ALGEBRAIC MODELS FOR PROPER HoMOTOPY TYPES
by
Timothy Porter

Lectures at the Colegio Universitario de La Rioja, Logrofio, November 1991.

The aim of this Workshop on Proper Homotopy Theory was to provide an
opportunity to present and discuss various approaches to proper homotopy
theory., My curnt work in this area is with Luis Javier Hemdndez and I
have atempted to explain below the ‘philosophy’ behind our approach.  Why
‘philosophy'? Simply, because all o seldom do mathemadcians put in
writing their overall view of a subject and how it may evolve. This theme
would seem pardcularly important given the aim of the Workshop.

[ would like to thank Luis Javier, Ignacio and Teresa for all the hard work
in organising the meetng and both them and the other partcipants for a
very stimulatng week.
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1. Algebraic models for homotopy types.

It is well known that algebraic topology is based on the hope that given a
topological problem, by modelling it in a suitable way by algebra, one may
find a solution, or at least, find if one exists. The ‘uldmate’ hope
would be to model topological spaces completely by algebra and thus to
reduce hard topological problems to algebraic problems which are hopefully
more easily solved. This corresponds to an ‘ideal scenario’ for homotopy
theory.

1.1 Ideal Scenario

If we are to hope for good algebraic models for proper homotopy rtypes, it
will be important to consider to what extent exising models of homotopy
types satisfy ‘ideal’ condidons. In our ideal world, we have a category,
Spaces, of spaces and maps. Spaces may just be topological spaces or the
more specialised CW-complexes or simplicial complexes, and the maps may
just be continuous or may be cellular or simplicial. We hope for a
category, Alg. Models, which at present we do not know anything about, and
an algebraic modelling functor,

G : Spaces ——— Alg. Models.
We will also call G a "test functor".

In Spaces, we have a noton of homotopy between maps and can form a
homotopy category that will be denoted Ho(Spaces). (We will not for the
moment enquire how this is constructed.) In Alg. Models, we assume there
are some  ‘Qquasi-isomorphisms’ comresponding loosely to the homotopy
equivalences in Spaces, and we expect, or at least hope, that G will induce

a functor
G : Ho(Spaces) ———— Ho(Alg. Models)

where Ho(Alg. Models) is obtained by formally invertung these
quasi-isomorphisms. Ideally this induced G will be an equivalence of

categories.
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If Alg. Models and G are going to be useful for solving homotopy problems,
the above is not enough. We need to be able to 'do’ homotopy theory within
Alg. Models is a way that mirrors the ‘homotopy theory’ of Spaces. Here we
have a great difficulty: Although we know what "doing homotopy theory”
means we do not know what is a "homotopy theory”. The swouctures that have
been put forward, all model absmracly certain important aspects  of
homotopy theory but as yet no one abswact theory is decisively the ‘right’
one. (Undl recendy this could have been compared adversely with homology
theory, where we thought we knew what was happening, at least in the
homological  algebra context, but Grothendieck [1983] has raised the
queston of ‘what is homological algebra?’ by asking for a full theory of
derived categories. [t is remarkable that his proposed soluton is the
homological analogue of that proposed by Heller [1988] as an answer 1o the
quesdon ‘what is homotopy theory?” Heller's ideas are briefly considered
below.)

The basic tools needed to ‘'do homotopy theory' are consmuctions such as
mapping cyl.indcri fibradon sequences, etc. These constuctions take as

inidal data a map, or a square of spaces and this suggests that, more
generally, for each small category, I, the functor

G' : (Spaces)) ———— (Alg. Models)'
should induce an equivalence of homotopy categories of I-indexed diagrams:
Ho((Spaces)!) ———— Ho((Alg. Models)})
and if @ : [ — J, then the right and left adjoints of
Ho((Spaces)®) : Ho((Spaces)’)——— Ho((Spaces)")

(technically left :d right homotopy Kan extensions) should have analogues
in Alg. Models. The soucture suggested for Alg. Models has thus to be
more or less like that of a homotopy theory in Heller's sense (see Heller
[1988] for derails). He defines a homotopy theory to consist of the

assignment of a category, T(I). to each small category [ so that if
oa:1 —=J, then &« induces T(ax) : TJ) — T(I), and this has both left and
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right adjoints. This soucture has of course to sadsfy various axioms.
To understand th: importance of his ideas, consider, [ arbitary, J to be
the single map category often called [0], the  ordinal category
corresponding to the one point ordinal, and @ to be the unique functor.
Then the left and nght adjoints of T(a) are the homotopy colimit and
homotopy limit functors respecrively. As all such consmuctons as the
suspension, loop space, mapping cylinder, mapping cone ewc. as well as more
complicated  classifying space and bar/cobar constructions are describable
as homotopy colimits or limits, the importance of the above stucture
should begin to be clear.

1.2 Additional desirable features
[. Calculability.

The algebraic rnc.:de!]ing functor G will not be much good unless for a
reasonably rich class of spaces, we can hope to calculate G(X). Moreover
we would hope to be able to calculate [X, Y] by calculaing [G(X), G(Y)],
again for a mamna%ly rich class of spaces, X and Y.

How is one to calculate such a G(X)? One possible piece of machinery would
be a van-Kampen theorem. This should say (again ideally):

If U, V are open, and X = U u V, then

G(UNnV) ———— G(U)

l

GvV) —0/ ——— G(X)

is a pushout in Alg. Models. To understand this sort of theorem better, we
will briefly look at known existing cases of a van Kampen tvpe theorem.
This will at the same time serve (0 inwoduce various algebraic structure
for later use.

a) Classical form (Groups) of van Kampen's Theorem.

We are given a pointed topological space (X, x,) with non empty open
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subsets U, V such that U w V = X and U, V and U n V are arcwise connected
with x, € U m V, then
B
,(UnV) ———4— 8 5 m,(U)
s
n(V) ——— 0 — s 1, (X)

is a pushout of groups. (cf. Massey [1967)). Of interest for its
compurtational interpretation, the version favoured by Crowell and Fox
[1953] shows how one can build a presentation of the group =(X) given
presentations of the other groups and informaton about the two
homomorphisms ju- and j,.. If we fix notaton so that if we write
Gz (X:R)

we will mean that X is a set, R is a subset of the free group, F(X), and
denoting by <<R>> the normal closure of R in F(X), there is an isomorphism,
G = F(X)/<<R>>. The combinatorial group theoretic version is based on the
fact that if

L3

31
Go —_— GI

J |

i T ————

is a pushout of groups, and if we are given presentatons Gy = (Z : T),
G, = (X : R), G, = (Y : S) then G has presentation

GsXUY:RUSU([8(z) =642 : 2€ Z))
Here we are abusing notadon as 6,(z) and 6,(z) are not defined! Of course
we are meaning that 6,(z) should be a chosen word/element in F(X) which
represents the image under 6, of the generator z, (so writng 8,(z) € F(X)
is much simpler and leads to no problems, as should be clear). Similarly
for 8,(z) € F(Y).

The combinatorial descripdon is important not only because of the
possibility of calculations but also because it starts to bridge the gap
between the ‘geometry’ and the algebra, in this case, the group theory. Of
course given a space X that can be built up by amaching cells, this
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provides an efficient tool for calculaing m;(X) and vice versa, given a
presentation P = (X : R) of a group G, we can build a complex K(P) using
the data in ®?, such that m(K(P)) is isomorphic to G. This provides the
basis for a lot of combinatorial group theory, the cohomology theory of
groups and the swdy of the ends of groups. This interconnectivity of the
various areas is worth remembering for when, later, we look at proper
homotopy theory. For instance is there an analogue of the constucdon,
K(®), in the proper context?

Of course the above uses only wm, and this only models a tny part of the
homotopy type, or, if you prefer, provides an accurate model only for a
small class of homotopy types.

b)  Classical form (Groupoids) (c.f. Brown [1967] and [1988])

The reswicdon on arcwise connectedness of U, V and U m V is unnecessary
if instead of groups, one uses groupoids. This also allows one to model
non-connected  spaces. One small but important point is that the group
based version will not allow you to calculate w,(S'), but this can be
easily read off from the groupoid version.

The main tool is the relatve fundamental groupoid, I, XX% here X is a
space, X° is a collecion of base points (possibly all of X) and I[1,XX° is
the set of fixed end point homotopy classes of maps a from I = (0, 1] 1o X
in which a(0), a(l) e X°

The statement of the van Kampen theorem in its groupoid form is similar to
that in the group form, but U m V need only have one base point in each
arcwise connected component, instead of being itself arcwise connected.

The combinatorial group theory has its analogue here and in fact the

combinatorial and geomemic featres of the algebra are much nearer the
surface, (see Brown [1988] or Cohen [1989]).
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c¢)  Crossed module version (Brown-Higgins [1978))

The groupoid van Kampen theorem sill only tells you about the very lowest
levels of the homotopy type of a space. To obtain information on the next
level, one needs to work with crossed modules. We replace the spaces X, U,
V by (muldply pointed) pairs (X, X') etc., the fundamental groupoid by a
fundamental crossed module. This is the soucture given by

(m(X, X'p) : p e X% =9, 1,X'x°
where X° is, again, the set of base points and I1,X'X° is the fundamental
groupoid of the 1-skeleton, X', based at X%  This structure is best known
in the case. X° = (x4}, that is of a single base point. Here it is simply
the boundary map

9 : m(X, X', xg) — m(X', xo).

This is a crossed module of groups. Since the reladve =, consists of
homotopy classes “of maps of squares having three edges at x, and the last
in X' there is a combinatorial interpretation of this swmucture as well.
For instance if X = K(P) filtered by skeleta, then this crossed module
encodes informadon about the identiies amongst the reladons of the
presentadon, P (:.f. Brown-Hubschmann [1982]). (For a first inwoducton
to crossed modules see Hilton's book, [1966], on homotopy theory which
contains an inoducton to many of the ideas of ] H C Whitehead)

Crossed modules (preferably, of groupoids) sadsfy a van Kampen theorem.
If the space X is a CW-complex filtered by skeleta, then the fundamental
crossed module determines the 2-type of X (see later for the meaning of the
n-types of spaces.)

d)  Crossed complex versions (Brown-Higgins [1981])

The crossed module of a (muldply pointed) pair is sdll only giving us
informaton in dimensions 0, 1 and 2.  Whitehead [1949] provided a model
for much more of the homotopy type of a CW-complex however. His model,
called by him “homotopy system” consisted of the relatve homotopy groups
and boundary maps, together with the actdon of =x,. The essence of his
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construction (in a groupoid version) is what is now known as a crossed
complex (c.f. Brown and Higgins (1981]) or a crossed chain complex (in the
reduced case c.f. Baues [1989] and [1991]).

The basic staring point is a filtered space, X = {X"] >y ypically the
skeletal filradon of a CW-complex, but not necessarily as well behaved as
that. The structure of a crossed complex consists of a "chain complex”

d d d

-

Y A s . Gy ey €

£ 3

of groupoids over a fixed base X° where for n22, the groupoid C, is a
disjoint union of groups (C,(p) : p € X°), which are abelian for n23, C, is
assumed to act on all the C, such that the 4, are compadble with the
acion and 9, is a crossed module. One or two other condidons are also
needed, but we will not give these here, (see Brown-Higgins [1981],
Brown-Golasinski [1989], Carrasco and Cegarra [1991], nodng that the
indexing of the groupoids is sometmes different for the different
authors.) If X is = filtered space, the associated crossed complex has

C.(p) = m (X" X"!p) pe X% n22

Cy = I;Xx'x°
with the d, the obvious boundary maps,
3, 1 By (X"X™! p)———r, (X! X"2,p),
from the long exact sequence of the miple (X"X™'X"?).  These boundary
maps have thus a nice geometric interpretation.

This crossed complex associated to X is often denoted wn(X). It sansfies a
form of van Kampen theorem in that it converts certain colimit diagrams of
filtered spaces into colimits diagrams of crossed complexes. (The way in
which this yields powerful results is fascinaing and the reader s
thoroughly recommended to look through those of the papers of Brown and
Higgins, listed in the references, that deal with the applicadons. The
proof of their van Kampen theorem is not easy, as it involves a lot of
subsidiary concepts: -groupoids, T-complexes, etw., that have each a rich
structure  linking algebra and geomemy in  interesung ways, however thelr
richness can tend to obscure the simple idea behind the plan of the proof.)
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e)  Cat*-Group Version.

In 1984, Loday published a paper (Loday [1984]) in which he inooduced a
new algebraic ‘gadget’, the cat®-group. He gave a proof (which however
contained some technical errors) which showed that these car®-groups
completely modelled n-types (see later). (The comrecdons to his proof
have since been provided by Steiner [1986] with clarificadon by Gilbent
[1987]; see also Porter [1991] for an algebraic proof.)

Loday’s car"-group functor sadsfles a form of van Kampen theorem (see
Brown & Loday [1987a), [(1987b]) which gives another extension of the
crossed module van Kampen theorem.

f)  Exact sequences and Spectral sequences.

From fibradon sequences in Spaces, we can hope 1o get (co-)fibraton
sequences in Alg. Models. In the hands of a skilled operator, the
resuling exact sequences can Yyield revealing informadon about the spaces,
but there is always the problem that exact sequences often give informadon
on an algebraic model only ‘up to extension’ and extension problems are
hard in many algebraic setings.  These comments apply equally to spectral
sequences.

I[I Minimality

As Baues points out in [1991], the minimality of a model is exuemely
useful. By minimalitcy one implies that only essential informadon is in
the model and experience tends to show that this minimality reflects the
geomerric and combinatorial  structure  of the space at a  deep level
Minimality does not always seem easy to obtain.

1.3 Problems:

(1) Often complete invariants  (i.e. modelling  functors) are  very
difficult to calculate, eg. if X is connected, then one can model its
homotopy type by a simplicial group, G, but this G is typically free in
each dimension and extacdon of even quite simple invariants can use up 2
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lot of dme. The functor that is used to go from the space to the
simplicial group factors through the category of simplicial sets and one
can reduce the proof of van Kampen type theorem to proving that the
singular  functor, Sing, has nice propertes since the passage from
Simp.Sets to Simp.Groups is algebraic, and preserves colimits as it is a
left adjoint.

(ii) As complete invariants are difficult to calculate, we can
resrict to well chosen but incomplete test functors. Typically these give
complete informaton on a smaller class of spaces, or determine a courser
notion of equivalence. For instance, m; is a good invariant, but it gives
complete informarion only on the K(m1)’s, that is, on those connected
spaces with x, non-tivial, whilst all the m's for i>l are wivial groups,
however it does classify all nice spaces up to the weaker equivalence
called 1-equivalence. In general for a given test functor, G, this raises
the problems (a) of characterizing the corresponding class of spaces which
are completely determined up to homotopy type by the values of G on them
and (b) finding" a geomewic interpretation of the weaker nodon of
G-equivalence i.e. of determining or describing when f, f, : X — Y are
such that G(fy) = G(f;) in the algebraic models, or when G(X) and G(Y) are
isomorphic or equivalent for some nodon of equivalence within Alg. Models.
For instance Loday’s cat®-group functor completely models
(n+1)-equivalence, which has a good geometric description. The completely
determined homotcoy types for the crossed complexes are those given. by the
J-spaces in the sense of Whitehead [1949].

(iii) The final problem is to do enough with the algebraic models to
produce a rich ‘homotopy theory’.  This is not always easy! For instance
what does G(X x Y) look like in terms of G(X) and G(Y) and possibly other
invariants. Classical ~ (incomplete) invariants  yield  tensor  product
formulae and results like the Eilenberg-Zilber theorem. What is the
analogue in our “ideal scenario” situadon or for the “fall  back"
incomplete invariants?  This often holds the key to defining nice homotopy
structure  in  the algebraic models since the homotopy in Spaces s
indmately  linked with the cylinder X x[ and the various monoid
muldplications on the space [ (again involving a product). The test
functor G should convert G(X x I) to something like G(X) ® G(I) with an
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as-yet undefined tensor product and the monoid multplicadon on I to one
on G(I) with respect to this ®.

To sum up:-
One hopes for a functor
G: Spaces ———— Alg. Models

which (i) induces an equivalence on homotopy categories

(ii) preserves certain colimits.
At second best, one would like a computable G which gives complete
informatdon on as large as possible a subcategory of spaces and that the
models reflect the homotopy structure in a nice way.

Problem:

How can we do a ‘similar job for proper homotopy?

(28]

Proper homotopy (at = and globally).

2.1 In proper homotopy theory, the interesting spaces are not compact SO
it is difficult to get invariants of them using maps from spheres, or other
compact spaces, «s would be the way in classical homotopy theory. Such
maps do not tell us about what is happening “far out” towards infiniry.
Here, of course, the classic example is ®°, where maps with compact domain
cannot detect the ‘hole’ ar infinity corresponding to the puncture in the
sphere used for a stereographic projection.  To gain fuller informaton one
has to use proper maps to investgate behavior at infinity and to combine
that information with more standard informadon 1o  obtain  "global”
invariants to ov to gain insight into the npatre of the proper homotopy

tvpe of the space.
At the moment there are two related but disdnct approaches being mied

out. One, developed by Ayala, Quintero, and Dominguez here in Spain with
Baues and Zobel from Bonn, takes a global view from the start and analyses
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the similarity berween the ‘abswmact homotopy’ of the classical sitadon
and that of the 'proper" siwation. The second pioneered by Edwards and
Hastings embeds the problem of determining proper homotopy type in a wider
context namely that of determining prohomotopy types i.e. homotopy types of
prospaces, or inverse systems of spaces. This is technically slighdy more
complicated but allows a reasonable amount of geomewmic freedom as
constructions that seem to be the proper analogues of classical ones may
not be that easy to constuct as spaces, but they can |usually be
consoucted within the pro-category. Thus one might consguct a mapping
cylinder within the pro-category even though this may not correspond to any
space. This second approach has been exploited by Luis Javier Hemnandez
and myself in a series of articles and as Hans Baues has talked in this
Workshop on  the alternatve approach. I  will concentrate on  the
"pro”-formuladon.

2.2 The basic categories of spaces used are:

Notation

P ~ the proper ca:sgory of o compact spaces

CW =~ the proper category of locally finite CW-complexes

SC ~ the proper category of locally finite simplicial complexes.

Ho(A) will denote the comresponding proper homotopy category to the
category A.

P etwc. denote the variant of P etc., consising of the same spaces but

with germs of proper maps at = as maps (see Edwards-Hastings [1976])

If Xe P, let ¢X)=((X-C):C compact. C < X} € pro(Top). Given a
proper map or proper map germ f : X — Y, as [ is proper, inverse images of
compact sets in Y are compact in X, so if D compact in Y, f resmicts to a
map

fp:X- D) = Y-D

with fY(D) compact in X. Of course, this is exactly what is needed for f
to induce a "pro-morphism”,
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e(f) : eX) — &(Y)
in pro(Top) and hence to make € into a functor

€ : P — pro(Top),
called the end funcror.

This functor € can also be defined on proper map germs, since a map germ
f: X =Y, only needs to be defined on the complement of some compact
subset of X. We thus also get an end functor

€ : P_ — pro(Top)

which is compad.le with the projecion from P tw P_ (cf. Edwards and
Hasdngs [1976].)

As gX) = (cl(X - C) : C compact in X), there is a narural promorphism from
e(X) tw X, where here X is being considered as a constant object in
pro(Top). This morphism can conveniently be thought of as an object in the
comma category (pro(Top), Top) consising of all maps in pro(Top), with
codomain a constant object (N.B. the notaton used by Edwards and Hastings
here is different and is “non-standard” from a categorical point of view.
[, of course, prefer the notadon I have used above!)

Assigning &X) — X w0 X, ewc, gives for each proper map £X — Y a
diagram

eX) —E0 L ey

1 l

X —m8— Y
f

which is commutadve precisely because ¢€(f) consists of resmicuons of f

This gives a second functor

(e. forget) : P ———— (pro(Top),Top)



(where the “forget"-part of this forgets the “proper” condidon and only
“remembers” the continuity of the maps in P).

Edwards and Hastings first embedding resulis proved:
the funcrors
(e,forget) : P ————— (pro(Top),Top)
and €: P_ ——— pro(Top)
are embeddings.

The proper homotopy smucture on P or P_ is equally well reflected by

homotopy stucture in (pro(Top),Top) and pro(Top). Edwards and Hasdngs
[1976] produced a neat Quillen model category soucture on both of these
categories. We will not need all of that swmucture in demil, but recall

that the weak cqﬁiva.lcnccs in these categories are generated by the “level
weak equivalences” that is maps of the form

{f : X, = Yliel
for which each f; is a weak equivalence in Top, (see also Porter [1988]).

The second set of embedding results of Edwards and Hasdngs are that rhe
previous embeddings induce embeddings

Ho(P) ———— Ho(pro(Top).Top)
and
Ho(P_ )——— Ho(pro(Top)).

and similarly for pairs, n-ads etc. of spaces.
The constmuctons of Ho(pro(Top)) and Ho(pro(Top),Top) from Top are
functorial so could be applied to any category, C. This suggests together

with our discussion in section 1, a method of amack for swdying proper
homotopy theory:
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l.  Pick your favourite algebraic test-functor
G : Top ——— Alg. Models
2. Study the structure of
pro(Alg.Models) and (pro(Alg.Models),Alg.Models)
and oy to investgate the analogues of homotopy consouctions in these

categories, e.g. to form  Ho(pro(Alg.Models),Alg.Models) and 1w “do
homotopy” there.

3. Use the composites
P —— (pro(Top), Top) ——— (pro(Alg.Models),Alg.Models)

P_ ———— pro(Top) ——_ g pro(Alg.Models)
o "encode” proper homotopy theory into “pro-algebra”.
2.3 Critique:
(i) Inverse systems of algebras are wuseful, but are an acquired taste!
Some people do not like them. If the algebras are finite, or “finite
dimensional”, e.g. made up of finite groups or Artnian modules, then one

can take inverse limits without disturbing information and be left with
profinitc algebras of the same type. These are topological algebras with a

cerain  link between the rtopology and the algebra - loosely speaking the
"normal subalgebras” determine a system of open neighborhoods of the
idendty. This can, in some cases, be useful as it replaces a collecton
of interacing algebraic models by a single topologised one - but the

process of analysis of the result is in many aspects bound t be equivalent
in difficulty o that of analysing the orginal system. The limidng
process will desmoy informadon if the finiteness or compactess conditdon
is not present and in any case the limiting process is not that geometrical

as limits and homotopy mix badly.

(i) On the posiive side, there are geomemically motvated constructions
that yield "algebraic models” from the “pro-algebraic” ones. For instance,
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the alternative approach to proper homotopy theory used by Baues, et al,
often uses “favourite test functors” somewhat of form Ho(P)(S,-), where S
is some space in P. For instance S might be simply a sming of circles
(see later) or may be much more complicated. To aid in the swdy of such a
functor we can throw the problem into (pro(Alg.Models),Alg.Models) and
compare this  Ho(P)(5.X) with the corresponding hom-set, [G(eS),G(eX)],
in  Ho(pro(Alg.Models),Alg.Models). Any nawral sgucwure in Ho(P)(S.X)
will be geomewmically realised by some comresponding dual homotopy
soucture in S, just as in ordinary homotopy theory the n-spheres are
cogroups "up to homotopy". The pro-algebraic model G(eS) will therefore
have a rich algebraic swmucture and a homotopy “costructure”. This
structure  will ther: yield on [Ge(S), Ge(X)] a nawral soucture of the same
type as the original one, reflecing the swucture Ho(P)[S, X] to a greater
or less extent depending on whether or not G is or is not an embedding in

some relevant range of dimensions.

This may seem vague so let us take a simple example. Suppose the original
G used is m. This of course needs pointed spaces, so we assume X s
supplied with a "base ray" * : [0,00) — X. Then, using a "pairs" version
of the Edwards-Hastungs embedding, we get &(*) : g[0,=) — &X) in
pro(Top), similarly in (pro(Top).Top). Within  Ho(pro(Top)), €[0,%) s
isomorphic to the constant system with "value” a single point, hence we get
a pointed object in Ho(pro(Top)) and similarly in Ho(pro(Top),Top). (We
will for simplici;y resmict awenton to P_, and hence to pro(Top) and
Ho(pro(Top)).) We can thus apply m, to €(X) without difficulty basing the
loops at the relevant base points given by the map €[0,) — g(X), to get a
fundamental pro-group m(e(X),*).

The alternatdve approach might look at a space S with S = [0,) U !ﬁts:
where S:is a circle artached at the point i & N [0Oe) and then look at
Ho(P:o'i")((S.[O.u)].(X.“)]. the proper pointed homotopy germs from

(S5,[0,=)) 0 (X.%). Following the plan that was skewched out earlier, we
would look at Ge(S). As G is taken to be m, this is the progroup =,&(S)
with at index n. F(x,X,., .. ). a free group on a set {x,x, . .. } of
elements, where from mn&(S),,, to me&(S), the map is that induced by the
inclusion  of  [x.,, ) into (%o ). The  set

Ho(P?“™)((S.[0,)),(X,*)) has a group structure inherited from the level
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wise H-cogroup .xucture on § ie. §' — S'wv §' induces, at each i, a
comuldplicadon 'up to homotopy'

§ s § v 8
and hence a comultiplication 'up to proper homotopy’

S— > O=uldsivsies s
i20 [0.50)

which gives the group  swucture. Wridng  ®(X,*) in place of
H.;,(P;m)[(S.[O.w)).{X.‘)]. we have that =x,(X.,*) is a group, but more
interestingly there is a natmral acdon of m(S,(0.<) on m(X,*) given by
composition withir the category Hy(P? Y%y The analogous action of Tw,(S')
on m(X) is usually ignored as it is given by power mappings and hence is
not an additional operation but is already given by the group structure.
Here in the proper context, m,(S) gives us a lot of exwa swoucture, both
algebraic and geompetric via the simple geomemic structure of S§. One of my
points earlier was that if a general G can be interpreted in geometric
terms then analogous algebraic/geomemic stmucrure will be present in  G(X).
Note that m(X.,*) is related 1o  pro(Groups)(m,(g(S)),n,(e(X))) (omitting

base points for simplicity of notation) as in general
Ho(P? (X, *)(Y,*)) is related, via the function induced by the functor
n,, to pro(Groups)(r,&(X),n,(Y)). In fact this gives an isomorphism

between m(X) and pro(Groups)(r&(S).m,e(X)). This provides the basis® for
another way of prciucing a single object from an inverse system.

The lesson to be learned from the example above would seem to be that if
possible the analysing machinery used to auack objects should reflect

geomerric structure.

(iii) Another means of exwacting informadon from e(X) is by applying
a homotopy limit functor before applying G. This avoids the need to handle
inverse systems of algebraic models, but has its limitadons. For instance

using the nth homotopy group functor m,, we get
., (holime(X)) = (S holime(X)]
= [k(§"),e(X)]
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where k(S?) is the constant system with ‘'value' S",
= Ho(P?*")(S* x [0,),X)

i.e. proper homotopy «classes of maps from the half-infinite cylinder
S$? x [0,) to X that map (1) x [0,.) to *. This again provides a means of
extractng informa ‘on from &(X). (A comparison of the methods used in
(ii) and here in (iii) gave the basic idea to Porter [1982], c.f. [1984],
[1987], and hence led to Herndndez and Porter [1988a] and [1988b].)

(iv) Several important classes of spaces are defined via a specificaton of
€(X). For these, the methods based on the Edwards-Hastings embedding seem
very natural. In pardcular it is worth nodng that the Whitehead
manifolds, which are examples of conoacdble 3-manifolds which are not
homeomorphic to ®%, offer some very hard examples on which readers may oy
out their favourite test functor, (see Whitchead [1939], Hempel [1976] and
also McMillan [1962]).

2.4 Problems:

a) Take your favourite test functor: G : Spaces ———— Alg.Models and
(i) interpret it geometrically - if possible, then
(ii) apply it to  holime(X) or a suitable wvariant of this - then
interpret the results.

b) The homotopy groups of holime(X) are linked via a short exact "Milnor"
sequence with the limit groups lim{m,(cl(X - C))) and
limr_ (cl(X - C)) This helps both in  interpretadon  and
calculadon. Find similar interpretatons for your favourite, G.
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3. Partial and complete models for proper homotopy type (at =).
(I will only model "at =" for brevity of exposition.)
3.1 Prosimplicial groupoids.

Given any space, X, we write S(X) for the singular complex of X, i.e.
S(X), = Spaces(a"X). This is a simplicial set, and S gives a functor
from Spaces to Simp.Sets (with an adjoint, | |, geomemic realisation),
which induces an equivalence of homotopy categories. (Variants of S can be
used with the category of arbiary spaces replaced by CW or SC and in
which the maps used to define S are cellular or simplicial. We will denote
these variants by s.) Simplicial sets are hardly algebraic models although
the combinatorial informatdon they encode does have algebraic content, but
we can sdll apply sur general ‘plan of acton’ to get

P —E& _ proTop 3 proSimp.Sets

which induces
Ho(P ) —— Ho(proSimp.Sets).

From simplicial sets, there are various directions we can go.  Probably the
best is towards simplicial groupoids as Dwyer and Kan [1984] constructed an
adjoint pair

G

Simp.Sets (-—.—’ Simp.Gpds,
W

extending Kan's own functor from connected simplicial sets to simplicial
groups (c.f. Curds [1971], which is sdll a useful reference for
simplicial  sets). The simplicial groupoids concerned are not  just
simplicial objects in the category of groupoids, as they must sadsfy an
addidonal condidon, namely that the simplicial set of objects for the
groupoids is constant.  (This is the intended meaning of the * included in
the nowdon Simp.Gpds,.) The construction of G(K) for a simplicial set K
illuscrates  this. The groupoid G(K), in dimension n is a groupoid with
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object set {x : x € K;] ie. is independent of n, and with arrows generated
by all

y 1 6 qy — @64y y € K

with reladons

Spz = ldﬂ,._.d,,_z for all z e K.

Face and degeneracies are induced by those of K,

8% = @)D"
5% =R 21
O'li = St*lx 20

(We will not look at W here) Note that if K is a reduced simplicial set,
i.e. K, is a singleton set, then G(K) is a simplicial group.

Theorem (Dwyer and Kan)

There is a Quillen model category structure on Simp.Gpds, such that (GW)
induces an equivalence of categories

G
Ho(Simp.Sets) ———— Ho(Simp.Gpds,)
W

Thus GS will be a good test functor taking Alg.Models to be these
simplicial groupoids.  On the negatve side, S(X) is an enormous simplicial
set even for simple spaces such as X = [0,1] and GS(X) will thus be a huge
simplicial groupoid. Can we reduce it in size? We will examine this

questdon shorty.
Applying the “en." or "pro" method would give us a prosimplicial groupoid,

however we can start reducing the amount of unnecessary informadon that we
carry around by assuming X is a (o-compact) simplicial complex.  This is
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not much of a resmicdon for us as many interesung spaces have this form,
but it enables us to write X=UK(n) where each K(n) is compact and
K(n) < intK(n + 1), then to take for each n, X - K(n) and apply s (not §)
ie. we wuse only the singular simplicies o : A" — X - K(n) which are
simplicial ~ maps. Since  locally finite infinite  simplicial complexes
sadsfy a simplicial approximation theorem, s(X - K(n)) and S(X - K(n)) are
homotopy equivalent. We can thus look at Gs(eX) in pro(Simp.Gpds,) and
obtain an embedding

Ho(SC_) ———— Ho(pro(Simp.Gpds,))
This would seem to reduce the task of finding algebraic invariants for ends
to an (algebraic) analysis of these pro-simplicial groupoids. Of course
that analysis is by no means easy!

How is Gse(X) related to other invariants?

0) my(Gse(X)) 5 a profinite set whose inverse limit is the space of
Freudenthal ends of X.

1) From any G in Simp.Gpds,, one can form a Moore complex NG., whose
homology groups are the homotopy groups of G.
In partcular,

H,(NGse(X)) = [m,, (cl(X - K(n)), p(i)) : p(i) € (X - K(i),)
an inverse system of families of homotopy groups, for n 2 1 and for n=0,
an inverse system of fundamental groupoids based at the vertices of the

X - K(@).

2) There is a functor (first notced by Carrasco and Cegarra  for
simplicial groups, then adapted for groupoids by Ehlers and Porter)

C : Simp.Gpds, ———— Cirs,

where Crs, is the category of crossed complexes. Here (C(G),0.) is a
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crossed complex (over a groupoid), in which

- NG
C(G)n B {Hsnhnajaﬂ (fiGnOInDaﬂj

where D, is the subgroupoid generated by the degenerate elements in G,.
If we apply this 1o Gsg(X), this gives nRSe(X) up to isomorphism in
Hy(proCrs,) (see Hemidndez-Porter [1991] for =RSe(X) and related theory.)
The nth tuncation of this invarant is a full invariant on what we have
called the J -spaces, again see the above cited paper.
3)  Given n>0, there is a functor

M(-n) : Simp.Gpds, ———— Crs"-Gpds
that is, crossed n-squares of groupoids. If we denote by Ho,(C) the
quodent category , obtained by formally inverting the n-equivalences in C
then M(-,n) induces

Ho,(Simp.Gpds,) ——— Ho,,,(Crs™-Gpds)
(some derails still need to be double checked here.)
Presumably there i: an embedding

HnnvI(SCO-“) pm——) Hgnd(pl’DCI'Sn'GpdS)
but the details of the argument stll need to be checked.
4) There would seem to be a common generalisaion of 2 and 3. The
resuling nodon of n-crossed complex has a  functorial  construction
starting with simplicial groupoids so again should yield a rich theory
modelling a large class of spaces and again feeding us new algebraic models

for the end.

These last three all are given by left adjoints and hence preserve
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pullbacks. Because of this the question as to whether or not they sadsfy
a van Kampen type theorem (which would then extend to the pro category and
hence possibly back 1o SCO‘“ reduces to one about simplicial groupoids. It
would seem likely that GS : Top — Simp.Gpds, does not sausfy a van Kampen
Theorem, but that some geomemically inspired quodent of GS may. If this
is the case then we may hope for van Kampen theorems for simplicial
groupoids, which would then raise interesing questons about possible van
Kampen theorems for SCU based proper homotopy invariants.

We just touched on n-type and its proper analogue above. Within CW, each
n-type has a representatve with tivial homotopy groups above dimension n
and each CW-complex can be built up functorially in Ho(CW) as a limit of
spaces of this type (i.e. has a Postmikov resoluton). The analogue of
this in Simp.Sets holds functorially using the coskeleton constuction and
analogues of this thus work in proSimp.Sets and (pro(Simp.Sets),Simp.Sets).
Can this be done for locally finite simplicial complexes?

Within  his tee = based theory, Baues can wuse general abstract homotopy
methods to obtair such a result, but this depends swongly on working under
and over the base point, so may not give exactly what we need here.

Explicitly we want a subcategory
8C(n),, —— SC_,

such that
Ho(SC(n)_) ——— Ho,(SC_)

together with an explicit funcroral consmuction of an associated space in
SC(n)_ for each X in SC_. There is, of course, a similar problem globally.
One of the doubts in the unbased case is “how should one measure n-type?”
that is, “which of the possible proper homotopy groups should one use?"
All the candidates are "based" at wees, and so correspond to the connected
analogue in the usual setting. Can we use the simplicial groupoid method
to obtain a proper analogue of the fundamenwal groupoid which, although
uncalculable, will be a better theoretical tool?

This same query comes also in another siruation. The  classical
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consmuction of the fundamental groupoid is closely related to that of the
universal covering space for “locally nice” spaces. If X is, say, a
connected CW-complex, IT,X is obtained from the set of paths X' by
quotienting out by the equivalence reladon of “homotopic relaive to end
points”, but of course X' is a space so we could give I[1,X the quotent
topology and consider it as a topological groupoid. Taking any x, € X
(remember X is assumed to be connected) we consider just those path classes
that start at x,  This gives a subspace, X, of II,X with the “"other end

point" map giving a condnuous p : X — X. Of course, (X,p) is the
universal covering space of X. Thus we can think of IT)X as being made up
of copies of (X.p) one for each choice of x5 & X. Another of our

"favourite” constructions above 1is related to the |universal covering space.
If X is a CW-complex, we have mentoned the crossed complex n(X) of the
filtered space, X, ie. X filtered by its skeletal filtration. There is a
functor from the category of chain complexes of modules to that of crossed
complexes. This functor has a left adjoint which is a sort of ‘“relatve
abelianisadon”. When applied to wn(X) one obtains the “chains on X" chain
complex as a comp.icx of I1,X-modules (see Brown-Higgins [1990]).

If we apply these consmuctons 1o €(X) for X in SC_, then we clearly have
potendally important information - but how can we interpret irt? It there
a proper analogue of a universal covering space? Not just something in
pro(Top) or (pro(Top),Top), but an “honest space”. If not can we use
[Me(X) and w(eX) as  substitutes, idendfying  their  propertes  and
abswracting to analogues of (non-universal) covering spaces, within these
algebraic models?

A final quesdon within this area is whether there is a geomemic notion
classified by subobjects of =x,(X), or for that matter of any of the other
candidates for a proper fundamental group(oid). There is a view which says
that the use of paths to obtain homotopy informadon on spaces is misplaced
since paths are -nly useful if the space is “"locally nice". From such a
view point, w(X) or I[;X is the “classifier" for covering spaces, and the
van Kampen theorem is about gluing rtogether categories of covering spaces.
This view is wide enough to allow Galois theory to be interpreted as being
about coverings and a fundamenwml group(oid) (c.f. Grothendieck's SGAl
(1971] or Douady and Douady [1977]). Perhaps we should look to the methods
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of algebraic geometry to see if there is not some way of interpreting the
end €X) as a germ of a space and to use sheaf-theory to give geometric
meaning to the proper fundamental group(oid)s. The work of Goldman (Thesis
Yale, late 1960's) mendoned by Larry Siebenmann at the Workshop, may
indicate a possible way forward in this. Even if this can be resolved,
there remains the problem of the higher homotopy invariants of €g(X) for
instance the n-type. As it is far from clear even in the compact classical
situation, what the n-type classifies (see “"Pursuing Stacks™: Grothendieck
[1983] or the discussion in my own “Abstmact Homotopy Theory", Bressanone
1991, Porter [1992], for a discussion of some of the many facets of this
area.) What does seem fairly clear is that from this viewpoint the higher
n,(X) or for our purposes m(X) or m(e(X)) do not classify very much.
This area, relatively unmodden even in the classical case, is more or less
completely unexplored in the proper homotopy context, but as it would seem
to connect up w.th algebras of condnuous functions, it may be a way in
which proper homotopy theory will influence or at least interact with areas
other than that of geometric topology.
L
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