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Abstract. In this paper we study a class of nonconvex and nondifferentiable
multiobjective fractional problems. We use the transformation proposed by
Dinkelbach [2] and Jagannathan [4] and we obtain optimality conditions
for weakly efficient solutions for these problems. Furthermore, we define
a dual problem and we establish some results on duality. To obtain our
results, we use a notion of generalized convexity, called KT-invexity. Our
paper generalizes the results given by Osuna-Gómez et al. in [6], where the
authors considered smooth problems.

Resumen. En el artículo estudiamos una clase de problemas fraccionales
multiobjetivos no convexos y no diferenciables. Usamos la transformación
propuesta por Dinkelbach [2] y Jagannathan [4] y obtenemos condiciones
de optimalidad para soluciones débilmente eficientes de dichos problemas.
Además, definimos un problema dual y establecemos algunos resultados
sobre dualidad. Para lograrlo, utilizamos una noción de convexidad genera-
lizada llamada KT-invexidad. El artículo generaliza los resultados obtenidos
por Osuna-Gómez et al. en [6], en donde los autores consideran problemas
suaves.
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1. Introduction

In this work, we will study the following nonlinear and nonconvex multiobjective frac-

tional problem:

Minimize
f(x)

g(x)
:=

�

f1(x)

g1(x)
, . . . ,

fp(x)

gp(x)

�

,

subject to: hj(x) ≤ 0, j = 1, . . . ,m,
x ∈ S.

(VFP)

where S is a nonempty subset of R
n and fi, gi, hj : R

n → R, i = 1, . . . , p, j = 1, . . . ,m

are locally Lipschitz functions.

We will denote

f(x) := (f1(x), . . . , fp(x)), g(x) := (g1(x), . . . , gp(x)) and h(x) := (h1(x), . . . , hm(x)).

We will suppose that gi(x) > 0 for all x ∈ S and we will denote by

X := {x ∈ S : hj(x) ≤ 0, j = 1, . . . ,m}

the feasible set of (VFP).

A fractional programming problem arises whenever the optimization of ratios, such as

performance/cost, income/investiment and cost/time, is required and then, various real-

life problems admit this formulation. For more details on applications of fractional pro-

gramming, we suggest [9] and the references therein.

One of the most known approach used for solving nonlinear fractional programming prob-

lems is the called parametric approach. Dinkelbach [2] and Jagannathan [4] introduced

this approach that was used later by Osuna-Gómez et al. in [6] to characterize solutions

of a multiobjective fractional problem under generalized convexity and differentiability

hypotheses and, also, they established some duality results.

Our main goal in this work is to show that these results can be extended to the nonsmooth

problems, whose functions are locally Lipschitz and, to achieve our objective, we use the

techniques of nonsmooth analysis [1] and we extend a notion of KT-invexity to the

nondifferentiable context.

This paper have the following structure: in Section 2, we remind some results on Non-

smooth Analysis which we will use in the following sections. In Section 3, we establish

some optimality conditions for the nonsmooth vector fractional problem and, in Section

4, we apply the previous results to obtain some duality results.
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2. Preliminaries

In this section we remind some notions and results from nonsmooth analysis and condi-

tions of optimality for vector problems. The proofs will be ommited and we sugest the

references [1], [3] for more details.

The generalized gradient of a local Lipschitz function φ : R
n→ R at x in the direction d,

denoted by φ0(x; d), is given by

φ0(x; d) = lim sup
x→x
t→0+

φ(x + td)− φ(x)

t

and the generalized gradient of φ at x is given by

∂φ(x) = {x∗ ∈ R
n : φ0(x; v) ≥ �x∗, v�, ∀v ∈ R

n}.

Let C be a nonempty subset of R
n and consider its distance function, that is, the function

δC : R
n → R defined by

δC = inf
c∈C

||x− c||.

The distance function is not everywhere differentiable, but is globally Lipschitz.

Let x ∈ C. A vector d ∈ R
n is said to be tangent to C at x if δ0

C(x; d) = 0. The set of

tangent vectors to C at x is a closed convex cone in R
n, called the tangent cone to C at

x and will be denoted by TC(x).

By polarity, we define the normal cone to C at x:

NC(x) := {ξ ∈ R
n : �ξ, v� ≤ 0, ∀v ∈ TC(x)}.

We remind that NC(x) is a closed convex cone.

It can be proved that if φ : R
n → R is a locally Lipschitz funtion and x0 ∈ C is a local

minimizer of f on C, then

0 ∈ ∂φ(x0) + NC(x0). (1)

Note that (1) is equivalent to

φ0(x0; v) ≥ 0, ∀v ∈ TC(x0),

and, in this case, x0 is called a stationary point of φ at C.

We will adopt the following convention for inequalities between vectors: let

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n :

x < y ⇐⇒ xi < yi, ∀i = 1, . . . , n,

x ≦ y ⇐⇒ xi ≤ yi, ∀i = 1, . . . , n,

x ≤ y ⇐⇒ x ≦ y and x �= y.
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In a similar way, we define the inequalities >, ≧ and ≥ .

Now, we consider the following general multiobjective optimization problem:

Minimize φ(x) = (φ1(x), . . . , φp(x)),

subject to: x ∈ F,
(P0)

where φi : R
n→ R, i = 1, . . . , p are given functions and F ⊂ R

n is a nonempty set.

We say that x0 ∈ F is a weakly efficient minimizer (maximizer) of (P0) if there is not

x ∈ F such that φ(x) < φ(x0) (respec. φ(x) > φ(x0).)

Now, we consider the following particular case: F = {x ∈ S : βj(x) ≤ 0, j = 1, . . . ,m},

where S is a nonempty closed set of R
n.

Necessary conditions for weakly efficiency are given by the following proposition:

Proposition 2.1. If x0 ∈ F is a weakly efficient minimizer of (P0), then there exist

µ ∈ R
p, λ ∈ R

m, such that

0 ∈ ∂
�

�p
i=1 µiφi +

�m
j=1 λjβj

�

(x0) + NS(x0),

(µ, λ) ≥ 0,

�λ, β(x)� = 0.

In order to operationalize the determination of the weakly efficient minimizers of (P0),

we should to relate it with a more familiar problem. So, Geoffrion [3] characterized the

solutions of the multiobjective problems in terms of optimal solutions of appropriate

scalar problem. He considered the weighting problem defined by:

Minimize
�p

i=1 wiφi(x),

subject to: x ∈ F,
(P(w))

where w ∈ R
p
+\{0}. The following proposition establishes a relation between the solutions

of (P0) and (P(w)).

Proposition 2.2. Suppose that x ∈ F is a solution of (P(w)), for some w ≥ 0. Then, x

is a weakly efficient solution of (P0).

We are now in position to estated our results.

3. Optimality conditions

In this section we will establish optimality conditions for (VFP), under assumptions of

generalized convexity. The basic idea consists in to attach the intermediate multiobjective

[Revista Integración
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problem, by using of an approach due to Dinkelbach [2] and Jagannathan [4]. For each

v = (v1, . . . , vp) ∈ R
p, we define the following problem associated to (VFP):

Minimize (f1(x) − v1g1(x), . . . , fp(x)− vpgp(x)),

subject to: hj(x) ≤ 0, j = 1, . . . ,m,
x ∈ S.

(VFP(v))

In [6], the next lemma is proved.

Lemma 3.1. A point x ∈ X is a weakly efficient minimizer of (VFP) if and only if x is

a weakly efficient minimizer of (VFP(v)), with v =
f(x)

g(x)
.

Then, to estate optimality conditions for (VFP) we will consider some hypothesis of

generalized convexity.

In [5] Martin define a class of scalar nonlinear programming problem that later was called

KT-invex problems, that has the following property: the problem is KT-invex if only if all

points that satisfy the Karush-Kuhn-Tucker conditions are minimal points. This notion

was extended to multiobjective problems by Osuna-Gómez et al. [7], where more general

results were showed.

To do this, we will need the weighting problem related to (VFP(v)). For each v ∈ R
p

and w ∈ R
p
+\{0} we define:

Minimize
�p

i=1 wi(fi(x)− vigi(x)),

subject to: hj(x) ≤ 0, j = 1, . . . ,m,
x ∈ S.

(VFPv(w))

Let Φv,i(x) = fi(x)−vigi(x), i = 1, . . . , p. We propose the following KT-invex definition

suitable for a nonsmooth fractional multiobjective programming problem.

Definition 3.2. We will say that the problem (VFP(v)) is KT-invex on the feasible set

with respect to η if for each x1, x2 ∈ X, there exists a vector η(x1, x2) ∈ TS(x2) such

that

Φv,i(x1)− Φv,i(x2) ≥ Φ0
v,i(x2; η(x1, x2)), i = 1, . . . ,m,

h0
j(x2, η(x1, x2)) ≤ 0, ∀j ∈ J(x2),

where J(x2) = {j : hj(x2) = 0}.

We note that our definition is a little different of the other definitions of KT-invexity

(see [7], [8], for instance) because we claim that the vector belong to TS(x2). This is
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done to allow us to consider those problems that have a set of abstract constraints, that

is, restrictions that are not of inequality-type. In the absence of these constraints, that

is, S = R
n, we have TS(x2) = R

n and the Definition 3.2 coincides with those given by

Osuna-Gómez et al. [7] for differentiable problems and coincides with those given by [8]

for problems that do not have abstract constraints.

To guarantee that the multiplier associated to the objective function is nonzero, it is

necessary that the problem is regular, that is, that the problem satisfies some constraint

qualification.

We will use the following notion of regularity. Let v ∈ R
p be a fixed vector. We say that

(VFP(v)) satisfies the constraint qualification at x ∈ X if exists a vector v0 ∈ TS(x) such

that

h0
j (x; v0) < 0, ∀j ∈ J(x2).

Theorem 3.3. We assume that x is a weakly efficient minimizer of (VFP) and the problem

(VFP(v)) satisfies the constraint qualification in x. Suppose that v =
f(x)

g(x)
. Then, x is

a solution of the weighting problem (VFPv̄(w)), for some w ∈ R
p
+\{0}.

Proof. Let x be a weakly efficient minimizer of (VFP). Then, it follows from Lemma 3.1

that x is a weakly efficient minimizer of (VFP(v)). Therefore, by applying Proposition 2.1

we have that there exists a nonzero pair (θ, λ) ∈ R
p
+×R

m
+ such that

�

p
�

i=1

θi(fi − vigi) +

m
�

j=1

λjhj

�0

(x; v) ≥ 0, ∀v ∈ TS(x),

λjhj(x) = 0, j = 1, . . . ,m.

In particular, for each feasible point x ∈ X we have

�

p
�

i=1

θi(fi − vigi)
�0

(x; η(x, x)) +

m
�

j=1

λjh
0
j(x; η(x, x)) ≥ 0, (2)

and so,

�

p
�

i=1

θi(fi − vigi)
�0

(x; η(x, x)) ≥ −
m

�

j=1

λjh
0
j(x; η(x, x)) = (3)

= −
�

j∈J(x)

λjh
0
j(x; η(x, x)) ≥ 0,

and from KT-invexity of (VFP(v)) we obtain

p
�

i=1

[θi(fi(x)− vigi(x)]−

p
�

i=1

[θi(fi(x)− vigi(x)] ≥

p
�

i=1

θi(fi− vigi)
0(x; η(x, x)) ≥ 0 (4)
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for each point x feasible of (VFP).

We claim that θ �= 0. In effect, if θ = 0, then λ �= 0 and the next inequality follows from

(2)
�

j∈J(x)

λjh
0
j(x; v) ≥ 0, ∀v ∈ TX(x). (5)

But λ ≥ 0 and h0
j(x; v0) < 0, ∀j ∈ J(x) and then

�

j∈J(x) λjh
0
j(x; v0) < 0, that contra-

dicts (5).

Then, it is sufficient to take w = θ. The equation (4) guarantees that x is solution of

(VFPv̄(w)) ����

As a straightaway consequence of Proposition 2.1 and Lemma 3.1, we have:

Theorem 3.4. Let x be a weakly efficient minimizer of (VFP) and assume that v =
f(x)

g(x)
.

Then, there exists (λ, µ) ≥ 0 such that

�

p
�

i=1

λi(fi − vigi) +
m

�

j=1

µjhj

�0

(x; v) ≥ 0, ∀v ∈ TS(x),

µjhj(x) = 0, j = 1, . . . ,m.

One more time, we observe that, in the previous theorem we have λ �= 0, under regularity

conditions. In effect:

Theorem 3.5. Let x be a weakly efficient minimizer of (VFP) and assume that v =
f(x)

g(x)
.

Furthermore, suppose that (VFP) satisfies a constraint qualification in x. Then, there

exists λ ∈ R
p
+\{0}, µ ∈ R

m
+ such that

�

p
�

i=1

λi(fi − vigi) +

m
�

j=1

µjhj

�0

(x; v) ≥ 0, ∀v ∈ TS(x) (6)

µjhj(x) = 0, j = 1, . . . ,m.

The proof is very similar to the proof of Theorem 3.3.

The reciprocal of above theorem is true, under KT-invexity hypothesis.

Theorem 3.6. Suppose that x ∈ X is such that it satisfies (6) with λ ∈ R
p
+\{0} and

µ ∈ R
m
+ . Let v =

f(x)

g(x)
and suppose that (VFP(v)) is KT-invex on the feasible set. Then,

x is a weakly efficient minimizer of (VFP).
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we have that there exists a nonzero pair (θ, λ) ∈ R
p
+×R

m
+ such that

�

p
�

i=1

θi(fi − vigi) +

m
�

j=1

λjhj

�0

(x; v) ≥ 0, ∀v ∈ TS(x),

λjhj(x) = 0, j = 1, . . . ,m.

In particular, for each feasible point x ∈ X we have

�

p
�

i=1

θi(fi − vigi)
�0

(x; η(x, x)) +

m
�

j=1

λjh
0
j(x; η(x, x)) ≥ 0, (2)

and so,

�

p
�

i=1

θi(fi − vigi)
�0

(x; η(x, x)) ≥ −
m

�

j=1

λjh
0
j(x; η(x, x)) = (3)

= −
�

j∈J(x)

λjh
0
j(x; η(x, x)) ≥ 0,

and from KT-invexity of (VFP(v)) we obtain

p
�

i=1

[θi(fi(x)− vigi(x)]−

p
�

i=1

[θi(fi(x)− vigi(x)] ≥

p
�

i=1

θi(fi− vigi)
0(x; η(x, x)) ≥ 0 (4)
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for each point x feasible of (VFP).

We claim that θ �= 0. In effect, if θ = 0, then λ �= 0 and the next inequality follows from

(2)
�

j∈J(x)

λjh
0
j(x; v) ≥ 0, ∀v ∈ TX(x). (5)

But λ ≥ 0 and h0
j(x; v0) < 0, ∀j ∈ J(x) and then

�

j∈J(x) λjh
0
j(x; v0) < 0, that contra-

dicts (5).

Then, it is sufficient to take w = θ. The equation (4) guarantees that x is solution of

(VFPv̄(w)) ����

As a straightaway consequence of Proposition 2.1 and Lemma 3.1, we have:

Theorem 3.4. Let x be a weakly efficient minimizer of (VFP) and assume that v =
f(x)

g(x)
.

Then, there exists (λ, µ) ≥ 0 such that

�

p
�

i=1

λi(fi − vigi) +
m

�

j=1

µjhj

�0

(x; v) ≥ 0, ∀v ∈ TS(x),

µjhj(x) = 0, j = 1, . . . ,m.

One more time, we observe that, in the previous theorem we have λ �= 0, under regularity

conditions. In effect:

Theorem 3.5. Let x be a weakly efficient minimizer of (VFP) and assume that v =
f(x)

g(x)
.

Furthermore, suppose that (VFP) satisfies a constraint qualification in x. Then, there

exists λ ∈ R
p
+\{0}, µ ∈ R

m
+ such that

�

p
�

i=1

λi(fi − vigi) +

m
�

j=1

µjhj

�0

(x; v) ≥ 0, ∀v ∈ TS(x) (6)

µjhj(x) = 0, j = 1, . . . ,m.

The proof is very similar to the proof of Theorem 3.3.

The reciprocal of above theorem is true, under KT-invexity hypothesis.

Theorem 3.6. Suppose that x ∈ X is such that it satisfies (6) with λ ∈ R
p
+\{0} and

µ ∈ R
m
+ . Let v =

f(x)

g(x)
and suppose that (VFP(v)) is KT-invex on the feasible set. Then,

x is a weakly efficient minimizer of (VFP).
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Proof. Suppose that x is not a weakly efficient minimizer of (VFP). From Lemma 3.1, we

have that x is not a weakly efficient minimizer of (VFP(v)). Then, there exists a feasible

point x such that

fi(x)− vigi(x) < fi(x)− vigi(x) = 0, ∀i = 1, . . . ,m. (7)

On the other hand, (6) implies

�

p
�

i=1

λi(fi − vigi) +

m
�

j=1

µjhj

�0

(x; η(x, x)) ≥ 0,

and hence

�

p
�

i=1

λi(fi − vigi)
�0

(x; η(x, x)) + (

m
�

j=1

µjhj)
0(x; η(x, x) ≥ 0. (8)

Since (VFP(v)) is KT-invex, we have h0
j(x; η(x, x) ≤ 0 and then

m
�

j=1

λjh
0
j(x; η(x, x) ≤ 0.

From the last two inequalities, we can conclude that

�

p
�

i=1

λi(fi − vigi)
�0

(x; η(x, x)) ≥ 0. (9)

But, from KT-invexity we obtain

�

p
�

i=1

λi(fi(x)− vigi(x)
�

−
�

p
�

i=1

λi(fi(x)− vigi(x)
�

≥ 0. (10)

On the other hand, (7) implies

�

p
�

i=1

λi(fi(x)− vigi(x)
�

−
�

p
�

i=1

λi(fi(x)− vigi(x)
�

< 0,

and this contradicts (10). Hence, x is a weakly efficient solution (VFP). ����

4. Duality

In this Section, we will formulate a dual model for (VFP). To do this, we based on those

models proposed by Jagannathan [4] and Schaible [9]. We will establish some results of

duality for the vector fractional problem (VFP).
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We define the dual problem1 of (VFP) by

Maximize v = (v1, . . . , vp),

subject to: 0 ∈ ∂
�

�p
i=1 λi(fi − vigi) +

�m
j=1 µjhj

�

+ NS(u),
�p

i=1 λi(fi(u)− vigi(u)) ≥ 0,

u ∈ S, λ ≥ 0, µ ≧ 0.

(DF)

We will denote by Y the set of all feasible solutions for (VFP).

Now, we will prove some duality results for the pair of problems (VFP) and (DF).

Theorem 4.1 (Weak duality). Let x ∈ X and (u, λ, µ, v) ∈ Y be given. If the problem

(VFP(v)) is KT-invex, then
f(x)

g(x)
�< v.

Proof. Since (VFP(v)) is KT-invex,

p
�

i=1

λi(fi(x) − fi(x)) ≥

p
�

i=1

λi(fi(u)− fi(u)) +

p
�

i=1

λi(fi − vigi)
0(u; η(x, u)). (11)

Because (u, λ, µ, v) is feasible for (DF), we have

p
�

i=1

λi(fi(u)− fi(u)) ≥ 0. (12)

From (11) and (12) we obtain

p
�

i=1

λi(fi(x)− fi(x)) ≥

p
�

i=1

λi(fi − vigi)
0(u; η(x, u)).

Since (u, λ, µ, v) is feasible for (DF), we have

0 ∈ ∂
�

p
�

i=1

λi(fi − vigi

�

+

m
�

j=1

µjhj) + NS(u),

that is,

0 ≤
�

p
�

i=1

λi(fi − vigi) +

m
�

j=1

µjhj

�0

(u; w), ∀w ∈ TS(u).

In particular, by taking w = η(x, u),

0 ≤
�

p
�

i=1

λi(fi − vigi) +

m
�

j=1

µjhj

�0

(u; η(x, u)).

1In this problem by “maximize” we mean “find the (weakly) efficient maximizer” of (DF).
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p
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−
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p
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and this contradicts (10). Hence, x is a weakly efficient solution (VFP). ����

4. Duality

In this Section, we will formulate a dual model for (VFP). To do this, we based on those

models proposed by Jagannathan [4] and Schaible [9]. We will establish some results of

duality for the vector fractional problem (VFP).
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We define the dual problem1 of (VFP) by

Maximize v = (v1, . . . , vp),

subject to: 0 ∈ ∂
�

�p
i=1 λi(fi − vigi) +

�m
j=1 µjhj

�

+ NS(u),
�p

i=1 λi(fi(u)− vigi(u)) ≥ 0,

u ∈ S, λ ≥ 0, µ ≧ 0.

(DF)

We will denote by Y the set of all feasible solutions for (VFP).

Now, we will prove some duality results for the pair of problems (VFP) and (DF).

Theorem 4.1 (Weak duality). Let x ∈ X and (u, λ, µ, v) ∈ Y be given. If the problem

(VFP(v)) is KT-invex, then
f(x)

g(x)
�< v.

Proof. Since (VFP(v)) is KT-invex,

p
�

i=1

λi(fi(x) − fi(x)) ≥

p
�

i=1

λi(fi(u)− fi(u)) +

p
�

i=1

λi(fi − vigi)
0(u; η(x, u)). (11)

Because (u, λ, µ, v) is feasible for (DF), we have

p
�

i=1

λi(fi(u)− fi(u)) ≥ 0. (12)

From (11) and (12) we obtain

p
�

i=1

λi(fi(x)− fi(x)) ≥

p
�

i=1

λi(fi − vigi)
0(u; η(x, u)).

Since (u, λ, µ, v) is feasible for (DF), we have

0 ∈ ∂
�

p
�

i=1

λi(fi − vigi

�

+

m
�

j=1

µjhj) + NS(u),

that is,

0 ≤
�

p
�

i=1

λi(fi − vigi) +

m
�

j=1

µjhj

�0

(u; w), ∀w ∈ TS(u).

In particular, by taking w = η(x, u),

0 ≤
�

p
�

i=1

λi(fi − vigi) +

m
�

j=1

µjhj

�0

(u; η(x, u)).

1In this problem by “maximize” we mean “find the (weakly) efficient maximizer” of (DF).
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Hence,

0 ≤

p
�

i=1

λi(fi − vigi)
0(u; η(x, u)) +

m
�

j=1

µjhj
0(u; η(x, u)). (13)

Furthermore, (13) and KT-invexity imply,

p
�

i=1

λi(fi(x)− vigi(x))−

p
�

i=1

λi(fi(u)− vigi(u)) ≥

≥

p
�

i=1

λi(fi − vigi)
0(x; η(x, u)) ≥ −

m
�

j=1

µjhj
0(u; η(x, u)) =

= −
�

j∈J(u)

µjhj
0(u; η(x, u)) ≥ 0. (14)

Now we will suppose that
f(x)

g(x)
< v. Then fi(x) < vigi(x) and this implies

p
�

i=1

λi(fi(x)− vigi(x)) < 0,

and it contradicts (14). ����

Theorem 4.2 (Strong duality). Suppose that (VFP(v)) is KT-invex for each v ∈ R
p such

that there exists (u, λ, µ) satisfying (u, λ, µ, v) ∈ Y. Moreover, suppose that x ∈ X is a

weakly efficient solution for (VFP) and that the constraint qualification is verified at x.

Then, there exists (λ, µ, v) such that it is a weakly efficient maximizer of (DF).

Proof. Let v =
f(x)

g(x)
. If x is a weakly efficient minimizer of (VFP), then the Theorem 3.4

implies that there exist λ ≥ 0 and µ ≧ 0 such that

�

p
�

i=1

λi(fi − vigi) +
m

�

j=1

µjhj

�0

(x; v) ≥ 0, ∀v ∈ TS(x);

m
�

j=1

µjhj(x) = 0.

Note that the last inequality is equivalent to

0 ∈ ∂
�

p
�

i=1

λi(fi − vigi) +

m
�

j=1

µjhj

�

(x) + NS(x) (15)

and

fi(x)− vigi(x) = 0, i = 1, . . . ,m. (16)
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Hence, (15), (16) imply (x, λ, µ, v) ∈ Y. Suppose that (x, λ, µ, v) is not a weakly efficient

maximizer of (DF). Hence, there exists (x, λ, µ, v) such that

vi > vi, i = 1, . . . ,m,

that is
fi(x)

gi(x)
< vi, i = 1, . . . ,m,

which contradicts Theorem 4.1. ����

Theorem 4.3 (Inverse duality). Let (x, λ, µ, v) ∈ Y and (VFP(v)) is a KT-invex problem.

If v =
f(x)

g(x)
and x ∈ X, then x is a weakly efficient minimizer of (VFP). Moreover,

if for each (u, λ, µ, v) ∈ Y the problem (VFP(v)) is KT-invex on the feasilble set, then

(x, λ, µ, v) is a weakly efficient maximizer of (DF).

Proof. Let (u, λ, µ, v) ∈ Y be given. If x is not a weakly efficient minimizer of (VFP)

then, from Lemma 3.1, this point cannot be a weakly efficient minimizer of (VFP(v)).

Hence, there exists x ∈ X such that

fi(x)− vigi(x) < fi(x)− vigi(x) = 0, ∀i = 1, . . . ,m,

or equivalently,
f(x)

g(x)
< v.

But it contradicts the Theorem 4.1.

Now, we will prove the second affirmation. Suppose that (u, λ, µ, v) is not a weakly

efficient maximizer of (DF). Then, there exists (u, λ, µ, v) ∈ Y such that

vi >
fi(x)

gi(x)
, ∀i = 1, . . . ,m,

and it, again, contradicts the Theorem 4.1. ����

Conclusion: In this paper we obtained necessary and sufficient conditions for weakly

efficiency to nonsmooth vector fractional problems. To establish our results, we used

the parametric approach proposed by Jagannathan [4] and we employed a notion of KT-

invexity, generalized to the nonsmooth context. Our results extends those obtained by

Osuna-Gómez et al. [6]. Also, we established some duality results for these problems,

that generalizes those obtained in [6].

Acknowledgement: The authors of this paper are supported by Ministerio de Educación

y Ciencia (España), and the grant number of this project is MTM2007-063432. The third
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p
�
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m
�
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p
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p
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p
�
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�
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= −
�
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µjhj
0(u; η(x, u)) ≥ 0. (14)

Now we will suppose that
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< v. Then fi(x) < vigi(x) and this implies

p
�

i=1

λi(fi(x)− vigi(x)) < 0,

and it contradicts (14). ����

Theorem 4.2 (Strong duality). Suppose that (VFP(v)) is KT-invex for each v ∈ R
p such

that there exists (u, λ, µ) satisfying (u, λ, µ, v) ∈ Y. Moreover, suppose that x ∈ X is a

weakly efficient solution for (VFP) and that the constraint qualification is verified at x.

Then, there exists (λ, µ, v) such that it is a weakly efficient maximizer of (DF).

Proof. Let v =
f(x)

g(x)
. If x is a weakly efficient minimizer of (VFP), then the Theorem 3.4

implies that there exist λ ≥ 0 and µ ≧ 0 such that

�

p
�

i=1

λi(fi − vigi) +
m

�

j=1

µjhj

�0

(x; v) ≥ 0, ∀v ∈ TS(x);

m
�

j=1

µjhj(x) = 0.
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�

p
�

i=1

λi(fi − vigi) +

m
�

j=1

µjhj

�

(x) + NS(x) (15)

and
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Hence, (15), (16) imply (x, λ, µ, v) ∈ Y. Suppose that (x, λ, µ, v) is not a weakly efficient

maximizer of (DF). Hence, there exists (x, λ, µ, v) such that
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that is
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and it, again, contradicts the Theorem 4.1. ����
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efficiency to nonsmooth vector fractional problems. To establish our results, we used

the parametric approach proposed by Jagannathan [4] and we employed a notion of KT-
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Processes of Hemoglobin S.

Absence of Cristallization
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Abstract. The molecular aggregate formation mechanisms play a major role
in the interpretation of the pathophysiology of Sickle Cell disease and in
the selection of the therapeutic strategies to follow.

A mechanism and a mathematical model are proposed. The model postu-
lates the existence of defective microtubules formed by deoxy hemoglobin S
and oxy hemoglobin S, and explains the dependence of polymerization on
hemoglobin concentration, temperature, and partial oxygen pressure. The
analysis focuses on the polymerization of hemoglobin S in the absence of
crystallization. The action of other kinds of hemoglobin in the molecular
aggregate formation process can be explained.

Resumen. Los mecanismos de formación molecular agregada desempeña
un papel importante en la interpretación de la patofisiología de la anemia
de células falciformes (o anemia drepanocítica), y en la selección de las
estrategias terapéuticas a seguir.

Aquí se propone un mecanismo y un modelo matemático. el modelo postula
la existencia de microtúbulos defectivos formados por deoxihemoglobina
S y oxihemoglobina S, y explica la dependencia de la polimerización de
la concentración de hemoglobina, la temperatura y la presión parcial de
oxígeno. El análisis hace énfasis en la polimerización de hemoglobina S en
la ausencia de cristalización. La acción de otras clases de hemoglobinas en
la formación molecular agregada puede ser explicada.
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