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An Exact Homogeneous Stiff Cosmology that

Reduces to the Kasner Solution

Fabio D. Lora∗ & Guillermo A. González∗

Abstract. A family of exact simple solutions of Einstein field equations
for homogeneous stiff cosmologies is presented. The method to obtain the
solution is based on the introduction of auxiliary functions in order to cast
the Einstein equations in such a way that can be explicitly integrated.
The obtained solution is expressed in terms of simple functions of the used
coordinates. The geometrical and kinematical properties of the solution are
analyzed and the parameters are restricted in order to have a physically
acceptable behavior. The solution is of the Petrov type I and presents a
big-bang singularity. Now, for a particular value of one of the parameters,
the solution is a vacuum solution of the Bianchi I type that reduces to the
Kasner solution.

Resumen. Se presenta una familia de soluciones exactas sencillas de las ecua-
ciones de Einstein homogéneas sobre el plano para las cosmologías rígidas.
El método para obtener la solución se basa en la introducción de funciones
auxiliares, a fin de emitir las ecuaciones de Einstein de tal manera que
puedan ser integradas explícitamente. La solución obtenida se expresa en
términos de funciones simples de las coordenadas utilizadas. Se analizan las
propiedades geométricas y cinemáticas de la solución; los parámetros están
restringidas a fin de tener un comportamiento aceptable físicamente. Las
soluciones son del tipo Petrov I, y presentan una singularidad de big-bang.
Ahora bien, para un cierto valor de uno de los parámetros la solución es una
solución de vacío de tipo Bianchi I, que se reduce a la solución de Kasner.
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in such a way that the Einstein and evolution equations can be written as

Rαβ = FΦ,αΦ,β , FΦ,α
;α = −F ′

2
Φ,µΦ,µ, (10)

where F ′ = ∂F
∂Φ . Now, it is easy to see that, for any arbitrary function F (Φ), the evolution

and Einstein system of equations can be cast as

W,rr −W,tt = 0, (11)

(Wψ,r),r − (Wψ,t),t = 0, (12)

(WU,r),r − (WU,t),t = 0, (13)

γ,tW,r + γ,rW,t = 2WU,tU,r + k2Wψ,tψ,r + w,tr, (14)

γ,tW,t + γ,rW,r = W (U2
,t + U2

,r) +
1

2

�
k2W (ψ2

,t + ψ2
,r) + (W,tt + W,rr)

�
, (15)

where k is an arbitrary positive constant and ψ is a new scalar potencial, which is given

by the functional dependece Φ = Φ(ψ). As we can see, equation (11) is the classical one-

dimensional wave equation. On the other hand, equations (12) and (13) are equivalents,

so that solutions from (13) are also solutions from (12). According with this, we can

suppose that U(t, r) = ψ(t, r). Finally, the integrability conditions of the overdetermined

system (14)–(15) are equivalent to the equations (11)–(13), guaranting so the existence

of solutions. On the other hand, we can see that by taking the stiff equation of state

p = ρ, the stiff fluids equations are easy to integrate because the metric functions U , W

decouple from the pressure [4].

2. Homogeneous Stiff Solution

In order to solve the system (11) – (15), we consider solutions of the equation (11) of the

general form

W (r, t) = Ψ(r + t) + Ω(r − t), (16)

where Ψ and Ω are arbitrary functions. Now, by taking Ψ =
r + t

2
and Ω =

t− r

2
, we

obtain for the metric functions the expresions

W (r, t) = t, (17)

γ(r, t) = q
�
a21r

2 + a23 + 2a1a3r + a1a2
� t2

2

+q
a21
16
t4 + qa22 ln t + qa1a2r

2 + 2qa2a3r, (18)

U(r, t) =
a1
4

�
t2 + 2r2

�
+ a2 ln t + a3r, (19)
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1. The Einstein And Matter Evolution Equations

In order to study inhomogeneous or homogeneous stiff cosmologies, we take as the starting

point the metric tensor as given by the line element[1]

ds2 = e−2U [e2γ(−dt2 + dr2) + W 2dx2] + e2Udy2, (1)

where U , γ and W are functions of r and t only. We also consider as the matter contents

a perfect fluid with the stiff equation of state p = ρ, whose energy-momentum tensor can

be written as

Tαβ = ρ(2uαuβ + gαβ). (2)

With the above choices, the Einsten equations can be cast as

Rαβ = 2ρuαuβ , (3)

whereas the matter evolution equations can be obatined, from the conservation law

Tαβ
;β = 0, (4)

by projecting it along the temporal and spatial directions. In order to obtain the above

projections, we contract the equation (4) with the velocity vector uα and the “spatial

projection tensor” hαβ = uαuβ + gαβ , respectively. So we obtain

ρ,βu
β + 2ρuβ ;β = 0, 2ρuβuα;βh

µ
α + ρ,βg

βαhµα = 0 (5)

where we use the condition uαh
αβ = 0.

We now impose the irrotationality condition [2]

uα =
Φ,α

(−Φ,µΦ,µ)1/2
, (6)

so that the equation (5) can be cast as

ρ(Φ,µΦ,µ),αh
α
µ

(Φ,µΦ,µ)
= ρ,αh

α
µ, (7)

which can be identically satisfied if we choose [3]

ρ = −F

2
Φ,µΦ,µ, (8)

where F is an arbitrary function of the scalar potential Φ. Now, by using (8), the

energy-momentum tensor can be cast as

Tαβ = F

�

Φ,αΦ,β − 1

2
gαβΦ,µΦ,µ

�

, (9)
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The scalars constructed from the Ricci and Weyl tensors diverge as t −→ 0, which

corresponds to a big-bang singularity. Also, it is easy to see that in the algebraic classi-

fication of the Reimann tensor, the metric is of Petrov type I.

On the other hand, the kinematical quantities for this model can also be easily computed

and so, by taking a2 < 0, we obtain for the acceleration the expression

aα = (0, 0, 0, 0), (29)

where all the components have been computed in the natural orthonormal tetrad of the

metric. It is interesting to see that, as the pressure gradient is zero, the acceleration is

equal to zero and thus the fluid is geodesic.

3. Discussion

We present a simple family of exact homogeneous stiff cosmologies. The solution was

obtained by introducing an auxiliary function that permit to cast the Einstein and matter

evolution equations as a complete integrable system. The general solution is expressed in

terms of simple functions of the used coordinates. The simple family presented reduces

to the Kasner solution, with Kasner parameter d = 1 − 2a2, when q = 1. This solution

is a vacuum solution of Bianchi I type. The Weyl’s scalars diverge as t → 0, which can

be interpreted as a big-bang singularity. In the algebraic classification of the Riemann

tensor, the metric is of Petrov type I. On the other hand is interesting to see that the

acceleration is equal to zero, so that the fluid is geodesic.
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in such a way that the fluid density is given by

ρ =
k2

2

�
a21t

2

4
+
a22
t2

+ a1a2 − a1
�
a1r

2 + 2a3r
�
− a23

�

e2(U−γ), (20)

whereas the velocity components are given by

ur =
k√
2ρ

(a1r + a3) , ut =
k√
2ρ

�
a1t

2
+
a2
t

�

. (21)

Now, we require that ρ ≥ 0 for any value of r and t in order to obtain a physically

acceptable distribution of matter. From expression (20) it is easy to see that ρ will be no

negative everywhere only if we take a1 = a3 = 0, so that the expression for the density

reduces to

ρ =
k2a22

2
t−2(qa2

2−a2+1). (22)

Now, as (a2 − 1)/(a22) < 1 < q, we have an initial singularity and then the density

decreases to zero as t → ∞. On the other hand, the velocity vector is given by

uα = ta2(1−qa2)(1, 0, 0, 0), (23)

where, in order to have a future oriented timelike vector, we have taken a2 < 0. Also,

we can see that the spatial velocity is zero and thus we again have a comoving reference

frame.

The line element can be written as

ds2 = t−2a2 [t2qa
2
2(−dt2 + dr2) + t2dx2] + t2a2dy2, (24)

so that, when q = 1 (or k = 0) we have a vacuum solution of the Bianchi I type that

reduces to the Kasner solution [5, 6], which can be written as [7, 1]

ds2 = t(d
2−1)/2(−dt2 + dr2) + t1+ddx2 + t1−ddy2, (25)

with the Kasner parameter given by d = 1 − 2a2. Now, it is worth to mention that

another kind o inhomogeneous stiff cosmologies were obtained by Patel and Dadich [8],

which also reduce to the Kasner solution. However, in contrast with the solution here

presented, the solutions of Patel and Dadich are singularity free.

Now, in order to see if the solution has a real initial singularity, we computed the Weyl

tensor in the natural null tetrad of the metric[9, 10] and obtain

Ψ0(t, r) =
1

2
a2(2a2 − 1)(a2q − 1)t−2qa2

2+2a2−2, (26)

Ψ2(t, r) = −1

2
(a2 − 1)a2t

−2qa2
2+2a2−2, (27)

Ψ4(t, r) =
1

2
a2(2a2 − 1)(a2q − 1)t−2qa2

2+2a2−2. (28)
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Vectores de Killing y cantidades conservadas

para espacio-tiempos cuasiesféricos

J. Carot∗, Y. Parra∗∗, L. A. Núñez∗∗∗ & U. Percoco∗∗∗

Resumen. En este trabajo se estudian los espacio-tiempos con deformación
de tipo B, con simetría axial y cuasi-esféricos. Se obtiene un elemento de
línea tal que admite vectores de Killing de la familia 1 propuesta por J.
Flores et al. [1]. Se encuentran las cantidades conservadas asociadas a estos
vectores de Killing y por tanto una primera integral de las ecuaciones de las
geodésicas que describen una partícula libre inmersa en este tipo espacio-
tiempo.

Abstract. The warped space-time type B with axial symmetry and quasi-
spherical is explored. This produces a line element that admits killing
vector of the family 1-type proposed by J. Flores et al. [1]. The associated
conserved amounts with these vectors are found and therefore a first integral
of the geodesic equations which describe fres particle inmerse in such space-
time is obtained.

1. Introducción

La idea en este trabajo es usar, desde un contexto general, la estructura de todas los

vectores de Killing de los espacio-tiempos con deformación de tipo B. De hecho, usar la

clasificación dada en [1] como un método para encontrar todos los vectores de Killing de

los espacio-tiempos con deformación de tipo B, en particular, para espacio-tiempo con

simetría axial y cuasi-esféricos.
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