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Abstract

In this paper we define two infinite families of graphs called C-δ graphs
and δ-graphs and prove that δ-graphs satisfy delta conjecture. Also we see
that C-δ graphs family contains the complements of δ-graphs. Finally we
give a list of C-δ graphs and the relationship with the minimum semidefi-
nite rank of these graphs.

Keywords: delta conjecture; simple connected graphs; minimum semidefinite
rank; δ-graph; C-δ graphs; orthogonal representation.

Resumen

En este artículo definimos dos familias de grafos llamadas C-δ grafos
y δ-grafos y se prueba que los δ-grafos satisfacen la conjetura delta. Tam-
bién vemos que la familia de los C-δ grafos contienen los complementos
de los δ-grafos. Finalmente damos una lista de C-δ grafos y la relación
con el rango mínimo semidefinido de estos grafos.

Palabras clave: conjetura delta; grafo simple conexo; rango mínimo semidefinido;
δ-grafo; C-δ grafo; representación ortogonal.
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1 Introduction and preliminaries

A graph G consists of a set of vertices V (G) = {1, 2, . . . , n} and a set of
edges E(G), where an edge is defined to be an unordered pair of vertices. The
order of G, denoted |G|, is the cardinality of V (G). A graph is simple if it has
no multiple edges or loops. The complement of a graph G(V,E) is the graph
G = (V,E), where E consists of all those edges of the complete graph K|G|
that are not in E. We say that two vertices of a graph G are adjacent, denoted
vi ∼ vj , if there is an edge {vi, vj} in G. Otherwise we say that the two vertices
vi and vj are non-adjacent and we denote this by vi ̸∼ vj . Let N(v) denote
the set of vertices that are adjacent to the vertex v and let N [v] = {v} ∪ N(v).
The degree of a vertex v in G, denoted dG(v), is the cardinality of N(v). We
use δ(G) to denote the minimum degree of the vertices in G, whereas ∆(G) will
denote the maximum degree of the vertices in G. If dG(v) = 1, then v is said to
be a pendant vertex of G.

A subgraph H = (V (H), E(H)) of G = (V,E) is a graph with V (H) ⊆
V (G) and E(H) ⊆ E(G). An induced subgraph H of G, denoted G[V(H)], is
a subgraph with V (H) ⊆ V (G) and E(H) = {{i, j} ∈ E(G) : i, j ∈ V (H)}.
Sometimes we denote the edge {i, j} as ij.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 25(1): 1–28, Jan–Jun 2018



ON DELTA-GRAPHS AND DELTA CONJECTURE 3

Two graphs G(V,E) and H(V ′, E′) are identical denoted G = H , if
V = V ′, E = E′.

A complete graph is a simple graph in which the vertices are pairwise adja-
cent. Denote by Kn the complete graph on n vertices. Complete graph Kn are
also called a clique. The clique cover number of a graph G, denoted by cc(G)
is the minimum number of cliques in G needed to cover the vertex set of G. We
will use nG to denote n copies of a graph G. For example, 3K1 denotes three
isolated vertices K1 while 2K2 is the graph given by two disconnected copies
of K2.

A path is a list of distinct vertices in which successive vertices are connected
by edges. A path on n vertices is denoted by Pn. A graph G is said to be con-
nected if there is a path between any two vertices of G. A cycle on n vertices,
denoted by Cn, is a path such that the beginning vertex and the end vertex are
the same. A tree is a connected graph with no cycles. A graph G(V,E) is said
to be chordal if it has no induced cycles Cn with n ≥ 4. A component of
a graph G(V,E) is a maximal connected subgraph. A cut vertex is a vertex
whose deletion increases the number of components.

The union G1 ∪G2 of two graphs G1(V1, E1) and G2(V2, G2) is the union
of their vertex set and edge set, that is G1∪G2(V1∪V2, E1∪E2). When V1 and
V2 are disjoint their union is called disjoint union and denoted G1 ⊔G2.

Further details can be found in [8, 9, 14].

A square matrix A = [aij ] is combinatorially symmetric when aij = 0
if and only if aji = 0. We say that G(A) is the graph of a combinatorially
symmetric matrix A = [aij ] if V = {1, 2, . . . , n} and E = {{i, j} : aij ̸=
0}. The main diagonal entries of A play no role in determining G. Define
S(G,F) as the set of all n × n matrices that are real symmetric if F = R
or complex Hermitian if F = C whose graph is G. The sets S+(G,F) are
the corresponding subsets of positive semidefinite (psd) matrices. The smallest
possible rank of any matrix A ∈ S(G,F) is the minimum rank of G, denoted
mr(G,F), and the smallest possible rank of any matrix A ∈ S+(G,F) is the
minimum semidefinite rank of G, denoted mr+(G) or msr(G).

In 1996, the minimum rank among real symmetric matrices with a given
graph was studied by Nylen [27]. It gave rise to the area of minimum rank
problems which led to the study of minimum rank among complex Hermitian
matrices and positive semidefinite matrices associated with a given graph. Many
results can be found, for example, in [1, 19, 23, 24, 27].
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During the American Institute of Mathematics workshop of 2006 in Palo
Alto, CA, it was stablished the following conjecture:

Conjecture 1.1. For any graph G and infinite field F, mr(G,F) ≤ |G| − δ(G)
where δ(G) is the minimum degree of G.

It was shown that if δ(G) ≤ 3 or δ(G) ≥ |G|−2 this inequality holds. Also it
can be verified that if |G| ≤ 6 then mr(G,F ) ≤ |G| − δ(G). Also it was proven
that any bipartite graph satisfies this conjecture. This conjecture is called the
delta conjecture. If we restrict the study to consider matrices in S+(G,F), then
delta conjecture is written as msr(G) ≤ |G| − δ(G). Clearly if the conjecture
holds for msr(G) then it also holds for mr(G). Some results on delta conjecture
can be found in [7, 13, 26, 30] but the general problem remains unsolved.

2 The minimum semidefinite rank of a graph

In this section we will establish some definitions and results for the minimum
semidefinite rank (msr) of a graph G that we will be using in the subsequent
chapters.

A positive definite matrix A is an Hermitian n × n matrix such that
x⋆Ax > 0 for all nonzero x ∈ Cn. Equivalently, A is a n × n Hermitian
positive definite matrix if and only if all the eigenvalues of A are positive ([20],
p. 250).

A n × n Hermitian matrix A such that x⋆Ax ≥ 0 for all x ∈ Cn is said to
be positive semidefinite (psd). Equivalently, A is a n × n Hermitian positive
semidefinite matrix if and only if A has all eigenvalues nonnegative ([20], p.
182).

If
−→
V = {−→v1 ,−→v2 , . . . ,−→vn} ⊂ Rm is a set of column vectors then the matrix

ATA, where A =
[ −→v1 −→v2 . . . −→vn

]
and AT represents the transpose matrix

of A, is a psd matrix called the Gram matrix of
−→
V . Let G(V,E) be a graph

associated with this Gram matrix. Then VG = {v1, . . . , vn} correspond to the
set of vectors in

−→
V and E(G) correspond to the nonzero inner products among the

vectors in
−→
V . In this case

−→
V is called an orthogonal representation of G(V,E)

in Rm. If such an orthogonal representation exists for G then msr(G) ≤ m.
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Some of the most common results about the minimum semidefinite rank of
a graph are the following:

Result 2.1 ([19]). If T is a tree then msr(T ) = |T | − 1.

Result 2.2 ([11]). The cycle Cn has minimum semidefinite rank n− 2.

Result 2.3 ([11]). If a connected graph G has a pendant vertex v, then msr(G) =
msr(G − v) + 1 where G − v is obtained as an induced subgraph of G by
deleting v.

Result 2.4 ([18]). If G is a connected, chordal graph, then msr(G) = cc(G).

Result 2.5 ([10]). If a graph G(V,E) has a cut vertex, so that G = G1 · G2,
then msr(G) = msr(G1) + msr(G2).

3 δ-graphs and the delta conjecture

In this section we define a new family of graphs called δ-graphs and show that
they satisfy the delta conjecture.

Definition 3.1. Suppose that G = (V,E) with |G| = n ≥ 4 is simple and
connected such that G = (V,E) is also simple and connected. We say that G is
a δ-graph if we can label the vertices of G in such a way that

(1) the induced graph of the vertices v1, v2, v3 in G is either 3K1 or K2 ⊔K1,
and

(2) for m ≥ 4, the vertex vm is adjacent to all the prior vertices v1, v2, . . . , vm−1

except for at most
⌊m
2

− 1
⌋

vertices.

Definition 3.2. Suppose that a graph G(V,E) with |G| = n ≥ 4 is simple and
connected such that G = (V,E) is also simple and connected. We say that
G(V,E) is a C-δ graph if G is a δ-graph.

In other words, G is a C-δ graph if we can label the vertices of G in such a
way that

(1) the induced graph of the vertices v1, v2, v3 in G is either K3 or P3, and

(2) for m ≥ 4, the vertex vm is adjacent to at most
⌊m
2

− 1
⌋

of the prior
vertices v1, v2, . . . , vm−1.
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Figure 1: The graphs C6 and the 3-prism.

Example 3.3. The cycle Cn, n ≥ 6 is a C-δ graph and its complement is a
δ-graph.

Note that we can label the vertices of C6 clockwise v1, v2, v3, v4, v5, v6 (see
Figure 1). The graph induced by v1, v2, v3 is P3. The vertex v4 is adjacent to
a prior vertex which is v3. Also, the vertex v5 is adjacent to vertex v4 and the
vertex v6 is adjacent to two prior vertices v1 and v5. Hence, C6 is C-δ graph.
The 3-prism which is isomorphic to the complement of C6, is a δ-graph.

Lemma 3.4. Let G(V,E) be a δ-graph. Then the induced graph of {v1, v2, v3}
in G denoted by H has an orthogonal representation in R∆(G)+1 satisfying the
following conditions:

(i) the vectors in the orthogonal representation of H can be chosen with
nonzero coordinates, and

(ii) −→v ̸∈ Span(−→u ) for each pair of distinct vertices u, v in H .

Proof. Let G(V,E) be a δ-graph. Label the vertices of G in such a way that the
labeling satisfies the conditions (1) and (2) for δ-graphs. Let H be the induced
subgraph in G by {v1, v2, v3} ⊆ V . Then H is either 3K1 or K2 ⊔K1. Since G
and G are simple and connected it follows that

2 ≤ ∆(G) ≤ n− 2

Let {−→e j}, j = 1, 2, . . . ,∆(G)+1 be the standard orthonormal basis forR∆(G)+1.
Case 1. Suppose the induced graph H of {v1, v2, v3} ⊆ V in G is 3K1 which is
disconnected.
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Choose −→v1 ,−→v2 ,−→v3 in R∆(G)+1 corresponding to v1, v2, v3 respectively such
that:

−→v1 =

∆(G)+1∑
j=1

k1,j
−→e j

−→v2 =

∆(G)+1∑
j=1

k2,j
−→e j

−→v3 =

∆(G)+1∑
j=1

k3,j
−→e j

where the scalars k1,j , j = 1, 2, . . . ,∆(G)+1, and k2,s, s = 1, 2, . . . ,∆(G) are
chosen not zero from different field extensions in the following way:

k1,1 ̸∈ Q,

k1,2 ̸∈ Q[k1,1],

k1,3 ̸∈ Q[k1,1, k1,2],

...

k1,∆(G)+1 ̸∈ Q[k1,1, k1,2, . . . , k1,∆(G)],

k2,1 ̸∈ Q[k1,1, k1,2, . . . , k1,∆(G)+1],

k2,2 ̸∈ Q[k1,1, k1,2, . . . , k1,∆(G)+1, k2,1],

...

k2,∆(G) ̸∈ Q[k1,1, k1,2, . . . , k1,∆(G)+1, k2,1, . . . , k2,∆(G)−1].

Now choose

k2,∆(G)+1 =
−1

k1,∆(G)+1

∆(G)∑
j=1

k1,jk2,j .

As a consequence ⟨−→v 1,
−→v 2⟩ = 0.
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In order to find a vector −→v 3, we need to solve the 2 × (∆(G) + 1) system
satisfying

⟨−→v 1,
−→v 3⟩ = 0

⟨−→v 2,
−→v 3⟩ = 0

in the variables k3,j , j = 1, 2, . . . ,∆(G) + 1. The homogeneous system has
infinitely many solutions because ∆(G) + 1 ≥ 3. Reducing the matrix of this
system to echelon form we get(

k1,1 k1,2 k1,3 . . . k1,∆(G)+1

k2,1 k2,2 k2,3 . . . k2,∆(G)+1

)
∼

(
1

k1,2
k1,1

k1,3
k1,1

. . .
k1,∆(G)+1

k1,1

k2,1 k2,2 k2,3 . . . k2,∆(G)+1

)
∼

 1
k1,2
k1,1

k1,3
k1,1

. . .
k1,∆(G)+1

k1,1

0 k2,2 − k2,1k1,2
k1,1

k2,3 − k2,1k1,3
k1,1

. . . k2,∆(G)+1 −
k2,1k1,∆(G)+1

k1,1


Let α = k2,2− k2,1k1,2

k1,1
. Since α ̸= 0 because k2,2 ̸∈ Q[k1,1, . . . , k1,∆(G)+1, k2,1].

We can get the echelon form of the matrix by multiplying the second row by 1
α . 1

k1,2
k1,1

k1,3
k1,1

. . .
k1,∆(G)+1

k1,1

0 1 1
α(k2,3 −

k2,1k1,3
k1,1

) . . . 1
α(k2,∆(G)+1 −

k2,1k1,∆(G)+1

k1,1
)


Since the system has infinitely many solutions, k3,j , j = 3, . . . ,∆(G) + 1 are
free parameters. We can choose them from different field extensions in the fol-
lowing way,

k3,3 ̸∈ Q[k1,1, k1,2, . . . , k1,∆(G)+1, k2,1, . . . , k2,∆(G)+1],

k3,4 ̸∈ Q[k1,1, k1,2, . . . , k1,∆(G)+1, k2,1, . . . , k2,∆(G)+1, k3,1],
...
k3,∆(G)+1 ̸∈ Q[k1,1, k1,2, . . . , k1,∆(G)+1, k2,1, . . . , k2,∆(G)+1, k3,3, . . . , k3,∆(G)].

Since k2,j − k2,1k1,j
k1,1

̸= 0, j = 3, . . . ,∆(G) + 1, we can choose these param-
eters such that k3,1 and k3,2 are also nonzero. Therefore we get ⟨−→v 1,

−→v 3⟩ =
⟨−→v 2,

−→v 3⟩ = 0. As a result −→v1 ,−→v2 ,−→v3 is an orthogonal representation of the in-
duced graph H = 3K1 satisfying conditions (i) and (ii).
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Case 2. Suppose the induced graph H is K2 ⊔ K1. Let us assume v1 ̸∼ v2,
v2 ̸∼ v3, and v1 ∼ v3.
The vectors −→v 1 and −→v 2 for the vertices v1 and v2 respectively can be chosen
in the same way as in case 1 to get ⟨−→v 1,

−→v 2⟩ = 0. In order to find a vector
−→v3 = k3,1

−→e1 + k3,2
−→e2 + · · · + k3,∆(G)+1

−→e ∆(G)+1 ∈ R∆(G)+1 with nonzero
components for the vertex v3 we know that the vector −→v 3 should satisfy the
system

⟨−→v1 ,−→v3⟩ = g1, g1 ̸= 0

⟨−→v2 ,−→v3⟩ = 0

in the variables k3,j , j = 1, 2, . . . ,∆(G) + 1 because v1 ∼ v3 and v2 ̸∼ v3 in G.
Therefore, rewriting the system in the form

k1,1k3,1 + k1,2k3,2 + · · ·+ k1,∆(G)+1k3,∆(G)+1 = g1, (1)

k2,1k3,1 + k2,2k3,2 + · · ·+ k2,∆(G)+1k3,∆(G)+1 = 0 (2)

the augmented matrix of the non-homogeneous system becomes(
k1,1 k1,2 k1,3 . . . k1,∆(G)+1 | g1
k2,1 k2,2 k2,3 . . . k2,∆(G)+1 | 0

)
.

Since ∆(G)+1 ≥ 3, the system has infinitely many solutions depending on one
or more free parameters if the system is consistent. Since k1,1 is nonzero, we
can divide the first row by k1,1 to obtain(

1
k1,2
k1,1

k1,3
k1,1

. . .
k1,∆(G)+1

k1,1
| g1

k1,1

k2,1 k2,2 k2,3 . . . k2,∆(G)+1 | 0

)
∼

 1
k1,2
k1,1

k1,3
k1,1

. . .
k1,∆(G)+1

k1,1
| g1

k1,1

0 k2,2− k1,2k2,1
k1,1

k2,3− k1,3k2,1
k1,1

. . . k2,∆(G)+1−
k1,∆(G)+1k2,1

k1,1
| −g1k2,1

k1,1


and since k2,2 ̸∈ Q[k1,2, k2,1, k1,1], k2,2 − k1,2k2,1

k1,1
̸= 0. Hence we obtain the

echelon form of the matrix dividing by α = k2,2 − k1,2k2,1
k1,1 1

k1,2
k1,1

k1,3
k1,1

. . .
k1,∆(G)+1

k1,1
| g1

k1,1

0 1 1
α(k2,3 −

k1,3k2,1
k1,1

) . . . 1
α(k2,∆(G)+1−

k1,∆(G)+1k2,1

k1,1
) | −g1k2,1

αk1,1

 .
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Choose k3,3 ̸= 0, k3,4 ̸= 0, . . . , k3,∆(G)+1 ̸= 0 one by one from different field
extensions Q[γ3], . . . ,Q[γ∆(G)+1] such that Q[γi], i = 3, . . . ,∆(G) + 1 is not
a field extension in the lattice

L(k1,1, . . . , k1,∆(G)+1, k2,1, . . . , k2,∆(G)+1, γ3, γ4, . . . , γi−1).

Therefore, since g1 must not be zero, we can choose g1 ∈ R in such a way that
g1 does not belong to any of the prior field extensions used so far and satisfy

−g1k2,1
αk1,1

− 1

α

(
(k2,3−

k1,3k2,1
k1,1

)k3,3+. . .+(k2,∆(G)+1−
k1,∆(G)+1k2,1

k1,1
)k3,∆(G)+1

)
̸=0

which implies

g1 ̸= −k1,1
k2,1

(
(k2,3 − k1,3k2,1

k1,1
)k3,2 + · · ·+ (k2,∆(G)+1

−
k1,∆(G)+1k2,1

k1,1
)k3,∆(G)+1

)
.

(3)

Also

g1
k1,1

−

(
k1,2
k1,1

k3,2 +
k1,3
k1,1

k3,3 + · · ·+
k1,∆(G)+1

k1,1
k3,∆(G)+1

)
̸= 0

which implies

g1 ̸= k1,1

(
k1,2
k1,1

k3,2 +
k1,3
k1,1

k3,3 + · · ·+
k1,∆(G)+1

k1,1
k3,∆(G)+1

)
. (4)

Thus, choosing g1 ̸= 0 satisfying (3) and (4) we get that the system 1 and 2
is consistent and at least one of its solutions satisfies the adjacency condition
and the orthogonal condition for −→v 3. Also, none of the coordinates of the vec-
tors −→v1 ,−→v2 ,−→v3 ∈ R∆(G)+1 are zero. Therefore {−→v 1,

−→v 2,
−→v 3} is an orthogonal

representation in R∆(G)+1 for the induced graph H = K2 ⊔K1 satisfying con-
dition (i). Note that if −→v 3 = a−→v 1, a ∈ R then k3,1 = ak1,1 and k3,∆(G)+1 =

ak1,∆(G)+1 which implies that a =
k3,1
k1,1

and a =
k3,∆(G)+1

k1,∆(G)+1
. As a consequence

k3,∆(G)+1 =
k3,1
k1,1

k1,∆(G)+1. Hence k3,∆(G)+1 ∈ Q[k1,1, k3,1, k1,∆(G)+1] which
is a contradiction because k3,∆(G)+1 was chosen from a different field exten-
sion. Hence, −→v 3 and −→v 1 are linearly independent and the vectors −→v 1,

−→v 2,
−→v 3

are pairwise linearly independent satisfying condition (ii).
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Theorem 3.5. Let G(V,E) be a δ-graph then

msr(G) ≤ ∆(G) + 1 = |G| − δ(G).

Proof. Let G(V,E) be a δ graph. Let Y3({v1, v2, v3}, EY3) be the graph induced
by the vertices v1, v2, and v3 which is either 3K1 or K2 ⊔K1. By Lemma 3.4,
Y3 has an orthogonal representation in R∆(G)+1.

Also, from Lemma 3.4 we have

(1) The components of vectors in the orthogonal representation of Y3 are all
nonzero.

(2) −→v ̸∈ Span(−→u ) for each pair of distinct vertices u, v in VY3 .

From the definition of δ-graph we have

(3) G(V,E) can be constructed starting with Y3(VY3 , EY3) and adding one
vertex at a time such that the newly added vertex vm,m ≥ 4 is adjacent to
all prior vertices v1, v2, . . . , vm−1 except for at most

⌊m
2

− 1
⌋

vertices.

Applying condition (3) we get a sequence of subgraphs Y3, Y4, . . . , Ym, . . . , Y|G|
in G induced by {v1, v2, v3}, {v1, v2, v3, v4}, . . . , {v1, v2, v3, v4, . . . , vm}, . . . ,
{v1, v2, v3, v4, . . . , v|G|} respectively.

We will prove that Yj = (Vj , Ej) has an orthogonal representation inR∆(G)+1

for all j = 3, 4, . . . , |G|, satisfying conditions (1) and (2) above. For that pur-
pose, consider the orthogonal representation of Y3 satisfying conditions (i) and
(ii) given by Lemma 3.4.

−→v1 = k1,1
−→e1 + k1,2

−→e2 + · · ·+ k1,∆(G)+1
−→e ∆(G)+1,

−→v2 = k2,1
−→e1 + k2,2

−→e2 + · · ·+ k2,∆(G)+1
−→e ∆(G)+1,

−→v3 = k3,1
−→e1 + k3,2

−→e2 + · · ·+ k3,∆(G)+1
−→e ∆(G)+1,

where all ki,j , j = 1, 2, . . . ,∆(G) + 1, i = 1, 2, 3, are nonzero and are chosen
from different field extensions as in the proof of Lemma 3.4. Let v4 be a vertex of
G such that v4 is adjacent to all of v1, v2, v3 except at most

⌊
4
2 − 1

⌋
= 1 vertex.

Since G and G are simple and connected 2 ≤ ∆(G) and therefore ∆(G)+1 ≥ 3.
Since a δ-graph has at least four vertices we make induction over the or-

thogonal representation of the induced subgraphs obtained from the orthogonal
representation of the induced subgraph of three vertices v1, v2, v2 of G by adding
one vertex at a time. In consecuence, we first prove that a the induced subgraph
Y4 induced by {v1, v2, v3, v4} has an orthogonal representation in R∆(G)+1. To
do this we prove the following claim.
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12 P. DÍAZ-NAVARRO

Claim 3.6. Y4 induced by {v1, v2, v3, v4} has an orthogonal representation in
R∆(G)+1 satisfying conditions (1) and (2) above.

Proof of claim. We know that

dG(v4) ≤ ∆(G) < ∆(G) + 1.

Since VY3 = {v1, v2, v3} from Lemma 3.4 we have an orthogonal representation
for the induced subgraph of VY3 of G in R∆(G)+1 satisfying conditions (1) and
(2). We need to find a vector −→v4 for the vertex v4 where

−→v4 = k4,1
−→e1 + k4,2

−→e2 + · · ·+ k4,∆(G)+1
−→e ∆(G)+1,

satisfying conditions (1) and (2). Since v4 is adjacent with all prior vertices
except for at most one of them we have four cases:

1. v4 is only adjacent to v1, v2 and v3 in G.

2. v4 is only adjacent to v1 and v2 in G.

3. v4 is only adjacent to v1 and v3 in G.

4. v4 is only adjacent to v2 and v3 in G.

Case 1. v4 ∼ v1, v4 ∼ v2, v4 ∼ v3 in G.
Choose k4,j , j = 1, . . . ,∆(G) + 1 as follows:

k4,1 = γ4,1 does not belong to any of the field extensions in the lattice of
fields L[Q[ki,j ]],
i = 1, 2, 3, j = 1, 2, . . . ,∆(G) + 1 .

k4,2 = γ4,2 does not belong to any of the field extensions in the lattice of
field extensions L[Q[ki,j , γ4,1], i = 1, 2, 3, j = 1, 2, . . . ,∆(G) + 1.

k4,3 = γ4,3 does not belong to any of the field extensions in the lattice of
field extensions L[Q[ki,j , γ4,1, γ4,2]], i = 1, 2, 3, j = 1, 2, . . . ,∆(G) + 1.

Continuing the process until k4,∆(G)+1 to obtain

k4,∆(G)+1 = γ4,∆(G)+1 does not belong to any of the field extensions in
the lattice of field extensions L[Q[ki,j , γ4,1, γ4,2, . . . , γ4,∆(G)]], i = 1, 2, 3,

j = 1, 2, . . . ,∆(G) + 1.
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ON DELTA-GRAPHS AND DELTA CONJECTURE 13

Then k4,j ̸= 0 for all j = 1, 2, . . . ,∆(G)+1 and −→v4 ̸∈ Span(−→vi ), i = 1, 2, 3. As

a consequence {−→v1 ,−→v2 ,−→v3 ,−→v4} is an orthogonal representation of Y4 atR∆(G)+1.
Note that if ⟨−→v 4,

−→v 1⟩ = 0 then we can solve this equation for k4,∆(G)+1 which
implies that k4,∆(G)+1 ∈ L[Q[ki,j , γ4,1, γ4,2, . . . , γ4,∆(G)]], i = 1, 2, 3,

j = 1, 2, . . . ,∆(G) + 1 which is a contradiction. Therefore, ⟨−→v 4,
−→v 1⟩ ̸= 0.

In the same way we can prove that ⟨−→v 4,
−→v 2⟩ ̸= 0 and ⟨−→v 4,

−→v 3⟩ ̸= 0.
Case 2. v4 ∼ v1, v4 ∼ v2, v4 ̸∼ v3 in G.
Since v4 ∼ v1 and v4 ∼ v2 and v4 ̸∼ v3 then

⟨−→v4 ,−→v1⟩ = g4,1, g4,1 ̸= 0,

⟨−→v4 ,−→v2⟩ = g4,2, g4,2 ̸= 0,

⟨−→v4 ,−→v3⟩ = 0.

From these conditions the system S in the variables k4,j , j = 1, 2, . . . ,∆(G)+1
becomes,

k1,1k4,1 + k1,2k4,2 + · · ·+ k1,∆(G)+1k4,∆(G)+1 = g4,1, g4,1 ̸= 0,

k2,1k4,1 + k2,2k4,2 + · · ·+ k2,∆(G)+1k4,∆(G)+1 = g4,2, g4,2 ̸= 0,

k3,1k4,1 + k3,2k4,2 + · · ·+ k3,∆(G)+1k4,∆(G)+1 = 0,

where ki,j , i = 1, 2, 3, j = 1, 2, . . . ,∆(G) + 1 were chosen from different field
extensions as in the proof of Lemma 3.4. Since

dG(v4) ≤ ∆(G) < ∆(G) + 1,

in G, the number of equations from the orthogonal conditions in the systems are
at most ∆(G) < ∆(G)+1, which means that if the non-homogeneous system is
consistent then the system will have infinitely many solutions because the system
will have at least one free variable. The augmented matrix of the system becomes k1,1 k1,2 . . . k1,∆(G)+1 | g4,1

k2,1 k2,2 . . . k2,∆(G)+1 | g4,2
k3,1 k3,2 . . . k3,∆(G)+1 | 0


where g4,1 ̸= 0, g4,2 ̸= 0 are nonzero real numbers.

In order to guarantee that all adjacency conditions are satisfied consider the
matrix 3 × (∆(G) + 3) below in the variables k4,1, k4,2, . . . , k4,∆(G)+1,−g4,1,
−g4,2. It is possible to consider −g4,1 and −g4,2 as variables because we only
need them to be nonzero. So we can consider them as two additional variables
of the homogeneous system SH which has the following augmented matrix:
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14 P. DÍAZ-NAVARRO

 k1,1 k1,2 . . . k1,∆(G)+1 1 0

k2,1 k2,2 . . . k2,∆(G)+1 0 1

k3,1 k3,2 . . . k3,∆(G)+1 0 0

 .

Multiplying the first row by 1
k1,1

, k1,1 ̸= 0 we get 1
k1,2
k1,1

. . .
k1,∆(G)+1

k1,1
1

k1,1
0

k2,1 k2,2 . . . k2,∆(G)+1 0 1

k3,1 k3,2 . . . k3,∆(G)+1 0 0

 .

Multiplying the first row by −k2,1 and adding the result to the second row and
multiplying the first row by −k3,1 and adding to the third row we get

1
k1,2
k1,1

. . .
k1,∆(G)+1

k1,1
1

k1,1
0

0 k2,2 − k1,2k2,1
k1,1

. . . k2,∆(G)+1 −
k1,∆(G)+1k2,1

k1,1
−k2,1

k1,1
1

0 k3,2 − k1,2k3,1
k1,1

. . . k3,∆(G)+1 −
k1,∆(G)+1k3,1

k1,1
0 0

 .

Let α = k2,2 − k1,2k2,1
k1,1

. Since k2,2 ̸∈ Q[k1,1, k1,2, k2,1] by construction, α ̸= 0
and we can continue reducing the matrix to echelon form. Then multiplying the
second row by 1

α we obtain



1
k1,2

k1,1

k1,3

k1,1
. . .

k
1,∆(G)+1

k1,1

1
k1,1

0

0 1 1
α
(k2,3 − k1,3k2,1

k1,1
) . . .

1
α
(k2,∆(G)+1

−
k
1,∆(G)+1

k2,1

k1,1
)

− k2,1

αk1,1

1
α

0 k3,2 − k1,2k3,1

k1,1
k3,3 − k1,3k3,1

k1,1
. . .

k3,∆(G)+1

−
k
1,∆(G)+1

k3,1

k1,1

0 0


.

Let β = k3,2− k1,2k3,1
k1,1

. Multiplying the second row by −β and adding the result
to the third row we get

1
k1,2

k1,1

k1,3

k1,1
. . .

k
1,∆(G)+1

k1,1

1
k1,1

0

0 1 1
α
(k2,3 − k1,3k2,1

k1,1
) . . .

1
α
(k2,∆(G)+1

−
k
1,∆(G)+1

k2,1

k1,1
)

− k2,1

αk1,1

1
α

0 0 ρ3,3 . . . ρ3,∆(G)+1
−k3,1

k1,1
+

k2,1β

αk1,1

−β
α

 ,

where ρ3,3 = k3,3 − k1,3k3,1
k1,1

− β
α(k2,3 −

k1,3k2,1
k1,1

), . . . , ρ3,∆(G)+1 = k3,∆(G)+1 −
k1,∆(G)+1k3,1

k1,1
− β

α(k2,∆(G)+1 −
k1,∆(G)+1k2,1

k1,1
). Note that ρ3,3 ̸= 0, otherwise

k3,3 belongs to a field extension of the lattice L[Q[k1,1, . . . , k1,∆(G)+1, k2,1, . . . ,

k2,∆(G)+1, k3,1, k3,2]] which is a contradiction with the definition of k3,3.
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ON DELTA-GRAPHS AND DELTA CONJECTURE 15

Thus, multiplying the third row by 1
ρ3,3

we obtain the echelon form of the
homogeneous system

1
k1,2

k1,1

k1,3

k1,1

k1,4

k1,1
. . .

k
1,∆(G)+1

k1,1

1
k1,1

0

0 1
1
α
(k2,3

− k1,3k2,1

k1,1
)

1
α
(k2,4

− k1,4k2,1

k1,1
)

. . .

1
α
(k2,∆(G)+1

−
k
1,∆(G)+1

k2,1

k1,1
)

− k2,1

αk1,1

1
α

0 0 1
ρ3,4
ρ3,3

. . .
ρ
3,∆(G)+1

ρ3,3
ζ −β

ρ3,3α


where all the values ρ3,j ̸= 0, j = 4, . . . ,∆(G) + 1 as well as ζ =

−k3,1
ρ3,3k1,1

+
k2,1β

ρ3,3αk1,1
and −β

ρ3,3α
are nonzero. Then we can choose values k4,4, . . . , k4,∆(G)+1,

g4,1, g4,2 nonzero and chosen one by one from different field extensions not in
the lattice

L[Q[k1,1], . . . ,Q[k1,∆(G)+1],Q[k2,1], . . . ,Q[k2,∆(G)+1],Q[k3,1], . . . ,Q[k3,∆(G)+1]

in the following way.

k4,4 ̸∈ Q[ki,j ], i = 1, 2, 3, j = 1, . . . ,∆(G) + 1,

k4,3 ̸∈ Q[ki,j , k4,4], i = 1, 2, 3, j = 1, . . . ,∆(G) + 1,

...

k4,∆(G)+1 ̸∈ Q[ki,j , k4,4, . . . , k4,∆(G)], i = 1, 2, 3, j = 1, . . . ,∆(G) + 1,

g4,1 ̸∈ Q[ki,j , k4,4, . . . , k4,∆(G)+1], i = 1, 2, 3, j = 1, . . . ,∆(G) + 1,

g4,2 ̸∈ Q[ki,j , k4,4, . . . , k4,∆(G)+1, g4,1], i = 1, 2, 3, j = 1, . . . ,∆(G) + 1,

Therefore k4,3, k4,2, and k4,1 become

k4,3 = −ρ3,4k4,4
ρ3,3

+ · · · −
ρ3,∆(G)+1k4,∆(G)+1

ρ3,3
+

k3,1g4,1
ρ3,3k1,1

− k2,1βg4,1
ρ3,3αk1,1

+

βg4,2
ρ3,3α

.

k4,2 = −(
1

α
(k2,3 −

k1,3k2,1
k1,1

))k4,3 − · · · − (
1

α
(k2,∆(G)+1 −

k1,∆(G)+1k2,1

k1,1
))

k4,∆(G)+1 +
k2,1g4,1
αk1,1

− g4,2
α

k4,1 = −k1,2k4,2
k1,1

− · · · −
k1,∆(G)+1k4,∆(G)+1

k1,1
− g4,1

k1,1

Note that k4,1 depends on k4,2 and k4,3. Similarly k4,2 depends on k4,3. There-
fore we should choose k4,3 first and then back substitute. But k4,3 depends on
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16 P. DÍAZ-NAVARRO

g4,1 and g4,2 which are free variables with the restriction that they cannot be zero.
Thus, we can choose g4,1 in a field extension not in the lattice of

Q[k1,1, . . . , k1,∆(G)+1, k2,1, . . . , k2,∆(G)+1, k3,1, . . . , k3,∆(G)+1, k4,4, . . . , k4,∆(G)+1]

and g4,2 in some field extension not in the lattice of

Q[k1,1, . . . , k1,∆(G)+1, k2,1, . . . , k2,∆(G)+1, k3,1, . . . , k3,∆(G)+1, k4,4, . . . , k4,∆(G)+1, g4,1]

in such a way that k4,3, k4,2 and k4,1 are nonzero.
As a consequence, the system S is consistent and there exist a solution of

values k4,j ̸= 0, j = 1, 2, . . . ,∆(G) + 1 chosen from different field extensions
such that the vector −→v4 satisfies all adjacency conditions and orthogonal condi-
tions with the vectors −→v1 ,−→v2 ,−→v3 . Then the vector −→v4 =

∑∆(G)+1
j=1 k4,j

−→ej satisfies
conditions (1) and (2) and therefore {−→v1 ,−→v2 ,−→v3 ,−→v4} is an orthogonal represen-
tation of Y4 in R∆(G)+1.
Case 3 . v4 ∼ v1, v4 ̸∼ v2, v4 ∼ v3 in G.
From the adjacency conditions v4 ∼ v1, v4 ∼ v3 and orthogonal condition
v4 ̸∼ v2 we get the equations:

⟨−→v1 ,−→v4⟩ = g4,1, g4,1 ̸= 0,

⟨−→v2 ,−→v4⟩ = 0,

⟨−→v3 ,−→v4⟩ = g4,2, g4,2 ̸= 0.

Interchanging the second and third equations we get a system S similar to case
2. Since all the scalars ki,j , i = 1, 2, 3, j = 1, 2, . . . ,∆(G) + 1 are not zero
and were chosen from different field extensions the same reasoning as in case 2
applies and the conclusion holds for case 3.
Case 4. v4 ̸∼ v1, v4 ∼ v2, v4 ∼ v3 in G.

From the adjacency conditions v4 ∼ v2, v4 ∼ v3 and orthogonal condition
v4 ̸∼ v1 we get the equations:

⟨−→v1 ,−→v4⟩ = 0,

⟨−→v2 ,−→v4⟩ = g4,2, g4,2 ̸= 0,

⟨−→v3 ,−→v4⟩ = g4,3, g4,3 ̸= 0.

Interchanging the first and the third equations we get a system S similar to case
2. Since all the scalars ki,j , i = 1, 2, 3, j = 1, 2, . . . ,∆(G) + 1 are not zero
and were chosen from different field extensions the same reasoning as in case 2
applies and the conclusion holds for case 4.

As a consequence, in all of the cases we get an orthogonal representation for
Y4 in R∆(G)+1 satisfying the conditions (1) and (2). This completes of the proof
of the claim 3.6. �
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ON DELTA-GRAPHS AND DELTA CONJECTURE 17

Assume that for any Ym−1 = (VYm−1 , EYm−1), VYm−1 = {v1, v2, . . . , vm−1}
it is possible to get an orthogonal representation of Ym−1 in R∆(G)+1. Let
−→v 1,

−→v 2, . . . ,
−→v m−1 be of the form

−→v i =

∆(G)+1∑
j=1

ki,j
−→e j ,

satisfying conditions (1) and (2) where ki,j ̸= 0 for all i = 1, 2, . . . ,m,
j = 1, 2, . . . ,∆(G) + 1 , chosen from different field extensions.

We need to prove that if vm is adjoined to Ym−1 to get Ym such that vm is
adjacent to all prior vertices except at most

⌊
m
2 − 1

⌋
vertices then Ym has an

orthogonal representation of vectors −→v 1,
−→v 2, . . . ,

−→v m in R∆(G)+1 satisfying
conditions (1) and (2). Assume that vm has an associated vector −→v m such that

−→v m = km,1
−→e1 + km,2

−→e2 + · · ·+ km,∆(G)+1
−→e ∆(G)+1.

The vertex vm is adjacent to all prior vertices v1, v2, . . . , vm−1 except at most
t ≤

⌊
m
2 − 1

⌋
vertices in G. Then we see that −→v m satisfies at least m − 1 − t

adjacency conditions and t orthogonal conditions.
Let ρ be a permutation of (1, 2, . . . ,m − 1). Suppose vρ(1), vρ(2), . . . ,

vρ(m−1−t) are adjacent to vm and vρ(m−t), vρ(m−t+1), . . . , vρ(m−2), vρ(m−1) are
not adjacent to vm. The vectors −→v ρ(1),

−→v ρ(2), . . . ,
−→v ρ(m−1−t),

−→v ρ(m−t),−→v ρ(m−t+1), . . . ,
−→v ρ(m−1) and −→v m satisfy the system S given by:

⟨−→v ρ(1),
−→v m⟩ = gm,1, gm,1 ̸= 0,

⟨−→v ρ(2),
−→v m⟩ = gm,2, gm,2 ̸= 0,

...
...

...

⟨−→v ρ(m−1−t),
−→v m⟩ = gm,m−1−t, gm,m−1−t ̸= 0,

⟨−→v ρ(m−t),
−→v m⟩ = 0,

⟨−→v ρ(m−t+1),
−→v m⟩ = 0,

...
...

...

⟨−→v ρ(m−1),
−→v m⟩ = 0,

containing m − 1 − t equations from the adjacency conditions and t equations
from the orthogonal conditions.

Since the vector −→v ρ(i), i = 1, 2, . . . ,m− 1 has the form

−→v ρ(i) = kρ(i),1
−→e 1 + kρ(i),2

−→e 2 + · · ·+ kρ(i),∆(G)+1
−→e ∆(G)+1 (5)
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18 P. DÍAZ-NAVARRO

where all kρ(i),j , i = 1, 2, . . . ,m − 1, j = 1, 2, . . . ,∆(G) + 1 are not zero and
chosen from different field extensions, the system S has the form:

kρ(1),1km,1 + kρ(1),2km,2 + · · ·+ kρ(1),∆(G)+1km,∆(G)+1 = gm,1

kρ(2),1km,1 + kρ(2),2km,2 + · · ·+ kρ(2),∆(G)+1km,∆(G)+1 = gm,2

...
...

...

kρ(m−1−t),1km,1 + kρ(m−1−t),2km,2 + · · ·+ kρ(m−1−t),∆(G)+1km,∆(G)+1 = gm,m−1−t

kρ(m−t),1km,1 + kρ(m−t),2km,2 + · · ·+ kρ(m−t),∆(G)+1km,∆(G)+1 = 0

kρ(m−t+1),1km,1 + kρ(m−t+1),2km,2 + · · ·+ kρ(m−t+1),∆(G)+1km,∆(G)+1 = 0

...
...

...

kρ(m−1),1km,1 + kρ(m−1),2km,2 + · · ·+ kρ(m−1),∆(G)+1km,∆(G)+1 = 0

where gm,1 ̸= 0, gm,2 ̸= 0, . . . , gm,m−1−t ̸= 0. Since gm,1, gm,2, . . . , gm,m−1−t

could be any nonzero real numbers satisfying the adjacency conditions we can
consider them as additional m − 1 − t variables under the restriction that they
cannot be zero. Therefore we can consider a homogeneous system SH of m− 1
equations in m− t+∆(G) variables km1 , km2 , . . . , km

∆(G)+1
,−gm,1,−gm,2,

. . . ,−gm,m−1−t. Now, by hypothesis t ≤
⌊
m
2 − 1

⌋
. Since t ≤ dG(vm) ≤

∆(G) < ∆(G) + 1 the homogeneous system SH contains at least one more
variable than the number of equations. Hence the system SH given by

kρ(1),1km,1 + kρ(1),2km,2 + · · ·+ kρ(1),∆(G)+1km,∆(G)+1 + (−gm,1) = 0

kρ(2),1km,1 + kρ(2),2km,2 + · · ·+ kρ(2),∆(G)+1km,∆(G)+1 + (−gm,2) = 0

...
...

...
kρ(m−1−t),1km,1 + kρ(m−1−t),2km,2 + . . .

+kρ(m−1−t),∆(G)+1km,∆(G)+1 + (−gm,m−1−t) = 0

kρ(m−t+),1km,1 + kρ(m−t),2km,2 + · · ·+ kρ(m−t),∆(G)+1km,∆(G)+1 = 0

kρ(m−t+1),1km,1 + kρ(m−t+1),2km,2 + · · ·+ kρ(m−t+1),∆(G)+1km,∆(G)+1 = 0

...
...

...
kρ(m−1),1km,1 + kρ(m−1),2km,2 + · · ·+ kρ(m−1),∆(G)+1km,∆(G)+1 = 0

has infinitely many solutions. Therefore, it is enough to show that there exist at
least one solution for SH satisfying the condition that none of the km,1, km,2, . . . ,
km,∆(G)+1, gm,1, . . . , gm,m−1−t are zero.

This implies that the system S has a solution which satisfies all adjacency
conditions, all orthogonal conditions, and conditions (1) and (2). For that pur-
pose consider the (m − 1) × (m − t + ∆(G)) matrix A of the homogeneous
system given on the next page.
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Let −→g = (−gm,1,−gm,2, . . . ,−gm,m−1−t)
T . We consider the two cases

where m− 1 ≤ ∆(G) + 1 and m− 1 > ∆(G) + 1.
Case 1. m − 1 ≤ ∆(G) + 1 In this case the number of equations in the
non-homogeneous system S is at most the number of unknowns km,1, km,2, . . . ,
km,∆(G)+1.
A =

kρ(1),1 kρ(1),2 kρ(1),3 . . . kρ(1),∆(G)+1 | 1 0 . . . 0 0

kρ(2),1 kρ(2),2 kρ(2),3 . . . kρ(2),∆(G)+1 | 0 1 . . . 0 0

kρ(3),1 kρ(3),2 kρ(3),3 . . . kρ(3),∆(G)+1 | 0 0 1
...

...
...

...
...

...
...

...
...

...
...

...
...

kρ(m−t−2),1 kρ(m−t−2),2 kρ(m−t−2),3 . . . kρ(m−t−2),∆(G)+1 | 0 0 0 1 0

kρ(m−t−1),1 kρ(m−t−1),2 kρ(m−t−1),3 . . . kρ(m−t−1),∆(G)+1 | 0 0 0 0 1

kρ(m−t),1 kρ(m−t),2 kρ(m−t),3 . . . kρ(m−t),∆(G)+1 | 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

kρ(m−1),1 kρ(m−1),2 kρ(m−1),3 . . . kρ(m−1),∆(G)+1 | 0 0 0 0 0


Thus A can be row reduced to one of the following two echelon form written in
block form:

I.

B = (B1|B2)

=



1 ∗ ∗ . . . ∗ ∗ ∗ . . . ∗ ∗ . . . ∗ | δ1 0 . . . 0 0
0 1 ∗ . . . ∗ ∗ ∗ . . . ∗ ∗ . . . ∗ | ∗ δ2 . . . 0 0
0 0 1 . . . ∗ ∗ ∗ . . . ∗ ∗ . . . ∗ | ∗ ∗ δ3 0 0
...

...
... . . .

...
...

... . . .
...

... . . .
... |

...
...

...
...

...
0 0 0 . . . 1 ∗ ∗ . . . ∗ ∗ . . . ∗ | ∗ ∗ . . . δm−2−t 0
0 0 0 . . . 0 1 ∗ . . . ∗ ∗ . . . ∗ | ∗ ∗ . . . ∗ δm−1−t

0 0 0 . . . 0 0 1 . . . ∗ ∗ . . . ∗ | ∗ ∗ . . . ∗ ∗
...

...
... . . .

...
...

... . . .
...

... . . .
... |

...
...

...
...

...
0 0 0 . . . 0 0 0 . . . 1 ∗ . . . ∗ | ∗ ∗ . . . ∗ ∗


II.

B = (B3|B2)

=


1 ∗ ∗ . . . ∗ ∗ | δ1 0 . . . 0 0
0 1 ∗ . . . ∗ ∗ | ∗ δ2 . . . 0 0
0 0 1 . . . ∗ ∗ | ∗ ∗ δ3 0 0
...

...
... . . .

...
... |

...
...

...
...

...
0 0 0 . . . 1 ∗ | ∗ ∗ . . . δm−t−1 0
0 0 0 . . . 0 1 | ∗ ∗ . . . ∗ δm−t

.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 25(1): 1–28, Jan–Jun 2018



20 P. DÍAZ-NAVARRO

The matrix B1 is a block of size (m−1)×(∆(G)+1) where m−1 < ∆(G)+1.
The matrix B2 is a block matrix of size (m− 1)× (m− 1− t). Matrix B3 is a
square matrix of size m− 1(= ∆(G) + 1). In these blocks ∗ denotes a nonzero
entry.

Suppose matrix B is of type I. For each vector −→v i, i = 4, 5, . . . ,m − 1 the
entries are found in field extensions which are not in the lattice of the previous
field extensions.

In the block matrix B2 we have:

[B2]1,1 = δ1 =
1

kρ(1),1
̸= 0,

[B2]2,2 = δ2 =
(
kρ(2),2 −

kρ(1),2·kρ(2),1
kρ(1),1

)−1
̸= 0,

[B2]3,3 = δ3 =
1
α ̸= 0, α ∈ Q[kρ(1),1, kρ(1),2, kρ(1),3, kρ(2),1, kρ(2),2, kρ(2),3,

kρ(3),1, kρ(3),2, kρ(3),3].

Continuing this process we get that all the entries on the diagonal of B2 to be
nonzero. So all the rows of B2 have at least one entry nonzero. Thus,

[B2
−→g ]1 = −δ1 · gm,1 =

−gm,1

k1,1
. Choosing gm,1 not in the lattice generated

by the previous field extensions for ki,j , i = 1, 2, . . . ,m − 1,
j = 1, 2, . . . ,∆(G) + 1, we get [B2

−→g ]1 ̸= 0.

[B2
−→g ]2 = α2,1gm,1 + δ2gm,2, α2,1 ̸= 0, δ2 ̸= 0. Then we can choose a

value for gm,2 from a field extension not in the lattice of fields generated by
the previous values ki,j , i = 1, 2, . . . ,m−1, j = 1, 2, . . . ,∆(G)+1, gm,1

so that [B2
−→g ]2 ̸= 0.

[B2
−→g ]3 = α3,1gm,1 + α3,2gm,2 + δ3gm,3, α3,1 ̸= 0, δ3 ̸= 0. As above we

can choose gm,3 ̸= 0 and such that [B2
−→g ]3 ̸= 0 by taking gm,3 neither in

Q[
α3,1gm,1+α3,2gm,2

−δ3
] nor in any of the previous field extensions.

Continuing this process and applying similar choices we see that gm,4, gm,5, . . . ,
gm,m−1 can be chosen nonzero. Moreover, matrix B1 shows that there is at least
one free variable for the solution of km,j , j = 1, 2, . . . ,∆(G) + 1. All of these
free variables can be chosen in different field extensions such that all other un-
knowns are not zero. Otherwise it is possible to show that the last choice belongs
to the field containing all the previous chosen values which is a contradiction.
Now, suppose that km,1, km,2, . . . , km,r, r < ∆(G) + 1 can be written in terms
of km,r+1, . . . , km,∆(G+1) as

km,i = αr+1km,r+1 + · · ·+ α∆(G)+1km,∆(G)+1 + φi(gm,1, gm,2, . . . , gm,m−1),

i = 1, 2, . . . , r
(6)
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where αr+1, . . . , α∆(G)+1 are all nonzero and φi is a linear combination of
gm,1, . . . , gm,m−1. Also φi(gm,1, gm,2, . . . , gm,m−1) ̸= 0, i = 1, 2, . . . , r. Thus,
by choosing values km,r+1, . . . , km,∆(G)+1 in different field extensions and sub-
stituting them in 6, we obtain that km,i ̸= 0, i = 1, 2, . . . , r.

As a consequence, the vector −→v m exists and all of its entries are nonzero.
If matrix B is of type II we apply same process as in case of type I. Again,

we can obtain the vector vm having all its entries nonzero and gm,i ̸= 0 for
i = 1, . . . ,m− 1.
Case 2. m− 1 > ∆(G) + 1

In this case the number of equations in the non-homogeneous system S is
more than the number of unknowns km,1, km,2, . . . , km,∆(G)+1.

We need to analyze three possible subcases where m − 1 − t < ∆(G) +
1,m− 1− t = ∆(G) + 1 or m− 1− t > δ(G) + 1.

1. If m− 1− t < ∆(G) + 1 then matrix B has the form

B =



1 ∗ ∗ . . . ∗ | ∗ . . . ∗ | ∗ 0 0 0 0 . . . 0 0
0 1 ∗ . . . ∗ | ∗ . . . ∗ | ∗ ∗ 0 0 0 . . . 0 0
0 0 1 . . . ∗ | ∗ . . . ∗ | ∗ ∗ ∗ 0 0 . . . 0 0
...

...
... . . .

... |
... . . .

... |
... . . .

...
...

...
...

...
...

0 0 0 . . . 1 | ∗ . . . ∗ | ∗ . . . ∗ ∗ ∗ . . . ∗ ∗
− − − − − − − . . . − | − − − − − . . . − −
0 0 0 . . . 0 | 1 . . . ∗ | ∗ . . . ∗ ∗ ∗ . . . ∗ ∗
...

...
...

...
... |

... . . .
... |

... . . .
...

...
...

...
...

...
0 0 0 . . . 0 | 0 . . . ∗ | ∗ . . . ∗ ∗ ∗ . . . ∗ ∗
0 0 0 . . . 0 | 0 . . . 1 | ∗ . . . ∗ ∗ ∗ . . . ∗ ∗
0 0 0 . . . 0 | 0 . . . 0 | ∗ . . . ∗ ∗ ∗ . . . ∗ ∗
...

...
...

...
... |

... . . .
... |

... . . .
...

...
...

...
...

...
0 0 0 . . . 0 | 0 . . . 0 | ∗ . . . ∗ ∗ ∗ . . . ∗ ∗


B =

(
B1 B2 B3

B4 B5 B6

)
.

The matrix B1 is a square matrix (m − 1 − t) × (m − 1 − t), matrix B2

has size (m− 1− t)× (∆(G) + 2+ t−m), matrix B3 is a square matrix
of size m− 1− t. Matrix B4 is a zero matrix of size t×m− 1− t. The
central blocks B2, B5 form a block of size (m−1)× (∆(G)+2+ t−m)
and corresponds to the columns of free variables km,m−t, . . . , km,∆(G)+1

of the system S. The block B6 has size t× (m− 1− t) .
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Consider the block matrix (B5 B6) of size t× (∆(G)+1). Recalling that
the value t is the number of orthogonal conditions for vm in G which is
equivalent to dG(vm) we get t ≤ ∆(G) < ∆(G) + 1. As a consequence,
the homogeneous system (B5 B6)

−→w = 0 where −→w is a vector of size
(∆(G) + 1)× 1 in the variables km,m−t, . . . , km,∆(G)+1, (−gm,1), . . . ,

(−gm,m−1−t), has infinitely many solutions depending on at least one free
variable. Choosing these free variables in different field extensions as we
did previously, we get nonzero values for km,m−t, . . . , km,∆(G)+1, gm,1,
. . . , gm,m−1−t. We get the values of the remaining unknowns km,i, i =
1, 2, . . . ,m− 1− t of the system S applying back substitution.

Since all the entries with ∗ in the block B1 are nonzero and belong to
different field extensions, the values km,i, i = 1, 2, . . . ,m− 1− t are also
nonzero.

As a consequence, the non-homogeneous system S is consistent and the
vector vm with no zero entries exists.

2. If m− 1− t = ∆(G) + 1 then the matrix B has the form

B =

 B1 | B2

− −
0 | R



=



1 ∗ ∗ . . . ∗ . . . ∗ | δ1 0 0 0 0 . . . 0 0
0 1 ∗ . . . ∗ . . . ∗ | ∗ δ2 0 0 0 . . . 0 0
0 0 1 . . . ∗ . . . ∗ | ∗ ∗ δ3 0 0 . . . 0 0
...

...
... . . .

... . . .
... |

... . . .
...

...
...

...
...

...
0 0 0 . . . 1 . . . ∗ | ∗ . . . ∗ ∗ ∗ . . . 0 0
0 0 0 . . . 0 . . . ∗ | ∗ . . . ∗ ∗ ∗ . . . δm−t−2 0
0 0 0 . . . 0 . . . 1 | ∗ . . . ∗ ∗ ∗ . . . ∗ δm−1−t

− − − − − . . . − | − − − − − . . . − −
0 0 0 . . . 0 . . . 0 | 1 . . . ∗ ∗ ∗ . . . ∗ ∗
...

...
...

...
... . . .

...
...

... . . .
...

...
...

...
...

...
0 0 0 . . . 0 . . . 0 | 0 . . . 1 ∗ ∗ . . . ∗ ∗



.

In this case the matrices B1 and B2 are square matrices of size
m − 1 − t = (∆(G) + 1). The matrix R has size t ×m − 1 − t. Since
t <

⌊
m
2 − 1

⌋
we get that 2t < m − 2 < m − 1 which implies that

t < m− 1− t.

Therefore the system R−→g = 0 has infinitely many solutions with
m − 1 − 2t free variables. Taking the free variables from different field
extensions we get all the values gm,1, . . . , gm,m−1−t nonzero. Substitut-
ing gm,1, . . . , gm,m−1−t in the equations of the system B2

−→g = 0 we get
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[B2
−→g ]i ̸= 0 for all i = 1, . . . ,m − 1 − t. Otherwise, it is possible

to show that the last choice belongs to the field containing all previous
chosen values which is a contradiction. This implies that km,∆(G)+1 =

[B2
−→g ]m−1−t ̸= 0 from the last row of (B1 B2).

Applying back substitution and similar argument with gm,1, . . . , gm,m−1−t

we conclude that km,1, . . . , km,∆(G) are also nonzero. Thus the system S
has a solution with nonzero values for the unknowns. As a consequence
there exists a vector −→v m satisfying all the adjacency conditions and or-
thogonal conditions.

3. m− 1− t > ∆(G) + 1 then matrix B has the form

B =

 B1 | B2

− −
0 | R



=



1 ∗ ∗ . . . ∗ . . . ∗ | ∗ 0 0 0 0 . . . 0 0
0 1 ∗ . . . ∗ . . . ∗ | ∗ ∗ 0 0 0 . . . 0 0
0 0 1 . . . ∗ . . . ∗ | ∗ ∗ ∗ 0 0 . . . 0 0
...

...
... . . .

... . . .
... |

... . . .
...

...
...

...
...

...
0 0 0 . . . 1 . . . ∗ | ∗ . . . ∗ ∗ ∗ . . . 0 0
...

...
...

...
... . . .

...
...

... . . .
...

...
...

...
...

...
0 0 0 . . . 0 . . . ∗ | ∗ . . . ∗ ∗ ∗ . . . ∗ 0
0 0 0 . . . 0 . . . 1 | ∗ . . . ∗ ∗ ∗ . . . ∗ ∗
− − − − − . . . − | − − − − − . . . − −
0 0 0 . . . 0 . . . 0 | 1 . . . ∗ ∗ ∗ . . . ∗ ∗
...

...
...

...
... . . .

...
...

... . . .
...

...
...

...
...

...
0 0 0 . . . 0 . . . 0 | 0 . . . 1 ∗ ∗ . . . ∗ ∗



.

The matrix B1 has size (m − 1 − t) × (∆(G) + 1 + r), 0 < r < t
where m − 1 − t = ∆(G) + 1 + r. This matrix contains the columns of
the unknowns km,1, . . . , km,∆(G)+1, (−gm,1), . . . , (−gm,r). The matrix
B2 has size (m−1− t)× (∆(G)+1). The 0 matrix has size t× (∆(G)+
1 + r). The matrix R has size t× (∆(G) + 1).

Since t ≤ ∆(G) < ∆(G) + 1 the system R−→g = 0 has infinitely many
solutions with at least one free variable. By the same argument as in case
2 we get that the system S is consistent and the solution with nonzero
values for km,1, . . . , km,∆(G)+1 gives a vector −→v m which satisfies all the
adjacency conditions and orthogonal conditions.
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Hence, Ym has an orthogonal representation of vectors in R∆(G)+1 satisfying
the conditions (1) and (2). Thus Y|G| = G has an orthogonal representation in

R∆(G)+1 satisfying conditions (1) and (2).
Using the same argument in the construction of vector v4, we prove that

v1, . . . , vm is pairwise linearly independent set of vectors in R∆(G)+1. Finally
since msr(G) is the smallest dimension in which G has an orthogonal represen-
tation msr(G) ≤ ∆(G) + 1. Since δ(G) + ∆(G) = |G| − 1 we conclude that
G satisfies the delta conjecture, namely, msr(G) ≤ |G| − δ(G). This completes
the proof of the main theorem.

Observation 3.7. In the construction of orthogonal representation of the in-
duced graph Ym it is sufficient to consider t ≤

⌊
m
2 − 1

⌋
if m is even and

t <
⌊
m−1
2

⌋
if m is odd. In both cases we obtain the condition t < (m−1−t) that

we need to get infinitely many solutions for the system R−→g = 0. This difference
in the upper bounds for t is important for small values of m but for larger val-
ues of m these upper bounds are asymptotically equivalent. However, it means
that we could get an orthogonal representation of pairwise linearly independent
vectors in R∆(G)+1 for some graphs which are not necessarily δ-graphs.

Observation 3.8. Reducing the matrix A to an echelon form needs a finite num-
ber of operations as well as reducing the matrix R to an echelon form. It means
that all the values ki,j , i = 1, 2, . . . ,m − 1, j = 1, 2, . . . ,∆(G) + 1 can be
chosen from different field extensions in such a way that all the values ∗ in the
reduced echelon form of A are nonzero and belong to different field extensions.

Observation 3.9. The condition of choosing values ki,j , i = 1, 2, . . . , |G|,
j = 1, 2, . . . ,∆(G)+1 from different field extensions was imposed to guarantee
the consistency of the non-homogeneous system S. Also, we use this nonzero
entries of the vectors −→v 1, . . . ,

−→v m−1 to guarantee the adjacency conditions and
orthogonal conditions of the vector −→v m corresponding to the newly added ver-
tex. But calculating the orthogonal representation using this approach could be
time consuming. Since we know that it is possible to get an orthogonal represen-
tation of δ-graph G inR∆(G)+1 and since the representation is not unique, it may
be possible to calculate the orthogonal representation using integers or rational
numbers. However, calculating the orthogonal representation of a δ-graph G
in this way could also be tedious because we may need to apply a backtracking
procedure during the calculation due to some adjacency conditions of the vector
corresponding to the newly added vertex may not be satisfied. When that hap-
pens, we may need to go back to some of the previous vectors and recalculate
them until we fix the adjacency conditions.
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4 Examples of δ-graphs and their msr

The result proved above give us a huge family of graph which satisfies delta
conjecture. Since, the complement of a C-delta graphs is a δ-graph, it is enough
to identify a C-δ-graph and therefore we know that its complement is a δ-graph
satisfying delta conjecture.

Some examples of C-δ graphs that we can find in [15] are the Cartesian
Product Kn�Pm, n ≥ 3,m ≥ 4, Mobiüs Lader ML2n, n ≥ 3, Supertriangles
Tn, n ≥ 4, Coronas Sn ◦ Pm, n ≥ 2,m ≥ 1 where Sn is a star and Pm a path,
Cages like Tutte’s (3,8) cage, Headwood’s (3,6) cage and many others, Blanusa
Snarks of type 1 and 2 with 26, 34, and 42 vértices, Generalized Petersen Graphs
Gp1 to Gp16, and many others.

In order to show the technique used in the proved result consider the follow-
ing example.

Example 4.1. If G is the Robertson’s (4,5)-cage on 19 vertices then it is a 4-
regular C-δ graph. Since ∆(G) = 4, the msr(G) ≤ 5. To see this is a C-δ graph
it is enough to label its vertices in the way shown in Figure 2.

Figure 2: B.2 Robertson’s (4,5)-cage (19 vertices).

5 Conclusion

The result proved above give us a tool to identify a wide range of families of
graphs which satisfy delta conjecture. The techniques used in the proof could be
used in future research as a new approach to solve delta conjecture. However, it
is clear that the main problem is still open.
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