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Dynamics of a discrete predator-prey system
with nonconstant death rate

Dinámica de un sistema depredador-presa discreto con tasa de
mortalidad no constante

Cosme Duque1,a, Jahnett Uzcategui1,b

Abstract. In this paper, we will consider a discrete non-autonomous predator-
prey system with nonconstant death rate. We give sufficient conditions in
order to get a dissipative and permanent system. By using the continuation
theorem based on the system Gaines and Mawhin’s coincidence degree, we
study the existence of positive periodic solutions when the coeficients of system
are periodic. A numerical example is given to illustrate the effectiveness of the
main result.
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Resumen. En este art́ıculo consideramos un sistema depredador-presa dis-
creto no autónomo con tasa de mortalidad no constante. Damos condiciones
suficientes para que el sistema sea disipativo y permanente. Usando el Teorema
de Continuación basado en el grado de coincidencia de Gaines y Mawhin, estu-
diamos la existencia de soluciones periódicas positivas cuando los coeficientes
del sistema son periódicos. Un ejemplo numérico es dado para ilustrar la
efectividad del resultado principal.
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1. Introduction

In recent decades, many research efforts have been put into investigation of
population dynamics of predator-prey ecosystem, see, for example, [10, 11,
12, 14, 15, 16]. When investigating such biological phenomenon arising from
predator-prey ecosystem, there are many factors which affect dynamical prop-
erties of biological and mathematical models, between this factors we have
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the functional response, and more recently the non-constant death rate in the
predator, see [2, 3, 4, 6, 7, 13].

Concretely, Cavani and Farkas in [2] introduce the following predator-prey
system

x′ = (c− dx)x− axy

β + x
,

y′ = −M(y)y +
bxy

β + x
,

(1)

where x(t), y(t) represent the population density of prey and predator at time
t, respectively, c > 0 is the specific growth rate of prey in the absense of preda-
tion and without environment limitation; in the absense of predator the prey
population grows logistically to carrying capacity c/d; the functional response
of the predator is of Holling tipe II, see, for example, [10, 11, 12, 14, 15, 16], i.e.,
the rate at which an individual predator consumes prey assumes that predators
do not interfere with one another’s activities; thus competition among predator
for food occurs only via the depletion of prey. The parameter a > 0 is the maxi-
mum number of prey population that can be eaten per predator population per
time and b > 0 describes the efficiency of the predator in converting consumed
prey into predator offspring, β > 0 is the satiation coefficient or conversion
rate. The specific mortality of predator in absence of prey

M(y) =
γ + δy

1 + y
= δ +

γ − δ
1 + y

, 0 < γ < δ (2)

depends on the quantity of predator; γ is the mortality at low density, and γ
is the maximal mortality with the natural assumption γ < δ. The advantage
of the present model over the more often used models is that here the predator
mortality is neither a constant nor an unbounded function, yet it is increasing
with quantity. The predator-prey system with non-constant mortalty death
rate (1) have been studied in the literature, see [2, 4, 6, 13].

When the environmental fluctuation is taken into account, the model must
be nonautonomous, therefore we get the following version of (1):

x′ = (c(t)− d(t)x)x− a(t)xy

β(t) + x
,

y′ = −M(y)y +
b(t)xy

β(t) + x
,

(3)

with

M(y) =
γ(t) + δ(t)y

1 + y
= δ(t) +

γ(t)− δ(t)
1 + y

, 0 < γ(t) < δ(t), (4)

where all the variables and parameters have the same biological meanings as
in (1), except that the parameters are time dependent now. However, it is well
know that the discrete time models governed by difference equations are more
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appropriate that the continuous ones when the population have nonoverlapping
generations see, for example, [1, 6, 8, 15]. In addition, discrete time models can
also provide efficient computational models of continuous models for numerical
simulations. In this work we will concentrate in to show the existence of positive
periodic solutions of the discrete analogue of the predator-prey system (3).

The principal aim of this article is to propose a discrete analouge of system
(3) and explore its dynamics. Concretely, we will show the permanence and the
existence of positive periodic solutions of the discrete analogue of the predator-
prey system (3).

Following the clues in [5], with the help of differential equations with piece-
wise constant arguments, one can reach its discrete analogous

x(k + 1) = x(k) exp

{
c(k)− d(k)x(k)− a(k)y(k)

β(k) + x(k)

}
,

y(k + 1) = y(k) exp

{
−M(y(k)) +

b(k)x(k)

β(k) + x(k)

}
,

(5)

where

M(y(k)) =
γ(k) + δ(k)y(k)

1 + y(k)
= δ(k) +

γ(k)− δ(k)

1 + y(k)
,

0 < γ(k) < δ(k), k ∈ N. In the following, we will focus our attention on system
(5). Considering the biological significance, we consider (5) with positive initial
values and assume that the parameters in system (5) are nonnegative.

2. Permanence

In this section we will show the permanence for system (5), which means that
every solution belonging to positive initial conditions is bounded.

In the following discussion, we always assume that a(k), b(k), c(k), d(k),
β(k), γ(k) and δ(k) are bounded nonnegative sequences.

We use the following notation:

gl = min
k∈N

g(k) and gu = max
k∈N

g(k),

where {g(k)} is a bounded sequence of real numbers defined for k ∈ N.

Definition 2.1. System (5) is said to be permanent if there exist positive
constants λ and Λ, with 0 < λ < Λ, such that

min

{
lim inf
k−→+∞

x(k), lim inf
k−→+∞

y(k)

}
≥ λ, max

{
lim sup
k−→+∞

x(k), lim sup
k−→+∞

y(k)

}
≤ Λ,

for all solutions of (5) with initial values positives.
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Theorem 2.2. Let (x(k), y(k)) be a solution of (5) with x(0) > 0 and y(0) > 0.
If δl > bu, then

lim sup
k−→+∞

x(k) ≤ x∗, lim sup
k−→+∞

y(k) ≤ y∗, (6)

where

x∗ =
1

dl
exp{cu − 1} and y∗ =

1

δl − bu
exp{cu − 1}. (7)

Proof. To prove lim supk→∞ x(k) ≤ x∗, we first assume that there exists a k0
such that x(k0 + 1) ≥ x(k0).

By using the first equation of system (5) we obtain

x(k + 1) ≤ x(k) exp{c(k)− d(k)x(k)},

particulary for k = k0,

x(k0) ≤ x(k0 + 1) ≤ x(k0) exp{c(k0)− d(k0)x(k0)}.

It follows that c(k0) − d(k0)x(k0) ≥ 0 and therefore x(k0) ≤ c(k0)/d(k0) ≤
cu/dl. Then

x(k0 + 1) ≤ x(k0) exp{c(k0) + d(k0)x(k0)}

≤ cu

dl
x(k0)

c(k0)/d(k0)
exp

{
cu
[
1− x(x0)

c(k0)/d(k0)

]}

≤ 1

dl
exp{cu − 1} = x∗,

where we used maxx∈R x exp{r(1− x)} = exp{r−1}
r for r > 0.

We claim that x(k) ≤ x∗ for k ≥ k0. In fact, if there exists an integer
n0 ≥ k0 such that x(n0) > x∗, then n0 ≥ k0 + 2 and letting ñ0 be the least
integer between k0 and n0 such that x(ñ0) = maxk0≤k≤n0{x(k)}, then ñ0 ≥
k0 + 2 and x(ñ0) ≥ x(ñ0 − 1). The above argument produces that x(ñ0) ≤ x∗,
a contradiction. This proves the claim.

Now, we assume that x(k) ≥ x(k + 1) for all k ∈ N. In particular,
limk→∞ x(k) exists, denoted by x. We claim that x ≤ x∗. In fact, assume
that x > x∗. Taking limit in the first equation in system (5) gives

lim
k−→∞

[
c(k)− d(k)− a(k)y(k)

β(k) + x(k)

]
= 0,

which is a contradiction since

0 = lim
k−→∞

[
c(k)− d(k)− a(k)y(k)

β(k) + x(k)

]
≤ lim
k−→∞

[
c(k)− d(k)x(k)

]
≤ cu

(
1− x

x∗

)
< 0.
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This proves the claim, so lim supk→∞ x(k) ≤ x∗.
Similary to the above analysis, next we prove lim supk→∞ y(k) ≤ y∗. As-

sume that there exists a k0 such that y(k0 + 1) ≥ y(k0).
By using the second equation of system (5) we obtain

y(k + 1) ≤ y(k) exp

{
1

1 + y(k)

[
b(k)− (δ(k)− b(k))y(k)

]}
,

particulary for k0,

y(k0) ≤ y(k0 + 1) ≤ y(k0) exp

{
1

1 + y(k0)

[
b(k0)− (δ(k0)− b(k0))y(k0)

]}
.

It follows that b(k0)− (δ(k0)− b(k0)y(k0)) > 0 and therefore

y(k0) <
b(k0)

δ(k0)− b(k0)
<

bu

δl − bu
.

Then

y(k0 + 1) ≤ y(k0) exp

{
1

1 + y(k0)

[
b(k0)− (δ(k0)− b(k0))y(k0)

]}

≤
[

bu

δl − bu

][
y(k0)

bu/(δl − bu)

]
exp

{
bu
[
1− y(k0)

bu/(δl − bu)

]}

≤ 1

δl − bu
exp{bu − 1} = y∗.

Hence y(k) ≤ y∗ for k ≥ k0.
If y(k) ≥ y(k + 1) for k ∈ N, then limk→∞ y(k) exists, dentoted by y. We

claim that y ≤ y∗, in fact, if y > y∗ then taking limit in the second equation
in system (5) gives

lim
k−→∞

[
−
(
δ(k) +

γ(k)− δ(k)

1 + y(k)

)
+

b(k)x(k)

β(k) + x(k)

]
= 0,

but

0 = lim
k−→∞

[
−
(
δ(k) +

γ(k)− δ(k)

1 + y(k)

)
+

b(k)x(k)

β(k) + x(k)

]

≤ lim
k−→∞

1

1 + y(k)

[
b(k)− (δ(k)− b(k))y(k)

]
≤ bu

1 + y

[
1− y

y∗

]
< 0,

which is a contradiction. This proves the claim. So lim supk→∞ y(k) ≤ y∗.
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Theorem 2.3. Assume that δl > bu, clβl−auy∗ > 0 and blx∗−γu(βu+x∗) > 0,
then

lim inf
k−→∞

x(k) ≥ x∗, lim inf
k−→∞

y(k) ≥ y∗, (8)

where

x∗ =
cl

du

[
1− auy∗

clβl

]
exp

{
cl − auy∗

βl
− dux∗

}
(9)

y∗ =
1

δu

[
blx∗

βu + x∗
− γu

]
exp

{
blx∗

βu + x∗
− γu − δuy∗

}
,

and x∗, y∗ are the same as in theorem 2.2.

Proof. Let ε > 0 such that clβl − au(y∗ + ε) > 0 and bl(x∗ − ε) − γu(βu +
(x∗ − ε)) > 0, according to theorem 2.2, there exists k∗ such that

x(k) < x∗ + ε, and y(k) < y∗ + ε for k ≥ k∗.

To prove lim infk→∞ ≥ x∗, we first assume that there exists a k0 ≥ k∗ such
that x(k0 + 1) ≤ x(k0). By using the first equation of system (5) we obtain

x(k + 1) ≥ x(k) exp

{
c(k)− a(k)(y∗ + ε)

β(k)
− d(k)x(k)

}
,

particulary for k = k0,

x(k0) ≥ x(k0 + 1) ≥ x(k0) exp

{
c(k0)− a(k0)(y∗ + ε)

β(k0)
− d(k0)x(k0)

}
.

It follows that c(k0)− a(k0)(y∗ + ε)/β(k0)− d(k0)x(k0) ≤ 0 and therefore

x(k0) ≥ 1

d(k0)

[
c(k0)− a(k0)(y∗ + ε)

β(k0)

]
≥ cl

du

[
1− au(y∗ + ε)

clβl

]
:= ∆1.

Then

x(k0 + 1) ≥ x(k0) exp

{
c(k0)− a(k0)(y∗ + ε)

β(k0)
− d(k0)x(k0)

}

≥ ∆1 exp

{
cl − au(y∗ + ε)

βl
− du(x∗ + ε)

}
:= xε.

We claim that x(k) ≥ xε for k ≥ k0. In fact, if there exists an integer n0 ≥ k0
such that x(n0) < xε, then n0 ≥ k0 + 2 and letting ñ0 be the least integer
between k0 and n0 such that x(ñ0) = mink0≤k≤n0{x(k)}, then ñ0 ≥ k0 + 2
and x(ñ0) ≤ x(ñ0 − 1). The above argument produces that x(ñ0) ≥ xε, a
contradiction. This proves the claim.
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Now, we assume that x(k + 1) ≥ x(k) for all k ∈ N. In particular,
limk→∞ x(k) exists, denoted by x. We claim that x ≥ ∆1. In fact, assume
that x < ∆1. Taking limit in the first equation in system (5) gives

lim
k−→∞

[
c(k)− d(k)− a(k)y(k)

β(k) + x(k)

]
= 0,

which is a contradiction since

0 = lim
k−→∞

[
c(k)− d(k)− a(k)y(k)

β(k) + x(k)

]
≥ lim
k−→∞

[
c(k)− d(k)x(k)− a(k)y(k)

β(k)

]

≥ cl
[
1− au(y∗ + ε)

clβl

]
− dux = du(∆1 − x) > 0.

This proves the claim. Note that x∗ ≥ cu/dl ≥ cl/du, implies ∆1 ≥ xε and
since limε→0 xε = x∗ we have lim infk→∞ x(k) ≥ x∗.

Similarly to the above analysis, next we prove lim infk→∞ y(k) ≥ y∗.
Since lim infk→∞ x(k) ≥ x∗, there exists k∗ ≥ k∗ such that x∗ − ε < x(k)

for k ≥ k∗. If there exists a k0 ≥ k∗ such that y(k0 + 1) ≤ y(k0), then by using
the second equation of system (5) we obtain

y(k + 1) ≥ y(k) exp

{
b(k)(x∗ − ε)

β(k) + (x∗ − ε)
− γ(k)− δ(k)y(k)

}
,

particulary for k0,

y(k0) ≥ y(k0 + 1) ≥ y(k0) exp

{
b(k0)(x∗ − ε)

β(k0) + (x∗ − ε)
− γ(k0)− δ(k0)y(k0)

}
.

It follows that

b(k0)(x∗ − ε)
β(k0) + (x∗ − ε)

− γ(k0)− δ(k0)y(k0) ≤ 0

and therefore

y(k0) ≥ 1

δ(k0)

[
b(k0)(x∗ − ε)

β(k0) + (x∗ − ε)
− γ(k0)

]
≥ 1

δu

[
bl(x∗ − ε)

βu + (x∗ − ε)
− γu

]
:= ∆2.

Then

y(k0 + 1) ≥ y(k0) exp

{
b(k0)(x∗ − ε)

β(k0) + (x∗ − ε)
− γ(k0)− δ(k0)y(k0)

}

≥ ∆2 exp

{
bl(x∗ − ε)

βu + (x∗ − ε)
− γu − δu(y∗ + ε)

}
=: yε.

Hence y(k) ≥ yε for k ≥ k0.
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If y(k + 1) ≥ y(k) for k ∈ N, then limk→∞ y(k) exists, denoted by y. We
claim that y ≥ ∆2. In fact, if y < ∆2 then by taking limit in the second
equation in system (5) gives

0 = lim
k→∞

{
−
[
δ(k) +

γ(k)− δ(k)

1 + y(k)

]
+

b(k)x(k)

β(k) + x(k)

}
≥ lim
k→∞

{
− [γ(k) + δ(k)y(k)] +

b(k)x(k)

β(k) + x(k)

}
≥ −γu +

bl(x∗ − ε)
βu + (x∗ − ε)

− δuy

≥ δu(∆2 − y) > 0,

which is a contradiction. Note that y∗ ≥ bu/(δl − bu), therefore ∆2 ≥ yε
and since limk→∞ yε = y∗ we have lim infk→∞ y(k) ≥ y∗. This concludes the
proof.

From theorems 2.2 and 2.3 we have the permanence of system (5).

3. Existence of positive periodic solutions

In this section we will confine ourselves to the case when the parameters in
system (5) are periodic functions of the time variables having a common integer
period.

Let Z, Z+, R+ y R2 denote the set of all integers, nonnegative integer,
nonnegative real numbers, and two-dimensional Euclidean vector space, re-
spectively.

For convenience in the following discussion, we will use the notation below:

Iω = {0, 1, 2, ..., ω − 1}, g =
1

ω

ω−1∑
k=0

g(k), gu = max
k∈Iω

g(k), gl = min
k∈Iω

g(k),

where {g(k)} is a ω-periodic sequence of real numbers defined for k ∈ N.
In system (5), we always assume that a, b, c, d, β, γ, δ : N −→ R+, are ω-

periodic, where ω, a fixed positive integer, denotes the prescribed common
period of the parameter in (5).

The exponential form of the equations in (5) assures that the forward trajec-
tory (x(k), y(k)) of the system with respect to any initial condition x(0) > 0,
y(0) > 0, remains in the positive quadrant of the plane for all times. In
the remainder of this paper, for biological reasons, we only consider solutions
(x(k), y(k)) with x(0) > 0, y(0) > 0.

Let X, Y be normed vector spaces, L : DomL ⊂ X −→ Y be a linear
mapping, N : X −→ Y be a continuos mapping. The mapping L will be
called Fredholm mapping of index zero if dim KerL = codim ImL < +∞ and
ImL is closed in Y . If L is a Fredholm mapping of index zero and there exist
contiunuos projections P : X −→ X and Q : Y −→ Y such that ImP = KerL,
ImL = KerQ = Im(I −Q), it follows that L |DomL∩KerP : (I − P )X −→ ImL is
invertible. We denote the inverse of the map by KP . If Ω is an open bounded
subset of X, the mapping N will be called L-compact on Ω if QN(Ω) is bounded
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and KP (I − Q)N : Ω −→ X is compact. Since ImQ is isomorphic to KerL,
there exists an isomorphism J : ImQ −→ KerL.

Lemma 3.1. (Continuation Theorem [9]). Let L be a Fredholm mapping of
index zero and N be L-compact on Ω. Suppose:

i) For each λ ∈ (0, 1), every solution of Lx = λNx is such that x ∈ ∂Ω;

ii) QNx 6= 0 for each x ∈ ∂Ω∩KerL and the Brouwer degree deg{JQN,Ω∩
KerL, 0} 6= 0.

Then the operator equation Lx = Nx has at least one solution lying in DomL∩
Ω.

Lemma 3.2. ([5]) Let g : Z −→ R be ω-periodic, i.e., g(k + ω) = g(k). Then
for any fixed k1, k2 ∈ Iω, and any k ∈ N, one has

g(k) ≤ g(k1) +

ω−1∑
s=0

|g(s+ 1)− g(s)|, g(k) ≥ g(k2)−
ω−1∑
s=0

|g(s+ 1)− g(s)|.

Define

l2 = {u = u(k) : u(k) ∈ R2, k ∈ N}.

For a = (a1, a2)T ∈ R2, define |a| = max{a1, a2}. Let lω ⊂ l2 denote the
subspace of all ω-periodic sequences equipped with the usual supremum norm
|| · ||, i.e.,

||u|| = max
k∈Iω

|u1(k)|+ max
k∈Iω

|u2(k)|, for any u = {u(k) : k ∈ N} ∈ lω.

It is not difficult to show that lω is a finite dimensional Banach space. Let

lω0 =

{
u = {u(k)} ∈ lω :

ω−1∑
k=0

u(k) = 0, k ∈ N

}
,

lωc = {u = {u(k)} ∈ lω : u(k) = h ∈ R2, k ∈ N};

then it follows that lω0 and lωc are both closed linear subspaces of lω and lω =
lω0 ⊕ lωc , dimlωc = 2.

Now, we are ready to present and prove the main result of this paper.

Theorem 3.3. If δ > b, c−
(
a
β

)(
b

δ−b

)
exp(2δω) > 0 and γ <

bξ exp(−2cω)

βu + ξ exp(−2cω)
,

where ξ = 1

d

[
c−

(
a
β

)(
b

δ−b

)
exp(2δω)

]
, then system (5) has at least one positive

ω- periodic solution.
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Proof. First let x(k) = exp{u(k)}, y(k) = exp{v(k)}, so that (5) becomes

u(k + 1)− u(k) = c(k)− d(k) exp{u(k)} − a(k) exp{v(k)}
β(k) + exp{u(k)}

v(k + 1)− v(k) = −
(
δ(k) +

γ(k)− δ(k)

1 + exp{v(k)}

)
+

b(k) exp{u(k)}
β(k) + exp{u(k)}

(10)
In this manner, we can exploit some information about the continuation theo-
rem and prove our result in a more direct way. Now, let us define X = Y = lω,
(Ly)(k) = y(k + 1)− y(k), and

(Ny)(k) =


c(k)− d(k) exp{u(k)} − a(k) exp{v(k)}

β(k) + exp{u(k)}

−
(
δ(k) +

γ(k)− δ(k)

1 + exp{v(k)}

)
+

b(k) exp{u(k)}
β(k) + exp{u(k)}


for any y ∈ X and k ∈ N. It is trivially easy to see that L is a bounded linear
operator and

KerL = lωc , ImL = lω0 ,

as well as

dimKerL = 2 = codimImL.

Since ImL is closed in Y , it follows that L is a Fredholm mapping of index zero.
Define

Pu =
1

ω

ω−1∑
s=0

y(s), y ∈ X, Qz =
1

ω

ω−1∑
s=0

z(s), z ∈ Y.

It is not difficult to show that P and Q are continuos projectors such that
ImP = KerL and ImL = KerQ = Im(I −Q).

Furthermore, the generalized inverse (to L) KP : ImL −→ KerP ∩ DomL
exists and is given by

KP (z) =

ω−1∑
s=0

z(s)− 1

ω

ω−1∑
s=0

z(s).

Obviously, QN and KP (I −Q)N are continuos. Since X is a finite-dimensio-
nal Banach space, using the Arzela-Ascoli theorem, it is not difficult to show

that KP (I −Q)N(Ω) is compact for any open bounded set Ω ⊂ X. Moreover,
QN(Ω) is bounded. Thus, N is L-compact on Ω with any open bounded set
Ω ⊂ X.

For the application of the continuation theorem, we must search for an
appropriate open, bounded set Ω. Corresponding to the operator equation
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Ly = λNY , λ ∈ (0, 1), we have

u(k + 1)− u(k) = λ

[
c(k)− d(k) exp{u(k)} − a(k) exp{v(k)}

β(k) + exp{u(k)}

]
,

v(k + 1)− v(k) = λ

[
−
(
δ(k) +

γ(k)− δ(k)

1 + exp{v(k)}

)
+

b(k) exp{u(k)}
β(k) + exp{u(k)}

]
.

(11)
Suppose that (u(k), v(k))T ∈ X is an arbitrary solution of system (11) for a
certain λ ∈ (0, 1).

Summing on both sides of (11) from 0 to ω − 1 with respect to k, we reach

0 =

ω−1∑
k=0

[u(k + 1)− u(k)]

= λ

ω−1∑
k=0

[
c(k)− d(k) exp{u(k)} − a(k) exp{v(k)}

β(k) + exp{u(k)}

]
,

0 =

ω−1∑
k=0

[v(k + 1)− v(k)]

= λ

ω−1∑
k=0

[
−
(
δ(k) +

γ(k)− δ(k)

1 + exp{v(k)}

)
+

b(k) exp{u(k)}
β(k) + exp{u(k)}

]
,

(12)

that is,

cω =

ω−1∑
k=0

[
d(k) exp{u(k)}+

a(k) exp{v(k)}
β(k) + exp{u(k)}

]
,

δω =

ω−1∑
k=0

[
δ(k)− γ(k)

1 + exp{v(k)}
+

b(k) exp{u(k)}
β(k) + exp{u(k)}

]
.

(13)

From, (11) and (13) we obtain

ω−1∑
k=0

|u(k + 1)− u(k)| ≤ λ

ω−1∑
k=0

[
|c(k)| − d(k) exp{u(k)} − a(k) exp{v(k)}

β(k) + exp{u(k)}

]

= 2λcω < 2cω

ω−1∑
k=0

|v(k + 1)− v(k)| ≤ λ

ω−1∑
k=0

[
δ(k) +

γ(k)− δ(k)

1 + exp{v(k)}
+

b(k) exp{u(k)}
β(k) + exp{u(k)}

]

= 2λδω < 2δω.
(14)
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Now, since (u(k), v(k))T ∈ X, there exist ξi, ηi ∈ Iw such that

u(ξ1) = min
k∈Iω

u(k), u(η1) = max
k∈Iω

u(k)

v(ξ2) = min
k∈Iω

v(k), v(η2) = max
k∈Iω

v(k)
(15)

It follows from (13) and (15) that

cω ≥
ω−1∑
k=0

d(k) exp{u(k)} ≥
ω−1∑
k=0

d(k) exp{u(ξ1)} = dω exp{u(ξ1)},

which reduces to

u(ξ1) ≤ ln

[
c

d

]
:= L1,

and hence, from Lemma 3.2 and (14) we obtain

u(k) ≤ u(ξ1) +

ω−1∑
s=0

|u(s+ 1)− u(s)| ≤ L1 + 2cω := H1. (16)

On the other hand, from (13) and (15) we also have

δω ≤
ω−1∑
k=0

[
δ(k)

1 + exp{v(ξ2)}
+ b(k)

]
=

δω

1 + exp{v(ξ2)}
+ bω,

which reduces to

v(ξ2) ≤ ln

[
b

δ − b

]
:= L2.

Using, again, Lemma 3.2 and (14) we obtain

v(k) ≤ v(ξ2) +

ω−1∑
s=0

|v(s+ 1)− v(s)| ≤ L2 + 2δω := H2. (17)

Now, from (13) and (15) it follows that

cω ≤
ω−1∑
k=0

[
d(k) exp{u(k)}+

a(k)

β(k)
exp{v(k)}

]

≤
ω−1∑
k=0

[
d(k) exp{u(η1)}+

a(k)

β(k)

(
b

δ − b

)
exp(2δω)

]

= dω exp{u(η1)}+

[
a

β

](
b

δ − b

)
exp(2δω),
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so we know that

u(η1) ≥ ln

[
1

d

(
c−

[
a

β

](
b

δ − b

)
exp(2δω)

)]
:= l1,

therefore, Lemma 3.2 and (14) imply

u(k) ≥ u(η1)−
ω−1∑
s=0

|u(s+ 1)− u(s)| ≥ l1 − 2cω := H3. (18)

If we set ξ = exp(l1) =
1

d

(
c−

[
a

β

](
b

δ − b

)
exp(2δω)

)
> 0, then, from (18)

we obtain exp{u(k)} ≥ ξ exp(−2cω).

We can derive from (13) and (15) that

δω ≥
ω−1∑
k=0

[
δ(k)− γ(k)

1 + exp{v(k)}
+

b(k)ξ exp(−2cω)

β(k) + ξ exp(−2cω)

]

≥
[

δ − γ
1 + exp{v(η2)}

+
bξ exp(−2cω)

βu + ξ exp(−2cω)

]
ω,

consequently,

v(η2) ≥ ln

 δ − γ

δ − bξ exp(−2cω)

βu + ξ exp(−2cω)

− 1

 := l2.

From this, (14) and Lemma 3.2, we easily obtain

v(k) ≥ v(η2)−
ω−1∑
s=0

|v(s+ 1)− v(s)| ≥ l2 − 2δω := H4. (19)

Now, from (16), (17), (18) and (19) it follows that

max
k∈Iω

|u(k)| ≤ max{|H1|, |H3|} := B1

and

max
k∈Iω

|v(k)| ≤ max{|H2|, |H4|} := B2.

Obviously, B1 and B2 are independent of λ. Take B = B1 + B2 + B3, where
B3 > 0 is taken sufficiently large such that B3 > |l1|+ |L1|+ |l2|+ |L2|.
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Consider the algebraic equations
c− d exp{u} − 1

ω

ω−1∑
k=0

µa(k) exp{v}
β(k) + exp{u}

= 0

−δ − 1

ω

ω−1∑
k=0

γ(k)− δ(k)

1 + exp{v}
+

1

ω

ω−1∑
k=0

b(k) exp{u}
β(k) + exp{u}

= 0,

(20)

where (u, v) ∈ R2 and µ ∈ [0, 1] is a parameter.
Note that (20) is equivalent to

c− d exp{u} − 1

ω

ω−1∑
k=0

µa(k) exp{v}
β(k) + exp{u}

= 0

−δ +
δ − γ

1 + exp{v}
+

1

ω

ω−1∑
k=0

b(k) exp{u}
β(k) + exp{u}

= 0.

(21)

One can show that any solution (u∗, v∗) of (21), with µ ∈ [0, 1], satisfies

l1 < u∗ < L1 , l2 < v∗ < L2. (22)

Let
Ω = {(u, v)T ∈ X : ‖(u, v)‖ < B},

then Ω is an open, bounded set in X and verifies requirement (a) of Lemma
3.1.

When (u, v) ∈ ∂Ω ∩KerL, (u, v) is a constant vector in R2 with ‖(u, v)‖ =
|u|+ |v| = B. Then

QN

[
u
v

]
=


c− d exp{u} − 1

ω

ω−1∑
k=0

µa(k) exp{v}
β(k) + exp{u}

−δ +
δ − γ

1 + exp{v}
+

1

ω

ω−1∑
k=0

b(k) exp{u}
β(k) + exp{u}

 6=
[

0
0

]
.

that is, QNx 6= 0, ∀ x = (u, v)T ∈ ∂Ω ∩ KerL. So, the first part of (b) of
Lemma 3.1 is valid.

Consider the homotopy for computing the Brouwer degree

Aµ((u, v)T ) = µQN((u, v)T ) + (1− µ)G((u, v)T ), µ ∈ [0, 1],

where

G((u, v)T ) =


c− d exp{u}

δ − (δ − γ)

1 + exp{v}
− 1

ω

ω−1∑
k=0

b(k) exp{u}
β(k) + exp{u}

 .
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From (22) it follows that 0 /∈ Aµ(∂Ω ∩ KerL), µ ∈ [0, 1], and not it is difficult
to show that the algebraic equation G((u, v)T ) = 0 has an unique solution in
R2.

By the invariance property of homotopy, we have that

deg(JQN,Ω ∩KerL, 0) = deg(QN,Ω ∩KerL, 0)

= deg(G,Ω ∩KerL, 0)

=
∑

x∈G−1(0)

sigJG(x) 6= 0,

where deg(·, ·, ·) is the Brouwer degree, J = Id since ImQ = KerL and the
Jacobian of G is

JG(x) = det


−d exp{u} 0

h(u)
(δ − γ)

(1 + exp{v})2
exp{u}

 < 0,

where h(u) is the derivative of the second row of G respect to u.

By now, we have proved that Ω verifies all requirements of Lemma 3.1,
then it follows that Lx = Nx has at least one solution in DomL ∩ Ω, that is
to say, the system (10) has at least one ω periodic solution in DomL ∩ Ω, say
(u∗(k), v∗(k))T .

Let x∗(k) = exp{u∗(k)} and y∗(k) = exp{v∗(k)}, then (x∗(k), y∗(k))T is
an ω periodic solution of system (5) with strictly positive components. This
completes the proof.

4. Numerical example

The following numerical example illustrates our results. Let us pick the coeffi-
cients

a(k) = 0.01(0.5 + 0.2 sin(πk/2)), b(k) = 0.1(1 + 0.2 cos(πk/2)),
c(k) = 0.1(1 + 0.8 cos(πk/2)), d(k) = 0.025(2 + cos(πk/2)),
β(k) = 2(0.2 + 0.1 sin(πk/2)), γ(k) = 0.0067(3.2 + 0.8 sin(πk/2)),
δ(k) = 0.125(2 + sin(πk/2)),

which are 4-periodic. It is easy to show that the conditions in Theorem 3.3 are
verified, therefore the system (5) admits at least one ω-periodic solution. Our
numerical simulation supports our theoretical findings and we can appreciate
in Figure 1 that the solution tends to the 4-periodic solutions (x∗(k), y∗(k)).
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Figure 1: Solution of (5) with initial conditions x(0) = 1.8 and y(0) = 0.36.
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Bolet́ın de Matemáticas 24(1) 1-17 (2017)



Dynamics of a discrete predator-prey system with nonconstant death rate 17

[4] C. Duque and M. Lizana, Partial characterization of the global dynamics
of a predator-prey model with non constant mortality rate, Differential
Equations. Dynam. Syst. 17 (2009), no. 1 & 2, 1–13.

[5] M. Fan and K. Wang, Periodic solutions of a discrete time nonau-
tonomous ratio-dependent predator-prey system, Math. Comput. Mod-
elling 35 (2002), no. 9-10, 951–961.

[6] M. Farkas, Dynamical models in biology, Academic Press, 2001.
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