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A note about isothermic surfaces in Rn−j,j

M. P. Dussan∗ and M. A. Magid∗∗

Abstract. In this note we survey our results on the description of ti-
melike isothermic surfaces in R

n−j,j using the Grassmannian systems or
U/K-systems. We give the natural extensions of the definition of Ribaucour
and Darboux transformations for timelike isothermic surfaces and review
how those transformations correspond to dressing actions of suitable simple
elements.

1. Introduction

An isothermic surface in R3 is, by definition, a surface which admits, away from its umbilic

points, a coordinates system which is a conformal line of curvature system. Several works

about this kind of surface and its geometric transformations, such as the Christoffel,

Ribaucour and Darboux transformations, are known ([3], [4], [5], [6]). In particular, a

new approach using integrable systems was given recently by Bruck-Du-Park-Terng in

[2], by Burstall-Hertrich-Pedit-Pinkall in [4] and by Burstall in [3]. In [2] is found a

connection between the isothermic surfaces and the integrable system constituted by the

U/K-system, while in [3] and [4], they are investigated using curved flats. Turning our

attention to the Lorentzian setting, recently the authors in [8], [9] obtained a description

of the timelike isothermic surfaces in the pseudo-Riemannian space Rn−j,j with signature

j ≥ 1, through of the U/K-systems. Since in the Lorentzian case, the shape operators

can be of different algebraic types, the authors considered the cases when all the shape

operators are diagonalizable over R or over C.

0Keywords: Dressing actions, Grassmannian systems, Lorentzian isothemic surfaces.
0MSC2000: 53A35, 53C40.
0∗ Departamento de Matemática, Universidade de São Paulo, São Paulo-SP, Brasil.
e-mail : dussan@ime.usp.br

0∗∗ Department of Mathematics, Wellesley College, Wellesley, USA.
e-mail : mmagid@wellesley.edu

61



62 M. P. Dussan & M. A. Magid

The purpose of this note is to review isothermic surfaces in Rn−j,j together with explicit

examples, and to give a short report of the work done by the authors in [8], [9], for

timelike isothermic surfaces.

This note is divided as follows. In Section 2, we review the U/K-systems and some re-

sults of Terng-Uhlenbeck ([15]) about Birkhoff-type factorization over certain loop groups,

obtaining via dressing action new solutions of the U/K-system. Section 3 contains defi-

nitions and explicit examples of isothermic surfaces in Rn−j,j . Finally, in Section 4, we

make a description of the timelike isothermic surfaces through the U/K-system involving

the geometric transformations associated to the dressing actions. We observe that [17]

considered the real diagonalizable case.

The first author thanks Marlio Paredes, professor at the School of Mathematics at the

Universidad Industrial de Santander, for inviting her to present this paper in the XV

Congreso Nacional de Matemáticas in Bogotá, 2005.

2. The Grassmannian Systems

The U/K-system or Grassmannian system for U/K a symmetric space of rank n and

Cartan decomposition U = K⊕P , is the first order non-linear system of partial differential

equations given by the equation
[
ai,

∂v

∂xj

]
−

[
aj ,

∂v

∂xi

]
= [[ai, v], [aj , v]], 1 ≤ i �= j ≤ n,

for v : Rn → P ∩ A⊥, where A is a maximal abelian subalgebra in the subspace P and

{ai}n
1 is a basis of A.

From of the work done by Terng in [14] one knows that the U/K-system admits a zero

curvature formulation given by the flatness of the 1-parameter family of U⊕C-connection

1-form

θλ =

n∑

j=1

(ajλ + [aj , v])dxj , (1)

and in addition, that the flatness of θλ for all λ ∈ C is equivalent to the existence of a

map E : Rn × C → U such that

Exj
= E(ajλ + [aj , v]), 1 ≤ j ≤ n. (2)

Such a solution E of the system (2) is known as a trivialization of v.
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From the existence of the family θλ one can have certain elements belonging to an infinite

dimensional loop group acting on the space of solutions of the U/K-system, giving a

dressing action. The key point is to identify which geometric transformation between the

submanifolds associated to the two solutions of the U/K-system, corresponds to that

dressing action.

Next we recall the construction of that action following Terng-Uhlenbeck ([15]), which is

based on the Birkhoff Factorization Theorem.

Let G be a complex and simple Lie group and G its Lie algebra. Let S2 = C ∪ {∞}
and V1/ǫ = {λ ∈ S2 | |λ| > 1/ǫ}. We denote by L(G) the Lie group containing all the

holomorphic maps f from V1/ǫ ∩ C to G. In addition, we denote by L+(G) the Lie sub-

group containing all the maps f ∈ L(G) which extend holomorphically to C, and L−(G)

denotes the subgroup containing all the maps f ∈ L(G) which extend holomorphically

to V1/ǫ and such that f(∞) = I.

Theorem 2.1 (Birkhoff Factorization Theorem, [13]). The multiplication map

β : L+(G) × L−(G) → L(G),

given by β(h+, h−) = h+h−, is one-to-one and its image is an open and dense subset of

L(G).

This theorem assures that an element h ∈ L(G) can be factored uniquely as h = h+h−

where h± ∈ L±(G).

The Birkhoff factorization theorem allows one to obtain another factorization for the

special subgroups of L(G) given by

Lτ,σ(G) = {f ∈ L(G) | τ(f(λ̄)) = f(λ), σ(f(−λ)) = f(λ)}

Lτ,σ
± (G) = Lτ,σ(G) ∩ L±(G),

where τ, σ : G → G are the two involutions on the complex Lie group G that define the

symmetric space U/K. Namely,

Proposition 2.2 ([15]). The multiplication map β : Lτ,σ
+ (G) × Lτ,σ

− (G) → Lτ,σ(G) is

one-to-one and its image is open and dense in Lτ,σ(G).

We recall that the conditions on f , namely, τ(f(λ̄)) = f(λ) and σ(f(−λ)) = f(λ), are

called the U/K-reality conditions, and that a trivialization E(x, λ) for a solution v of
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the U/K-system which satisfies those conditions is called a frame for the solution v of

U/K-system.

Proposition 2.2 allows one to prove the next theorem which establishes how to construct

new solutions of the U/K-system from a given initial solution v (see Terng-Uhlenbeck

[15]).

Theorem 2.3 ([15]). Let v be a solution of the U/K-system, E a trivialization of the Lax

connection θλ of v with E(0, λ) = I, and g ∈ Lτ,σ
− (G). Then gE can be factored uniquely

as

g(λ)E(x, λ) = Ẽ(x, λ)g̃(x, λ),

with Ẽ(x) ∈ Lτ,σ
+ (G) and g̃(x) ∈ Lτ,σ

− (G). Expand g̃(x, λ) at λ = ∞:

g̃(x, λ) = I + g̃1(x)λ−1 + g̃2(x)λ−2 + · · ·

Let ṽ = v − π(g̃1), where π is the projection onto P ∩ A⊥. Then,

(a) ṽ is a new solution of the U/K-system and Ẽ is a frame of the Lax connection θ̃λ

of the ṽ such that Ẽ(0, λ) = I.

(b) The map (g, v) → g ∗ v := ṽ is a local action of Lτ,σ
− (G) on the space of local

solutions of the U/K-system (dressing action).

We finish this section reviewing the equivalent gauge system to the U/K-system, called

the U/K-systems II which are directly associated to isothermic surfaces ([2]).

Take v to be a solution of the U/K-system where K = K1×K2. Since θ0 =
∑

i[ai, v]dxi =
∑

i ξi + ηi ∈ K1 + K2 is a K-valued flat connection, then
∑

i ηidxi is also flat and there

exists a map g : Rn → K so that g−1dg = θ0. Now take g2 : Rn → K2 a trivialization

of
∑

i ηidxi. Then the equation given by the flatness of the connection form obtained by

the gauge transformation:

θII
λ := g2 ∗ θλ =

n∑

i=1

(g2aig
−1
2 λ + ξi)dxi,

is the U/K-system II.

We recall that a trivialization for a solution η of the U/K-system II, which satisfies

the U/K-reality conditions, is called the frame for the solution η of U/K-system II. We

denote this frame by EII .
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3. Isothermic surfaces in Rn−j,j

The goal in this section is to review some facts about isothermic surfaces in Rn−j,j for

any signature j ≥ 1. Let Rn−j,j be Rn with the metric

�v, w� = v1w1 + v2w2 + · · · + vn−jwn−j − vn−j+1wn−j+1 − · · · − vnwn,

for v = (v1, . . . , vn) and w = (w1, . . . , wn).

Classically, a surface in R3 is called isothermic if, away from its umbilic points, it admits

conformal coordinates for which the associated coordinate vectors ∂x1, ∂x2 form an

eigenvector basis for the second fundamental form, i.e, if it admits a conformal line of

curvature coordinate system. On the other hand, the 2-dimensional immersions in Rn−j,j

can be spacelike or timelike. For the spacelike case the definition of isothermic surfaces

is not so different from the Riemannian case in Rn. One states its formal definition as

follows.

Definition 3.1. Let O be a domain in R2. An immersion X : O → Rn−j,j is called a

spacelike isothermic surface if it has flat normal bundle and the two fundamental forms

are

I = e2u(dx2
1 + dx2

2), II = eu
n−2∑

i=1

(ri,1dx2
1 + ri,2dx2

2)ei+2, (3)

with respect to some parallel normal frame {eα}. Or equivalently, if (x1, x2) ∈ O is

conformal and line of curvature coordinate system for X .

Spacelike minimal surfaces, spacelike surfaces with constant mean curvature and spacelike

Bonnet surface in R2,1, provide examples of spacelike isothermic surfaces in R2,1 (see [10]).

Another typical example of spacelike isothermic surface is spacelike surfaces of revolution

in R2,1 ([10]).

In terms of its dual characterization (or Christoffel transform), a spacelike surface is

isothermic if it admits a dual surface, which means, the surfaces have the same normal

vectors and a conformal immersion reversing orientation.

Here we will construct an explicit example of a dual pair of spacelike isothermic surfaces

in R2,1. For that, we first recall the following well known result (see [16]).

Proposition 3.2. Let M be a spacelike surface of R2,1 with constant curvature −1 and

free of umbilic points. Then there exists a local coordinate system x1, x2 such that the two
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fundamental forms are

I = cosh2 udx2
1 + sinh2 udx2

2, II = coshu sinhu(dx2
1 + dx2

2).

Moreover, u satisfies the Elliptic Sinh-Gordon equation

ux1x1
+ ux2x2

= sinh u coshu.

So, we have the following result.

Example 3.3. Let M be a spacelike surface in R2,1 with curvature −1 and free of umbilic

points. By the proposition above, it admits coordinates such that

I = cosh2 udx2
1 + sinh2 udx2

2, II = coshu sinhu(dx2
1 + dx2

2),

so its Gauss-Codazzi equation is ux1x1
+ ux2x2

= sinh u coshu. Let X(x1, x2) denote the

immersion of M and e3 the unit normal of M . One can see that e3 is a local parame-

trization of an open subset of pseudo-hyperbolic space H2(1) = {p ∈ R2,1 | �p, p� = −1}
and that the fundamental forms for e3 are given by:

I = sinh2 udx2
1 + cosh2 udx2

2, II = −(sinh2 udx2
1 + cosh2 udx2

2).

Now, let

Z1 = X − e3, Z2 = X + e3.

Since

dX = −(coshudx1e1 + sinh udx2e2), de3 = sinhudx1e1 + coshudx2e2,

we have

dZ1 = −eu(dx1e1 + dx2e2), dZ2 = −e−u(dx1e1 − dx2e2),

and then

IZ1
= e2u(dx2

1 + dx2
2), IIZ1

= eu(sinh udx2
1 + coshudx2

2)

IZ2
= e−2u(dx2

1 + dx2
2), IIZ2

= e−u(sinh udx2
1 − coshudx2

2).

Hence, it follows that the two surfaces Z1 and Z2 constitute an example of a dual pair of

spacelike isothermic surfaces in R
2,1 according to Definition 3.1.
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Now we turn our attention to the principal case, the timelike case (or Lorentzian case).

We recall that (x1, x2) being isothermal coordinate systems, for the induced metric �·, ·�
on M and for the associated coordinates vectors ∂x1, ∂x2, there is a non-zero function

λ so that

�∂x1, ∂x1� = −λ2, �∂x2, ∂x2� = λ2, �∂x1, ∂x2� = 0.

Definition 3.4 ([12]). A Lorentzian immersion is called isothermic if there is some isot-

hermal coordinate system (x1, x2) such that each shape operator with respect to the basis

{∂x1, ∂x2} has one of the following forms:

a)
(

λ1 0
0 λ2

)
, b)

(
a b
−b a

)
.

The first case is called real isothermic and the second complex isothermic. Since the work

is local, one defines an isothermic immersion to be an immersion for which each point

has a neighborhood which is either real isothermic or complex isothermic.

Formally, in term of a smooth map u : M → R, we have the following definition.

Definition 3.5 ([8]). Let O be a domain in R1,1. An immersion X : O → Rn−j,j is called

a real timelike isothermic surface if it has flat normal bundle and the two fundamental

forms are

I = e2u(−dx2
1 + dx2

2), II = eu
n−1∑

i=2

(ri−1,2dx2
2 − ri−1,1dx2

1)ei, (4)

with respect to some parallel normal frame {ei}. Equivalently, if (x1, x2) ∈ O is a con-

formal and line of curvature coordinate system for X .

As typical examples, the second author shows in [12] that Lorentzian surfaces in R2,1

with constant mean curvature (including minimal surfaces) and with second fundamental

form diagonalizable over R, are real isothermic surfaces. Similarly, Lorentzian surfaces of

revolution in R2,1 are real isothermic surfaces.

For the complex case, we define it formally as follows:

Definition 3.6 ([8]). Let O be a domain in R1,1. An immersion X : O → Rn−j,j is called

a complex timelike isothermic surface if it has flat normal bundle and its two fundamental

forms are

I = ±e2u(−dx2
1 + dx2

2), II =

n−1∑

i=2

eu(ri1(dx2
2 − dx2

1) − 2ri2dx1dx2)ei, (5)

with respect to some parallel normal frame {ei}.
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Similarly, the Lorenztian surfaces in R2,1 with constant mean curvature (including mi-

nimal surfaces) and with second fundamental form diagonalizable over C are isothermic

surfaces.

In [12] the second author also shows that each real or complex isothermic surface possesses

a dual surface, which, following the positive definite terminology, is called the Christoffel

transform of the original surface. See [12] for the characterization in terms of coordinates

system of the dual pair of timelike isothermic surfaces.

The next is an example of a complex dual pair of isothermic surfaces in R2,1.

Example 3.7 ([12]). Consider a Lorentzian helicoid

X(x1, x2) = (x2, sinh x1 sinh x2, coshx2 sinh x1)

with normal vector N(x1, x2) =
1

coshx1
(− sinhx1, coshx2, sinhx2). The dual surface to

the Lorentzian helicoid is given by

X̃(x1, x2) =
1

coshx1
(sinh x1,− coshx2,− sinh x2),

which is a parametrization of part of a standard immersion of the Lorentzian sphere.

4. Description of timelike isothermic surfaces

Here we review the main results of [8] and [9], which establish the descriptions of timelike

isothermic surfaces in Rn−j,j using Grassmannian systems. The key point for doing this,

is the identification of two distinct maximal abelian subalgebras Ai, for which the O(n−
j + 1, j + 1)/O(n− j, j)×O(1, 1)-systems correspond respectively to the geometry of the

real and complex timelike isothermic surfaces in R
n−j,j .

In this section, we assume U/K = O(n − j + 1, j + 1)/O(n − j, j) × O(1, 1), where

O(n − j + 1, j + 1) =

{
X ∈ GL(n + 2)

∣∣∣Xt

(
In−j,j 0

0 J ′

)
X =

(
In−j,j 0

0 J ′

)}
,

In−j,j =

(
In−j 0

0 −Ij

)
and I1,1 =

(
0 1
1 0

)
.

We shall write down the O(n − j + 1, j + 1)/O(n − j, j) × O(1, 1)-systems explicitly.

From a direct computation one identifies the subspaces K and P of the Cartan decom-

position of O(n − j + 1, j + 1)/O(n − j, j) × O(1, 1). Next we take two maximal abelian
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subalgebras Ai in P spanned by the following two bases, each one corresponding respec-

tively to the real and complex case.

A1 : a1 = en,n+1 + en,n+2 + en+1,n + en+2,n, a2 = −e1,n+1 + e1,n+2 − en+1,1 + en+2,1,

A2 : a1 = e1,n+1 + en,n+2 + en+1,n − en+2,1, a2 = −e1,n+2 + en,n+1 + en+1,1 + en+2,n,

where eij is the elementary (n + 2) × (n + 2) matrix, whose only non-zero entry is 1 in

the ij-th place.

The real O(n − j + 1, j + 1)/O(n − j, j) × O(1, 1)-system for A1 is given by

ξ =




ξ1 ξ1

r1,1 r1,2

...
...

rn−2,1 rn−2,2

ξ2 −ξ2




: R
2 → Mn×2,





(ri,2)x1
− (ri,1)x1

= −2(ri,1 + ri,2)ξ2, i = 1, . . . , n − 2,

(ri,2)x2
+ (ri,1)x2

= 2(ri,2 − ri,1)ξ1, i = 1, . . . , n − 2,

2((ξ1)x2
+ (ξ2)x1

) =
�n−2

i=1
σi(r

2
i1 − r2

i2),

(ξ2)x2
+ (ξ1)x1

= 0,

(6)

where σi = 1, i = 1, . . . , n − j − 1 and σi = −1, i = n − j, . . . , n − 2.

In particular, taking

B =

�
b 0
0 1

b

�
=

�
e2u 0
0 e−2u

�
,

one has that the real O(n − j + 1, j + 1)/O(n − j, j) × O(1, 1)-system II is the set of

partial differential equations for (u, r1,1, r1,2, . . . , rn−2,1, rn−2,2):





(ri,2)x1
− (ri,1)x1

= −2(ri,1 + ri,2)ux1
, i = 1, . . . , n − 2,

(ri,1)x2
+ (ri,2)x2

= −2(ri,2 − ri,1)ux2
, i = 1, . . . , n − 2,

2(ux1x1
− ux2x2

) =
�n−2

i=1
σi(r

2
i1 − r2

i2),

(7)

where σi = 1, i = 1, . . . , n − j − 1 and σi = −1, i = n − j, . . . , n − 2.

The complex O(n − j + 1, j + 1)/O(n − j, j) × O(1, 1)-system for A2 is given by

ξ =




ξ1 ξ2

r1,1 r1,2

...
...

rn−2,1 rn−2,2

ξ2 −ξ1




: R
2 → Mn×2,
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



−ri,2x2
− ri,1x1

= 2(ri,2ξ1 − ri,1ξ2), i = 1, . . . , n − 2,

−ri,1x2
+ ri,2x1

= −2(ri,1ξ1 + ri,2ξ2), i = 1, . . . , n − 2,

(−2ξ1)x2
+ (2ξ2)x1

=
�n−2

i=1
σi(r

2
i,1 + r2

i,2),

(2ξ2)x2
− (2ξ1)x1

= 0,

(8)

where σi = 1, i = 1, . . . , n − j − 1 and σi = −1, i = n − j, . . . , n − 2.

Now taking B =

�
e2u 0
0 e−2u

�
, the complex O(n−j+1, j+1)/O(n−j, j)×O(1, 1)-system

II is the PDE for (u, r1,1, r1,2, . . . , rn−2,1, rn−2,2):





−ri,2x2
− ri,1x1

= 2(ri,2ξ1 − ri,1ξ2),

−ri,1x2
+ ri,2x1

= −2(ri,1ξ1 + ri,2ξ2),

−2ux2x2
+ 2ux1x1

=
�n−2

i=1
σi(r

2
i,1 + r2

i,2),

(9)

where σi = 1, i = 1, . . . , n − j − 1 and σi = −1, i = n − j, . . . , n − 2.

To understand the geometries involved in the two O(n−j+1, j+1)/O(n−j, j)×O(1, 1)-

systems, we need to define the dual pairs of timelike isothermic surfaces in R
n−j,j of type

O(1, 1). We start with the real timelike case.

Definition 4.1. Let O be a domain in R1,1 and Xi : O → Rn−j,j an immersion with flat

and non-degenerate normal bundle for i = 1, 2. Then (X1, X2) is called a real isothermic

timelike dual pair in Rn−j,j of type O(1, 1) if:

(i) The normal plane of X1(x) is parallel to the normal plane of X2(x) and x ∈ O.

(ii) There exists a common parallel normal frame {e2, . . . , en−1}, where {ei}n−j
2 and

{ei}n−1
n−j+1 are spacelike and timelike vectors, respectively.

(iii) x ∈ O is a conformal line of curvature coordinate system with respect to

{e2, . . . , en−1} for each Xk such that the fundamental forms of Xk are given by





I1 = b−2(−dx2
1 + dx2

2),

II1 = b−1
�n−1

i=2
[−(gi−1,1 + gi−1,2)dx2

1 + (gi−1,2 − gi−1,1)dx2
2]ei,

I2 = b2(−dx2
1 + dx2

2),

II2 = b
�n−1

i=2
[−(gi−1,1 + gi−1,2)dx2

1 − (gi−1,2 − gi−1,1)dx2
2]ei,

(10)

where B =

�
b 0
0 b−1

�
is in O(1, 1) and a M(n−2)×2-valued map G = (gij).
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In a similar way, one defines the dual pair in the complex case as follows.

Definition 4.2. Let O be a domain in R1,1 and Xi : O → Rn−j,j an immersion with

flat and non-degenerate normal bundle for i = 1, 2. Then (X1, X2) is called a complex

isothermic timelike dual pair in Rn−j,j of type O(1, 1) if:

(i) The normal plane of X1(x) is parallel to the normal plane of X2(x) and x ∈ O.

(ii) There exists a common parallel normal frame {e2, . . . , en−1}, where {ei}n−j
2 and

{ei}n−1
n−j+1 are spacelike and timelike vectors, respectively.

(iii) x ∈ O is a isothermal coordinate system with respect to {e2, . . . , en−1}, for each

Xk, such that the fundamental forms of Xk are diagonalizable over C. Namely,




I1 = b−2(dx2
1 − dx2

2),

II1 = −b−1
�n−2

i=1
[gi,2(dx2

2 − dx2
1) + 2gi,1dx1dx2]ei+1,

I2 = b2(−dx2
1 + dx2

2),

II2 = b
�n−2

i=1
[gi,1(dx2

2 − dx2
1) − 2gi,2dx1dx2]ei+1,

(11)

where B =

�
b 0
0 b−1

�
is in O(1, 1) and a M(n−2)×2-valued map G = (gij).

The geometries associated to the two O(n− j + 1, j + 1)/O(n− j, j)×O(1, 1)-systems II

were identified by the authors in [8], [9]. In particular, with the definitions of dual pairs

above, the authors proved several results which we summarize in the next theorem.

Theorem 4.3 ([8], [9]). Based on the notation above, for each case, real and com-

plex, there is a one-to-one correspondence between the solutions (u, r11, . . . , rn−2,2) of

the O(n − j + 1, j + 1)/O(n − j, j) × O(1, 1)-systems II (7) ((9), respectively) and a dual

pair of real (complex, respectively) isothermic surfaces in Rn−j,j of type O(1, 1).

Example 4.4. Because of the existence of the one-to-one correspondence between the

solutions of the O(3, 2)/O(2, 1)×O(1, 1)-system II (9) and a dual pair of complex timelike

isothermic surfaces (Theorem 4.3), the Lorentzian helicoid and the Lorentzian sphere

(Example 3.7), constitutes an explicit solution of the O(3, 2)/O(2, 1) × O(1, 1)-system II

(9). This means in particular, by looking at the first and second fundamental forms of

the two surfaces that ξ1 = 0, ξ2 =
tanhx1

2
and hence that the triple (u, 0,−e−2u) is a

solution of system (9).

Vol. 26, No. 2, 2008]



72 M. P. Dussan & M. A. Magid

Following the ideas in Bruck-Du-Park-Terng in [2], we now describe explicit dressing

actions of simple elements belonging to certain loop groups on the space of local solutions

of the systems (7) and (9) (see [9] for more details).

We note that the study of the geometric transformations associated to the real timelike

case was already considered in [17], so in the rest of this paper, we will focus in the

authors’ results in [9] which involve the identifications for the complex timelike case.

We identify the O(n − j + 1, j + 1)/O(n − j, j) × O(1, 1)-reality conditions, namely,




g(λ) = g(λ),

In,2 g(−λ) In,2 = g(λ),

g(λ)t

�
In−j,j 0

0 J ′

�
g(λ) =

�
In−j,j 0

0 J ′

�
.

(12)

Consider

G+ ={g : C → O(n − j + 1, j + 1; C) | g is holomorphic and satisfies (12))}

G−={g : S2 → O(n − j + 1, j + 1; C) | g is meromorphic, g(∞) = I and satisfies (12)}.

Next we define the rational element

gs,π(λ) =

�
π +

λ − is

λ + is
(I − π)

� �
π +

λ + is

λ − is
(I − π)

�
(13)

where 0 �= s ∈ R, π is the orthogonal projection of Cn+2 onto the span of
�

W
iZ

�
, with

respect to the bilinear form �, �2 given by

�U, V �2 =

n−j�

i=1

uivi −
n�

i=n−j+1

uivi + un+1vn+2 + un+2vn+1,

for W ∈ Rn−j,j , Z ∈ R1,1 unit vectors. It is a simple computation to see that gs,π ∈ G−.

Lemma 4.5 (Main Lemma, [9]). Let ξ =

�
F
G

�
be a solution of the system (8), and E(x, λ)

a frame of ξ such that E(x, λ) is holomorphic for λ ∈ C. Let gs,π be the map defined by

(13) and �π(x) the orthogonal projection onto C

�
�W
i �Z

�
(x) with respect to �·, ·�2, where

�
�W
i �Z

�
(x) = E(x,−is)−1

�
W
iZ

�
. (14)

Let �W =
�W

��W�n−j,j

and �Z =
�Z

� �Z�1,1

, �E(x, λ) = gs,π(λ)E(x, λ)gs,�π(x)(λ)−1,

�ξ = ξ − 2s(�W �ZtJ ′)∗, (15)
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where (ϑ∗) is the projection onto the span of {a1, a2}⊥. Then �ξ is a solution of system

(8), �E is a frame for �ξ and �E(x, λ) is holomorphic in λ ∈ C.

For the proof of the Main Lemma see [9].

Writing the new solution given by Lemma 4.5 as �ξ =

�
�F
�G

�
, the components of �ξ are:





�f11 = − �f22 = f11 − s( �w1�z2 − �wn�z1),

�f12 = �f21 = f12 − s( �w1�z1 + �wn�z2),

�ri1 = ri1 − 2s �w1+i�z2,

�ri2 = ri2 − 2s �w1+i�z1,

(16)

for F = (fij)2×2, G = (rij)(n−2)×2, �F = ( �fij)2×2, �G = (�rij)(n−2)×2.

After getting the new solution �ξ of the O(n − j + 1, j + 1)/O(n − j, j) × O(1, 1)-system

(8), one obtains the corresponding new solution ( �F , �G, �B♯) or (�u, �r11, . . . , �rn−2,2) of the

O(n−j+1, j+1)/O(n−j, j)×O(1, 1)-system II (9). Next, one identifies which geometric

transformations are associated to the dressing actions of the element gs,π on the space

of local solutions of the O(n− j + 1, j + 1)/O(n− j, j)×O(1, 1)-system II (9). For doing

that, we need a natural extension of the definition of Ribaucour transformation given in

[7], and of the definition of Darboux transformation for surfaces in Rm, for our case of

complex timelike surfaces.

For x ∈ Rn−j,j and v ∈ (TRn−j,j)x, let γx,v(t) = x + tv denote the geodesic starting at

x in the direction of v.

Definition 4.6 ([9]). Let Mm and �Mm be Lorentzian submanifolds whose shape operators

are all diagonalizable over R or C immersed in the pseudo-Riemannian space Rn−j,j ,

0 < j < n. A sphere congruence is a vector bundle isomorphism P : V(M) → V(�M) that

covers a diffeomorphism φ : M → �M with the following conditions:

(1) If ξ is a parallel normal vector field of M , then P ◦ ξ ◦ φ−1 is a parallel normal

field of �M .

(2) For any nonzero vector ξ ∈ Vx(M), the geodesics γx,ξ and γφ(x),P (ξ) intersect at a

point that is the same parameter value t away from x and φ(x).

For the following definition we assume that each shape operator is diagonalized over the

real or complex numbers. We note that there are submanifolds for which this does not

hold.

Vol. 26, No. 2, 2008]



74 M. P. Dussan & M. A. Magid

Definition 4.7 ([9]). A sphere congruence P : V(M) → V(M̃) that covers a diffeo-

morphism φ : M → M̃ is called a Ribaucour transformation if it satisfies the following

additional properties:

(1) If e is an eigenvector of the shape operator Aξ of M , corresponding to a real eigen-

value then φ∗(e) is an eigenvector of the shape operator AP (ξ) of M̃ corresponding

to a real eigenvalue.

If e1 + ie2 is an eigenvector of Aξ on (TM)C corresponding to the complex eigen-

value a + ib (so that e1 − ie2 corresponds to the eigenvalue a− ib), then φ∗(e1) +

iφ∗(e2) is an eigenvector corresponding to a complex eigenvalue for AP (ξ).

(2) The geodesics γx,e and γφ(x),φ∗(e) intersect at a point that is equidistant to x

and φ(x) for real eigenvectors e, and γx,ej
and γφ(x),φ∗(ej) meet for the real and

imaginary parts of complex eigenvectors e1 + ie2, i.e., for j = 1, 2.

Definition 4.8 ([9]). Let M, M̃ be two timelike surfaces in Rn−j,j with flat and

non-degenerate normal bundle, shape operators that are diagonalizable over C and

P : V(M) → V(M̃) a Ribaucour transformation that covers the map φ : M → M̃ . If,

in addition, φ is a sign-reversing conformal diffeomorphism then P is called a Darboux

transformation.

In Definition 4.8, by a sign-reversing conformal diffeomorphism we mean that the timelike

and spacelike vectors are interchanged and the conformal coordinates remain conformal.

We finish with the theorem which describes that the dressing action of the element gs,π

on the space of local solutions of the system (9), corresponds to Darboux transformations

between complex isothermic surfaces.

Theorem 4.9 ([9]). Let (X1, X2) be a complex isothermic timelike dual pair in Rn−j,j of

type O(1, 1) corresponding to the solution (u, G) of the system (9), and let ξ =

(
F
G

)
be

the corresponding solution of the system (8), where

F =

(
ux2

ux1

ux1
−ux2

)
, B =

(
e2u 0
0 e−2u

)
.

Let gs,π defined in (13), and Ŵ , Ẑ as in Lemma 4.5, for the solution ξ of the system

(8). Let (Ẽ♯
II

, Ã♯, B̃♯) = gs,π.(EII , A, B) for the action of gs,π over (EII , A, B) where

A, B, Ã♯, B̃♯ are the entries of

E(x, 0) =

(
A(x) 0

0 B(x)

)
, Ẽ♯(x, 0) =

(
Ã♯(x) 0

0 B̃♯(x)

)
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and EII is the frame corresponding to the solution (F, G, B) of the complex system II

(9). Write A = (e1, . . . , en) and �A♯ = (�e1, . . . , �en). Set





�X1 = X1 +
2

s
�z2e

−2u
�n

i=1
�wiei,

�X2 = X2 +
2

s
�z1e

2u
�n

i=1
�wiei

(17)

Then,

(i) (�u, �G) is the solution of system (9), corresponding to �X = ( �X1, �X2), where

e4�u =
4�z4

2

e4u
and �G = (�rij) is defined by Lemma 4.5, for the new solution �ξ of

the system (8).

(ii) The fundamental forms of the pair ( �X1, �X2) are, respectively,





�I1 = e4�u(−dx2
1 + dx2

2),

�II1 = e2�u �n−2

i=1
[�ri,1(dx2

2 − dx2
1) − 2�ri,2dx1dx2]�ei+1,

�I2 = e−4�u(dx2
1 − dx2

2),

�II2 = −e−2�u
�n−2

i=1
�ri,2(dx2

2 − dx2
1) + 2�ri,1dx1dx2]�ei+1.

(iii) The bundle morphism P (ek(x)) = �ek(x), k = 2, . . . , n− 1 is a Ribaucour transfor-

mation covering the map φi : Xi → �Xi for each i = 1, 2.

(iv) Each φi : Xi → �Xi, i = 1, 2 is a sign-reversing conformal diffeomorphism. This

means, the bundle morphism P (ek(x)) = �ek(x), k = 2, . . . , n− 1 covering the map

φi : Xi → �Xi is a Darboux transformation for each i = 1, 2.

For the proofs and explicit examples of dual pair of complex timelike isothermic surfaces

obtained by applying the Darboux transformation given in (17), see [8] and [9].
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