and α is a positive integer. Let f(u) be a moni polynomial of degree

r ≥ 1 in Zpα [u] suh that µ(f(u)) is irreduible in (Zpα/〈p〉) [u]. Then the Galois ring of

harateristi pα and ardinality pαr is de�nied as the quotient ring

GR(pα, r) = Zpα [u]/〈f(u)〉

= {a0 + a1u+ · · ·+ ar−1u
r−1 + 〈f(u)〉 : ai ∈ Zpα}.

This ring is a �nite loal ring with maximal ideal 〈p+〈f(u)〉〉, and residue �eld isomorphi

to Zp[u]/〈µ(f(u))〉 (see [5℄ for more details). Note that if r = 1 then

GR(pα, 1) = Zpα [u]/〈a+ u〉 = {a0 + 〈a+ u〉 : a0 ∈ Zpα} ∼= Zpα .

Consequently, GR(p, 1) ∼= Zp is a �nite �eld, and for any integer α ≥ 2, GR(pα, 1)
is a �nite loal ring whih is not a �eld. Furtheremore, if r ≥ 2 and α = 1, then

GR(p, r) = Zp[u]/〈f(u)〉 is a �nite �eld with pr elements (see [4℄). Hereof it follows from

Theorem 2.2 that

GR(pα, r)[x] is

{

a PIR if α = 1,

not a PIR if α ≥ 2.
(2)

Let p1, p2, . . . , pk be prime numbers, αi, ri positive integers for 1 ≤ i ≤ k, and onsider

the following ring whih is a natural generalization of Zm:

R = GR(pα1

k , r1)× · · · ×GR(pαk

k , rk).

In analogy with Zm, we dedue from (2) and Theorem 2.3 that R[x] is a PIR if and only

if α1 = · · · = αk = 1. On the other hand, R[x] is not a PIR if and only if αi ≥ 2 for

some i, 1 ≤ i ≤ k.

In the examples given above we have presented in�nite families of �nite rings for whih

the ring of polynomials with oe�ients in these rings are not PIR. The ommon ground

in both families of rings is that they are �nite produts of loal rings whose ideals are

prinipal and they are linearly ordered by inlusion. Any loal ring satisfying these
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onditions is alled a �nite hain ring (see [1℄). In general, if R is a �nite hain ring that

is not a �eld, then R[x] is not a PIR by Theorem 2.2, and so for every �nite ring R suh

that it is isomorphi to a diret produt of �nite hain rings (of whih at least one is not

a �eld), the ring R[x] is not a PIR by Theorem 2.3.

In the following lines, we are going to present a family of �nite loal rings whih was

introdued in [2℄.

Let p be a prime number, α a positive integer and denote by Fq the unique �nite �eld

with q = pα elements (see [5℄). Then for every integer k ≥ 1, the quotient ring Rk =
Fq[u1, u2, . . . , uk]/〈u

2
1, u

2
2, . . . , u

2
k〉 is a ommutative ring with identity. Furthermore, it is

proved in [2℄ that Rk is a �nite loal ring with maximal ideal M = 〈[u1], [u2], . . . , [uk]〉
and residue �eld Rk/M ∼= F2. In onsequene, Theorem 2.3 shows that Rk[x] is not a
PIR for any integer k ≥ 1.

Sine k ≥ 2, the ring Rk desribed above is neither a PIR nor a hain ring in view of

M is not a prinipal ideal and 〈[ui]〉 and 〈[uj ]〉 are not linearly ordered by inlusion for

i 6= j. However, it was pointed out in [2℄ that Rk is a �nite Frobenius ring.
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