
ALGEBRAIC NIODELS FOR PROPER HOMOTOPY TYPES

by

Timothy Porter

Lectures at the Colegio Universitario de La Rioja, Logroño, November 1991.

The aim of this Workshop on Proper Homotopy Theory was to provide an

opponunity to present and discuss various approaches to proper homotopy

theory.	 My curznt work in this area is with Luis Javier Hernández and I

have attempted to explain below the 'philosophy behind our approach. 	 Why

'philosophy'?	 Simply, because all too seldom do mathematicians put in

writing their overall view of a subject and how it may evoIve.	 This theme

would seem particularly important eiven the aim of the Workshop.

I would like to thank Luis Javier, I gnacio and Teresa for all the hard work

in organising the meetine and both them and the other participants for a

very stimulating week.
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1.	 Algebraic models for homotopy types.

It is well known that algebraic topolog-y is based on the hope that given a

topological problem, by modelling it in a suitable way by algebra, one may

tind a solution, or at least, find if one exists. The 'ultimate hope

would be to model topological spaces completely by algebra and thus to

reduce hard topological problems to algebraic problems which are hopefully

more easily solved.	 This corresponds to an 'ideal scenario' for homotopy

theory.

1.1	 Ideal Scenario

If we are to hope for good algebraic models for proper homotopy types, it

will be important to consider to what extent exisnng models of homotopy

rypes satisfy 'ideal' conditions.	 In our ideal world, we have a category,

Spaces, of spaces and maps. 	 Spaces may just be topological spaces or the

more specialised CW-complexes or simplicial complexes, and the maps may

just be continuo ŭs or may be cellular or simplicial. We hope for a

category, Alg. Models, which at present we do not know anything about, and

an al gebraic modelling functor,

	

G : Spaces	 Alg. Models.

We will also call G a "test functor".

In Spaces, we have a notion of homotopy between maps and can forrn a

homotopy category that will be denoted Ho(Spaces).	 (We will not for the

moment enquire how this is constructed.)	 In Alg. Models, we assume there

3IC some 'quasi-isomorphisms' correspondin g loosely to the homotopy

equivalences in Spaces, and we expect, or at least hope, that G will induce

a functor

	

G : Ho(Spaces)	 Ho(Alg. Models)

where	 Ho(Alg.Models)	 is	 obtained	 by	 formally	 inverting	 these

quasi-isomorphisms. 	 Ideally this induced G will be an equivalence of

categories.
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If Ale. Mociels and G are going to be useful for solving homocopy problems,

the above is not enoueh.	 We need to be able to 'do homotopy theory within

Alg. Models is a way that mirrors the 'homotopy theory' of Spaces.	 Here we

have a great difficulty:	 Although we know what "doin g homotopy theory"

means we do not know what is a "homotopy theory. The structures that have

been	 put	 forward,	 all	 model	 abstractly	 cenain	 imponant	 aspects	 of

homotopy theory but as yet no one abstract theory is decisively the 'right'

one.	 (Until recently this could have been compared adversely with homoloey

theory, where we thought we knew what was happening, at least in the

homological	 algebra	 context,	 but	 Grothendieck	 [1983]	 has	 raised	 the

question of 'what is homological algebra?' by asking for a full theory of

derived categories.	 It is remarkable that his proposed solution is the

homological analogue of that proposed by Heller [1988] as an answer to the

question	 'what is homotopy theory?' Heller's ideas are briefly considered

below.)

The basic tools needed to 'do homotopy theory' are constructions such as

mapping	 cylinders,	 fibration	 sequences,	 etc.	 These	 constructions	 take	 as

initial data a map, or a square of spaces and this suggests that, MOTe

generally, for each small category, I, the functor

: (Spaces) 1	(Alg. Models)1

should induce an equivalence of homotopy categories of I-indexed diaerams:

Ho((Spaces)1)	 Ho((Alg. Models)1)

and if a : I	 J, then the right and left adjoints of

Ho((Spaces)a) Ho((Spaces) I)--> Ho((Spaces)1)

(technically left 	 rieht homotopy Kan extensions) should have analoeues

in Alg. Models.	 The structure suggested for Alg. Models has thus to be

more or less like that of a homotopy theory in Heller's sense (see Heller

[1988] for details).	 He defines a homotopy theory to consist of the

assienment of a category, T(I), to each small category I so that if

a : I —4 J, then a induces T(a) : T(J) 	 T(I), and this has both left and
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	understand th	 importance

	

map	 category

rieht	 adjoints.

To

the	 sinele

correspondin g to the one

Then the left and rieht

has of course to satisfy various axioms.

of his ideas, consider. I arbitary, J to be

often called [0], the ordinal cateeory

point ordinal, and a to be the unique functor.

adjoints of T(a) are the homotopy colirnit and

This struc ture

homotopy lirnit functors respectively.	 As all such constructions as the

suspension, loop space, mapping cylinder, mapping cone etc. as well as more

complicated	 classifying	 space	 and	 bar/cobar	 constructions	 are	 describable

as homotopy colimits or limits. the importance of the above strucrure

should beein to be clear.

1.2 Additional desirable features

I. Calculability.

The algebraic modelling functor G will not be much good unless for a

reasonably rich class of spaces, we can hope to calculate G(X). Moreover

we would hope to be able to calculate [X, Y] by calculacing [G(X), G(Y)],

again for a reasonally rich class of spaces, X and Y.

How is one to calculate such a G(X)? One possible piece of machinery would

be a van-Ka_mpen theorern. This should say (again ideally):

If U, V are open, and X = U L.) V, then

G(UnV)

G(V )

is a pushout in Ale. Models. To understand this sort of theorem better, we

will briefly look at known existing cases of a van Kampen type theorem.

This will at the sarne time serve to introduce various algebraic structure

for later use.

a)	 Classical form (Groups) of van Kampen 's Theorem.

We are given a pointed topological space (X, xo) with non empty open
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subsets U, V such that Uk...) V = X and U, V and U (-) V are arcwise connected

with xo E U n V, then

	

it1(UV) 	 u 	
rt> , (U)

iv.

	

rc i (V) 	  rr, ( X)

is	 a	 pushout	 of groups.	 (c.f.	 Masscy	 [1967]).	 Of interest	 for	 its

cornputational	 interpretation,	 the	 version	 favoured	 by	 Crowell	 and	 Fox

[1953] shows how one can build a presentation of the group rr i (X) given

presentations	 of	 the	 other	 groups	 and	 information	 about	 the	 two

homomorphisms j u. and j v. .	 If we fix notation so that if we writc

G a (X : R)

we will mean that X is a set, R is a subset of the free group. F(X), and

denoting by «R» the norrnal closure of R in F(X), there is an isomorphism,

G a F(X)/«R». The combinatorial group theoretic version is based on the

fact that if

9,

is a pushout of groups, and if we are given presentations Go a (Z : T),

G, a: (X : R), G a (Y : S) then G has presentation

	

G	 (X uY:RuS	 [ 0 1 (z) = 6:(z) :ZE Z))

Here we are abusing notation as 9 1 (z) and 92(z) are not defined!	 Of course

we are meaning that 0 1 (z) should be a chosen word/clement in F(X) which

represents the irna ge under 0, of the generator z, (so writing 0 1 (z)	 F(X)

is much simpler and leads to no problems, as should be clear). 	 Similarly

for 9:(z) E F(Y).

The	 combinatorial 	 desc-ription	 is	 important	 not	 only	 because	 of	 t.he

possibility of calculations but also because it starts to bridge the gap

between the . geometry and the algebra, in this case, t.he group theory. 	 Of

course given a space X that can be built up by attaching cells, this
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provides an efficient

presentation P = (X

the dara in P, such

basis for a lot of

eroups and the study

various areas is wo

tool for calculating rc, (X)

R) of a group G, we can

that rc, (K(P)) is isomorphic

combinatorial group theory,

of the ends of goups.

rth remembering for when,

and vice versa, given a

build a complex K(P) using

to G. This provides the

the cohomology theory of

This interconnectiviri of the

later, we look at proper

homo topy theory.	 For instance is there an analogue of the construction.

K(P), in the proper context?

Of course t.he above uses only n, and this only models a tiny part of the

homotopy type, or, if you prefer, provides an accurate model only for

small class of homotopy types.

b)	 Classical forrn (Groupoids) (c.f. Brown [19671 and [19881)

The restriction on arcwise connectedness of U, V and U n V is unnecessary

if instead of groups, one uses groupoids. 	 This also allows one to model

non-connected spaĉes. One small but important point is that the group

based version will not allow you to calculate rc, (S 1 ), but this can be

easily read off from the groupoid version.

The main tool is the relative fundamental groupoid, here X is a

space, X° is a collection of base points (possibly all of X) and ni xxo is

the set of fixed end point homotopy classes of maps a from I = [0, 11 to X

in which ct(0), a(1) e X°.

The statement of the van Kampen theorem in its goupoid form is similar to

that in the group form, but U n V need only have one base point in each

arcwise connected component, instead of being irself arcwise connected.

The combinatorial group theory has its analogue here and in fact the

combinatorial and geomerric features of the aleebra are much nearer the

surface, (see Brown [19881 or Cohen [1989]).
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c) Crossed module version (Brown-Higg,ins [1978])

The groupoid van Kampen theorem still only tells you about the very lowest

levels of the homotopy type of a space.	 To obtain information on the next

level, one needs to work with crossed modules. We replace the spaces X, U,

V by (multiply pointed) pairs (X, X I ) etc., the fundamental groupoid by a

fundarnental crossed module. This is the structure given by

( m2 (X , x l ,p) : p E X°)	 n,xixo
where X° is, again, the set of base points and n i xixo is the fundarnental

groupoid of the 1-skeleton, X l , based at X°.	 This structure is best known

in the case, X° = (x0 ), that is of a single base point.	 Here it is simply

the boundary trlap

a :	 xi, x0)	 7c,(X1, x,o).

This is a crossed module of groups. 	 Since the relative tt., consists of

homotopy classes of maps of squares having three edges ar xo and the last

in X l ,	 there	 is a combinatorial	 interpretation of this structure as well.

For instance if X = K(P) filtered by skeleta, then this crossed module

encodes	 information	 about	 the	 identities	 amongst	 the	 relations	 of	 the

presentation, 5)	 Brown-Hubschmann [1982]). 	 (For a first introduction

to crossed modules see Hilton's book, [1966], on homotopy theory 	 which

contains an introduction to many of the ideas of J H C Whitehead)

Crossed modules (preferably, of groupoids) satisfy a van Kampen theorem.

If the space X is a CW-complex filtered by skeleta, then the fundamental

crossed module determines the 2-type of X (see later for the meaning of the

n-types of spaces.)

d) Crossed complex versions (Brown-Higgins [1981])

The crossed module of a (multiply pointed) pair is still only giving us

inforrnation in dimensions O. 1 and 2.	 Whitehead [1949] provided a model

for much more of the homotopy type of a CW-complex however.	 His model,

called by him "homotopy system •  consisted of the relative homotopy Iroups

and boundary maps, together with the action of t,.	 The essence of his
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construction (in a groupoid version) is what is now known as a crossed

complex (c.f. Brown and Hiegins (1981]) or a crossed chain complex (in the

reduced case c.f. Baues [1989] and [1991]).

The basic starting point is a filtered space, X = { X" ) >9 , typically the

skeletal filtration of a CW-complex, but not necessarily as well behaved as

that. The structure of a cTossed complex consists of a "chain complex"

C„	 C„.	 C2	 C

of groupoids over a fixed base X°, where for n�12, the groupoid C„ is a

disjoint union of groups ( C r,(p) : p E which are abelian for n�3, C, is

assumed to act on all the Cr, such that the ar, are compatible wit.h the

action and a, is a crossed module. 	 One or two other conditions are also

needed,	 but	 we	 will	 not give	 these here,	 (see	 Brown-Higgins	 [1981],

Brown-Golasinski	 [1989],	 Carrasco	 and Cegarra [19911,	 notang	 that the

indexing	 of	 the	 groupoids	 is	 sometimes	 different	 for	 the	 different

authors.) If X is	 filtered space, the associated crossed complex has

	

C(p) = Tr„(X',X"-I,p) 	 p e X°, n .� 2

Cl =

with the ar, the obvious boundary maps,

an	 nfl(X",X,p) 	
	

)7Z, ,(X"-1,X^-2, p),

from the long exact sequence of the triple (X",X"-1,X"-2). 	 These boundary

maps have thus a nice geometric interpretation.

This cTossed complex associated to X is often denoted ti(X). 	 It satisfies a

form of van Kampen theorem in that it converts certain colimit diaerarns of

filtered spaces into colimits diagrarns of crossed complexes. 	 (The way in

which	 this	 yields	 powerful	 results	 is	 fascinaring	 and	 ttte	 reader	 is

thorouanly recommended to look throu gh those of the papers of Brown and

Higgins,	 listed	 in	 the	 references,	 that deal	 with	 the applications.	 The

proof of their van Kampen theorem is not easy, as it involves a lot of

subsidiary concepts: to-groupoids, T-complexes, etc., that have each a rich

structure linking algebra and geometry in interesting ways, however their

richness can tend to obscure the simple idea behind the plan of the proof.)
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e)	 Catn -Group Version.

In 1984, Loday published a paper (Loday [1984]) in which he introduced a

new ai gcbraic ' eadget , the cat"-gr, oup.	 He gave a proof (which however

contained	 some	 technical	 errors)	 which	 showed	 that	 these	 catn-groups

completely modelled n-types (see later). (The corrections to his proof

have since been provided by S teiner [1986] with clarification by Gilbert

[1987]; see also Porter [1991] for an algebraic proof.)

Loday s catn-g,roup functor satisfles a form of van Kampen theorem (see

Brown & Loday [1987a1, [1987 b]) which gives another extension of the

crossed module van Kampen theorem.

Exact sequences and Spectral sequences.

From fibration sequences in Spaces, we can hope to get (co-)fibration

sequences in Alg. Models. In the hands of a skilled operator, the

resulting exact sequences can yield revealing informarion about the spaces,

but there is alwuys the problem that exact sequences often give information

on an algebraic model only • up to extension 	 and extension problems are

hard in many aleebraic settines. 	 These comments apply equally to spectral

sequences.

II Ntinimality

As Baues points out in [1991], the minimality of a model is extremely

useful. By minimality one irnplies that only essential information is in

the model and experience tends to show that this minimality reflects the

geometric and combinatorial structure of the	 space	 at a deep level.

Minimality does not always seem easy to obtain.

1.3	 Problems:

(i)
	

Often	 complete	 invariants

difficult to calculate, e.g. if X is

homotopy type by a simplicial goup,

each dimension and extraction of even

(i.e. modelling funcrors) are very

connected, then one can model its

G. but this G is typically free in

quite simple invariants can use up a
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lot of time. The functor that is used to go from the space to the

simplicial group factors through the category of simplicial scts and one

can reduce the proof of van Kampen type theorem to provine that the

singular	 functor,	 S in e,	 has	 nice	 properties	 since	 the	 passage	 from

S imp. Sets to Simp.Groups is algebraic, and preserves colimits as it is a

left adjoint.

(ii) As	 complete	 invariants	 are	 difficult	 to	 calculate,	 we	 can

restrict to well chosen but incomplete test functors.	 Typically these give

complete informaŭon on a smaller class of spaces, or determine a courser

nocion of equivalence. 	 For instance, Tri is a good invariant, but it gives

complete information only on the K(rc,1)'s, that is, on those connected

spaces with re, non-trivial, whilst aIl t.he rc i 's for i>1	 are trivial eroups,

however it does classify all	 nice spaces up to the weaker equivalence

called 1-equivalence. In general for a given test functor, G, this raises

the problems (a) of characterizing the corresponciing class of spaces which

are completely determined up to homotopy type by the values of G on them

and	 (b)	 findine	 a	 geometric	 interpretation	 of the	 weaker notion	 of

G-equivalence i.e. of determining or describing when fo, f, : X Y are

such that G(fo) = G(f, ) in the algebraic models, or when G(X) and G(Y) are

isomorphic or equivalent for some notion of equivalence within Ale. Models.

For	 instance	 Loday's	 cat"- group	 functor	 completely	 models

(n+1)-equivalence, which has a good geometric description. The completely

determined homotcDy types for the crossed complexes are those given by the

J-spaces in the sense of Whitehead [1949].

(iii) The final problem is to do enough with the algebraic models to

produce a rich	 homotopy theory'.	 This is not always easy!	 For instance

what does G(X x Y) look like in terrns of G(X) and G(Y) and possibly other

invariants.	 Classical	 (incomplete)	 invariants	 yield	 tensor	 product

forrnulae	 and results like	 the Eilenberg-Zilber theorem. 	 What	 is	 the

analoeue	 in	 our	 "ideal	 scenario"	 situation	 or	 for	 the	 "fall	 back"

incomplete invariancs?	 This often holds the key to defining nice homotopy

structure	 in	 the	 algebraic	 models	 since	 the	 homotopy	 in	 S paces	 is

intimately	 linked	 with	 the	 cylinder	 X x I	 and	 the	 various	 rnonoid

multiplications on the space I 	 (again	 involving a product).	 The	 test

functor G should conver-t G(X x I) to something like G(X) (8) G(I) with an
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as-yet undefined tensor product and the monoid multiplication on 1 to onc

on G(I) with respect to this

To sum up:-

One hopes for a functor

G: Spaces --> Alg. Models

which (i) induces an equivalence on homotopy cacegories

(ii) preserves certain colirnits.

At second best, one would like a computable G which gives complete

information on as large as possible a subcategory of spaces and that the

models reflect the homotopy structure in a nice way.

Problem:

How can we do a 4simi1ar job for proper homotopy?

Proper homotopy (at oo and globally).

2.1	 In proper homotopy theory, the interesting spaces are not compact so

it is difficult to get invariants of them using maps from spheres, or other

compact spaces, would be the way in classical homotopy theory. Such

maps do not tell us about what is happening "far out'' towards infinity.

Here, of course, the classic example is R 2 , where maps with compact domain

cannot detect the 'hole 	 at infinity corresponding to the puncture in the

sphere used for a stereographic projection. 	 To gain fuller information one

has to use proper maps to investizate behavior at infinity and to combine

that information with more standard information to obtain "elobal"

invariants to try to gain insight into the nature of the proper homocopy

type of the space.

At the moment there are two related but distinct approaches bein g tried

out. One, developed by Ayala. Quintero, and Dominguez here in Spain with

Baues and Zobel :rom Bonn, takes a global view from the start and analyscs
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t.he	 similarity	 between	 the	 'abstract homotopy 	 of the classical	 situation

and that of the "proper" situation. The second pioneered by Edwards and

Hastings embeds the problem of determining proper homotopy ty, pe in a wider

context namely that of detennining prohomotopy types i.e. homotopy types of

prospaces • or inverse systems of spaces. This is technically slightly more

complicateri but allows a reasonable arnount of geometric freedom as

constructions that seern to be the proper analo gues of classical ones may

not	 be	 that	 easy	 to construct as	 spaces,	 but	 they	 C311	 usually	 be

constructed within the pro-category. 	 Thus one might construct a mapping

cylinder within the pro-category even though this may not correspond to any

space.	 This second approach has been exploited by Luis Javier Hernandez

and myself in a series of articles and as Hans Baues has talked in this

Workshop	 on	 the	 alternative	 approach.	 I	 will	 concentrate	 on	 the

pro"-formulation.

2.2 The basic categories of spaces used are:

Notation

P	 the proper cz:..rgory of cs- compact spaces

CW	 the proper category of locally finite CW-complexes

SC	 the proper category of locally finite simplicial complexes.

Ho(A) will denote the corresponding proper hornotopy cateeory to the

category A.

P	 etc. denote the variant of P etc., consisting of the same spaces but

with germs of proper maps at	 as maps (see Edwards-Hastings [19761)

If X e P, let E(X) = (X - C) : C compact. Cc X)	 E pro(Top).	 Given a

proper map or proper map germ f : X Y, as f is proper, inverse images of

compact sets in Y are compact in X. so if D compact in Y. f restricts to a

map

fp : X - f(D)	 Y - D

with f- I (D) compact in X.	 Of course, this is exactly what is needed for f

to induce a "pro-morphism",
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e(f) : E(X)	 e(Y)

in pro(Top) and hence to make 	 into a functor

E : P	 pro(Top),

called the end functor.

This functor E can also be defined on proper map gerrns, since a map germ

f : X Y, only needs to be defined on the complement of sorne compact

subset of X. We thus also get an end functor

E : P	 pro(Top)

which is compati,,le with the projection from P to P 0,, (c.f. Edwards and

Hastines [1976].)

As E(X) = {c1(X - C) : C compact in X I, there is a natural promorphism from

E(X) to X, where here X is being considered as a constant object in

pro(Top). This morphism can conveniently be thought of as an object in the

comma category (pro(Top). Top) consisting of all maps in pro(Top).. with

codomain a constant object (N.B. the notation used by Edwards and Hastings

here is different and is ''non-standard" from a categorical point of view.

I, of course, prefer the notation I have used above!)

Assigning E(X) —1 X to X, etc., gives for each proper map f:X	 Y a

ciiaerarn

E(f) 

	

E(X)	 > E(Y)

	

X 	

which is commutative precisely because Elf) consists of restricuons of f.

This gives a second functor

(E, forget) : P --> (pro(Top),Top)
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(where the "forget"-part of this forgets the "proper" condition and only

"remembers" the continuity of the maps in P).

Edwards and Hastings first embedding resuIrs proved:

the functors

(e,forget) : P --> (pro(Top),Top)

and
	

: P0,	 pro(Top)

are embeddings.

The proper homotopy structure on P or 	 is equally well reflected by

hornotopy structure in (pro(Top),Top) and pro(Top). 	 Edwards and Hastings

[1976] produced a neat Quillen model cateeory structure on both of these

categories. We will not need all of that structure in detail, but recall

that the weak equivalences in these categories are generated by the "level

weak equivalences" that is maps of the form

(f, : X, —› Yli E I)

for which each fi is a weak equivalence in Top, (see also Porter [1988]).

The second set of embeclding results of Edwards and Hastings are that the

previous ernbeddings induce embeddings

Ho(P)	 Ho(pro(Top),Top)

and

Ho(Pc..)— Ho(pro(Top)).

and similarly for pairs, n-ads etc. of spaces.

The constructions of Ho(pro(Top)) and Ho(pro(Top),Top) f-rom Top are

functorial so could be applied to any category, C. This suggests together

with our discussion in section 1, a method of attack for studying proper

homotopy theory:
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1. Pick your favourice aleebraic test-functor

G : Top --> Alg. Models

2. Study the strucrure of

pro(Alg.Models) and (pro(Alg.Models),Alg.Models)

and try to investigate the analogues of homotopy constructions in these

cate gories, e.g. to forrn Ho(pro(Alg.Models),Alg.Models) and to "do

homotopy" there.

3. Use the composites

p	 (pro(Top),Top) 	 > (pro(Alg.Models),Alg.Models)

pro(Top)	 pro(Alg.Models)

to "encode" proper liomotopy theory into "pro-algebra".

2.3	 Critique:

(i) Inverse systerns of al gebras are useful, but are an acquired taste!

Some people do not like them. If the algebras are funte, or "finite

dimensional", e. g, made up of finite groups or Artinian modules, then one

can take inverse limits without disturbine information and be left with

profinite algebras of the same rype. These are topological algebras with a

certain link between the topology and the algebra - loosely speaking the

"normal subalgebras'' determine a system of open neighborhoods of the

idenrity. This can, in some cases, be useful as it replaces a collection

of interacting al Jebraic models by a single topologised one - but the

process of analysis of the result is in many aspects bound to be equivalent

in difficulty to that of analysing the original system. The limiting

process will descroy information if the finiteness or compactness condition

is not present and in any case the limiting process is not that geometrical

as limits and homotopy mix badly.

(ii) On the posicive side, there are geometrically motivated constructions

that yield "algebraic models" from the "pro-al gebraic" ones.	 For instance,
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the alternative approach to proper homotopy theory used by Baues, et al,

often uscs "favourite test functors" somewhat of form Ho(P)(5,–), where S

is some space in P.	 For instance S might be simply a scring of circles

(see later) or may be much more complicated.	 To aid in the study of such a

functor we can throw the problern into (pro(Alg.Models),Alg.Models) and

compare	 this	 Ho(P)(S,X)	 with	 the correspondine hom-set, [G(eS),G(eX)],

in	 Ho(pro(Alg.:vtodels),Alg.Models). 	 Any	 natural	 structure	 in	 Ho(P)(S,X)

will	 be	 geornewically	 realised	 by	 some	 corresponding dual	 homotopy

structure in S, just as in ordinary homotopy theory the n-spheres are

cogroups "up to homotopy".	 The pro-algebraic model G(ES) will therefore

have a rich algebraic structure and a homotopy ''costructure". This

structure will the:: yield on [Ge(S), Ge(X)] a natural structure of the same

type as the original one, reflecting the structure Ho(P)[S, X] to a greacer

or less extent depenciing on whether or not G is or is not an embeddine in

some relevant range of dimensions.

This may seem vague so let us take a simple example.	 Suppose the orieinal

G used is rt i .	 This of course needs pointed spaccs, so we assume X is

supplied with a "basc ray" * :	 —› X.	 Then, using a "pairs" version

of	 the
	

Edwards-Hastings	 embedding,	 we	 get	 e(*) :	 e(X)	 in

pro(Top),	 similarly	 in	 (pro(Top),Top).	 Within	 Ho(pro(Top)), 	 is

isomorphic to the constant system with "value" a single point, hence we get

Ho(pro(Top)) and similarly in Ho(pro(Top),Top). (We

restrict attention to P , and hence to pro(Top) and

can thus apply rc, to e(X) without difficulty basing t.he

loops at the relevant base points given by the map 	 e(X), to get a

fundamental pro-group Iti(e(X),*).

The alternadve approach might look at a space S with S = (0,,>0)

where S 1 is a circle attached at the point i e l C [0,00) and then look at

Ho(P P ws)((S,[0,c.)),(X,*)),	 the	 proper	 pointed	 homocopy	 g.erms	 from

(S,[0,00)) to (X.*). 	 Following the plan that was sketched out earlier, we

would look at Ge(S). 	 As G is taken to be it 1 , this is the progroup 11e(S)

with at index n,	 ), a free eroup on a set (	 ) of

elements, where from n i e(S),,,, to it i e(S)„ the map is that induced by the

inclusion	 of	 .[	 )	 into	 (	 )	 The	 set

Ho(P P lirs)((S,[0,..)),(X,*)) 	 has	 a	 group	 structure	 inherited	 from	 the	 level

a pointed object in

will for simplici7

Ho(pro(Top)).)	 We
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wise H-cogroup	 .:ructure on S i.e. S ' 	 v S I induces, at each i. a

comultiplication ' up co homotopy

and hence a comultiplication • up to proper homotopy'

	

s —4 [o.==)	 v s: = s
.�0

which	 gives	 the	 group	 structure.	 Writing	 rr,(X,*)	 in	 place	 of

Ho(P P 4n)[(S,{0,00)),(X,*)1,	 we	 have	 that	 rt,(X,*)	 is	 a	 group,	 but	 more

interestingly there is a natural action of 1c1(S,[0,..)) on fr,(X,*) given by

composition withit the category Ho(P P a'n ). The analogous action of it i (S l)

on It i (X) is usually ignored as it is given by power mappings and hence is

not an adittitional operation but is already given by the group structure.

Here in the proper context, rc, (S) gives us a lot of extra structure, both

algebraic and geon2ecric via the simple geometric structure of S. One of my

points earlier was that if a general G can be interpreted in geomecric

terms then analogous algebraic/geomecric structure will be present in G(X).

Note	 that	 re,(X,*)	 is	 related	 to	 pro(Groups)(rt,(E(S)),rt,(E(X)))	 (omitting

base	 points	 for	 simplicity	 of	 no(ation)	 as	 in	 general

Ho(P P ws)((X,*)(Y,")) is related, via the function induced by the functor

to	 pro(Groups)(rc,E(X),fr i E(Y)).	 In	 fact	 this	 gives	 an	 isomorphism

between fc, (X) and pro(Groups)(rt i e(S),It t E(X)).	 This provides the basis for

another way of prc lucing a single object from an inverse system.

The lesson to be learned from the example above would seem to 'oe that if

possible the analysing machinery used to attack objects should reflect

aeometric structure.

(iii)	 Another means of extracting information from E(X) is by applyine

a homotopy limit functor before applying G. 	 This avoids the need to hanclle

inverse systems of aleebraic models. bur has its limitations.	 For instance

using the nth homotopy goup functor rr„, we get

rtn (holimE(X)) = [S",holimE(X)I

= [k(S"),E(X)I
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where k(S) is the constant system with 'value S",

= Ho(P P "")(S" x

i.e.	 proper	 homotopy	 classes of	 maps	 from	 the	 half-infinite	 cylinder

S" x	 to X that map (1) x [0,00) to *•	 This again provides a means of

extracting informa. 'on from E(X). (A comparison of the methods used in

(ii) and here in (iii) gave the basic idea to Porter [1982], c.f. [1984],

[1987], and hence led to Hemández and Porter [1988a) and [1988b].)

(iv) Several important classes of spaces are defined via a specification of

E(X).	 For these, the methods based on the Edwards-Hastings embedding seem

very natural. In particular it is worth notine that the Whitehead

manifolds, which are examples of conn-acnble 3-manifolds which are not

homeomorphic to R3 , offer some very hard examples on which readers may try

out their favourite test functor, (see Whitehead [1939], Hempel [1976] and

also McMillan (196.21).

2.4 Problems:

a)	 Take your favourite test functor: G : Spaces 	 Ale.Models and

(i) interpret it geomen-ically - if possible, then

(ii) apply	 it	 to	 holimE(X) or a	 suitable	 variant	 of this	 then

interpret the results.

b)	 The homotopy eroups of holimE(X) are 1inked via a shon exact "Isélilnor"

sequence	 with	 the	 lirnit	 groups	 lim(fr0(c1(X - C))) 	 and

limM7t0, t (c1(X - C))	 This	 helps	 both	 in	 interpretation	 and

calculation. Find similar interpretations for your favourite, G.
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3.	 Partial and complete models for proper homotopy type (at

(I will only model at 	 for brevity of exposition.)

3.1	 Prosimplicial groupoids.

Given any space, X, we writc S(X) for the singular complex of X, i.e.

S(X)„ = Spaces(W,X).	 This is a simplicial set. and	 S gives a funcror

from Spaces to Simp.Sets (with an adjoint, 	 I	 1, geometric realisation),

which induces an equivalence of homotopy categories. 	 (Variants of S can be

used with the category of arbitrary spaces replaced by CW or SC and	 in

which the maps used to define S are cellular or simplicial.	 We will denote

these variants by s.)	 Simplicial sets are hardly algebraic models although

the combinatorial information they encode does have algebraic content, but

we can still apply	 general 'plan of action ' to get

	

P	 proTop	 proSimp.Se tS
s

which induces

Ho(P.0)	 Ho(proSimp.Sets).

From simplicial sets, there are various directions we can go. Probably the

best is towards simplicial m-oupoids as Dwyer and Kan [1984] constructed an

adjoint pair

Simp.Sets	 Simp.Gpds,,

extending Kan's own functor from conneczed simplicial sets to simplicial

groups	 (c.f.	 Curtis	 [1971],	 which	 is	 scill	 a	 useful	 reference	 for

simplicial	 sets).	 The	 simplicial	 groupoids	 concerned	 are	 not	 just

simplicial objects in the category of groupoids. as they rnust satisfy an

addirional	 condition,	 narnely	 that	 the	 simplicial	 set	 of objects	 for	 the

groupoids is constant. 	 (This is the intended meaning of the * included in

the notation Simp.Gpds,..) 	 The construction of G(K) for a simplicial set K

illustrates this.	 The groupoid G(K)„ in dimension n is a groupoid with
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object set (i : x E Ko) i.e. is independent of n, and with arrows generaced

by all

.• 0 1 c1 2••- c4,.IY	 d0ci2•••d,,IY, Y

with relations

soz — iddi...dnz for all z E

Face and degeneracies are induced by those of K.

= (dIx).(d0x)-1

=	 i>1

csix = sx

(We will not look at W here.)	 Note that if K is a reduced simplicial set,

i.e. Ko is a singleton set, then G(K) is a simplicial group.

Theorem (Dwyer and Kan)

There is a Quillen rnodel category strucrure on Simp.Gpds such rhat (G,W)

induces an equivalence of categories

Ho(Simp.Sets)	 Ho(Simp.Gpds.)

Thus GS will be a good test functor taking Alg.Nlodels to be these

simplicial groupoids. On the negative side. S(X) is an enormous simplicial

set even for sunple spaces such as X = (0,1] and GS(X) will thus bc a huge

simplicial eroupoid.	 Can we reduce it in size?	 We will examine this

question shortly.

Applying the "en ." or "pro" method would eive us a prosimplicial uoupoid,

however we can start reducing the arnount of unnecessary information that we

carry around by assuming X is a (ts-compact) simplicial complex. 	 This is
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not much of a restriction for us as many interesting spaces have this form,

but it enables us to write X = LJK(n) where each K(n) is compact and

K(n) c intK(n + 1), then to take for each n, X - K(n) and apply s (not S)

i.e.	 we use	 only	 the	 singular simplicies	 : Am --> X - K(n) which	 are

simplicial	 maps.	 S ince	 locally	 finite	 infmite	 simplicial	 complexes

satisfy a simplicial approximation theorem, s(X - K(n)) and S(X - K(n)) are

homotopy equivalent. 	 We can thus look at Gs(EX) in pro(Simp.Gpds,,,) and

obtain an embedding

Ho(SC.0)	 Ho(pro(Simp.Gpds,,,))

This would seern to reduce the task of findine algebraic invariants for ends

to an (algebraic) analysis of these

that analysis is by no means easy!

How is GsE(X) related to other invariants?

pro-simplicial groupoids. 	 Of course

0)	 rto(Gsz(X))	 s a profinite set whose inverse limit is the space of

Freudenthal ends of X.

1) From any G in Simp.Gpds., one can forrn a Moore complex NG., whose

homology eroups are the homotopy groups of G.

In particular,

	

H„(NGsE(X)) = ( rt,,(c1(X - K(n)), p(i)) 	 p(i) E ( X	 K(00)

an inverse systern of families of homotopy groups, for n 1 and for n = O.

an inverse system of fundamental groupolds based at the vertices of the

X - K(i).

2) There	 is	 a	 functor (first	 noticed by	 Carrasco and CeEarra	 for

simplicial zroups, then adapted for groupoids by Ehlers and Poner)

C : Simp.Gpds t	Crs1

where Crs 1 is the category of crossed complexes. 	 Here (c(G),a.) is a
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cTossed complex (over a groupoid), in which

NG 
C(G) 	 (Nu n np n )d o ( NU„,,nD„,)

where D, is the subgroupoid generated by the deeenerate elements in G.

If we apply this to GsE(X), this gives nIZSE(X) up to isomorphism in

Ho(proCrs) (see Hemández-Poner [1991] for rcIZSE(X) and related theory.)

The nth truncarion of this invariant is a full invariant on what we have

called the Jn -spaces, aeain see the above cited paper.

3) Given n>0, there is a functor

:	 Crs"-Gpds

that is, crossed n-squares of groupoids. 	 If we denote by Ho n(C) the

quodent category obtained by formally inverting the n-equivalences in

then Iv1(—,n) induces

Hon (Simp.Gpds) 	 > Ho„,(Crs"-Gpds)

(some details still need to be double checked here.)

F'resumably there i. an embedding

Hon,,(proCrs"-Gpds)

but the details of the artrument still need to be checked.

4) There would seem to be a common eeneralisation of 2 and 3. 	 The

resulting	 norion	 of
	

n-crossed	 complex	 has	 a	 functorial	 construcdon

starting wah simplicial groupoids so again should yield a rich theory

modelling a laree class of spaces and aeain feeding us new aleebraic models

for the end.

These	 last	 du-ec	 all	 are	 given	 by	 left	 adjoints	 and	 hence preserve
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pullbacks.	 Because of t.his the question as to whether or not they satisfy

a van Kampen type theorem (which would then extend to the pro category and

hence possibly back iO SC cy	reduces to one about simplicial groupoids.	 It

would seem likely that GS :Top	 Simp.Gpds,, does not sansfy a van Kampen

Theorem, but thar some geomenically inspired quotient of GS may. If this

is the casc then we may hope for van Kampen theorems for simplicial

gsoupoids, which would then raise interesting questions about possible van

Karnpen theorems for SC based proper homotopy invariants.

We just touched on n-rype and its proper analogue above. Within CW, each

n-rype has a representative with trivial homotopy groups above dimension n

and each CW-complex can be built up functorially in Ho(CW) as a limit of

spaces of this type (i.e. has a Posmikov resolution). The analogue of

this in Simp.Sets holds functorially using the coskeleton construction and

analogues of this thus work in proSimp.Sets and (pro(Simp.Sets),Simp.Sets).

Can this be done for locally flnite simplicial complexes?

Within his tree based theory, Baues can use eeneral abstract homotopy

methods to obtair such a result, but this depends strongly on working under

and over the base point, so may not give exactly what we need here.

Explicitly we wanc a subcategory

SC(r1)... --1

such that

	

Ho(SC(n)...)	 Hon(SC,..)

toeether with an explicit functorial construction of an associated space in

SC(n) ,.. for each X in SC . There is, of course, a similar problem globally.

One of the doubts in the unbased case is "how should one measure n-type?"

that is, "which	 f the possible proper homotopy poups should one use?•

All the candidates are "based" at trees, and so correspond to the connected

analogue in the usual setting. Can we use the simplicial groupoid method

to obtain a proper analogue of the fundarnental eroupoid which, although

uncalculable, will be a better theoretical tool?

This	 same	 query	 comes	 also	 in	 another	 situation.	 The	 classical
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construction of the fundamental goupoid is closely related to that of the

universal coverin e space for "locally nice" spaces. If X is, say, a

connected CW-complex, í1 1 X is obtained from the set of pat.hs X l bv

quotienting out by the equivalence relarion of ''homotopic relative to end

poin ts", but of course X I is a space so we could give tI 1 X the quotient

topology and consider it as a topological g,roupoid. 	 Taking any xo E X

(remember X is assumed to be connected) we consider just those path classes

that start at xe.	 This gives a subspace, R, of 11 1 IX with the "other end

point" map giving a continuous p : 	 X.	 Of course, (R,p) is the

universal covering space of X. Thus we can think of 11 1 X as being made up

of copies of (R,p) one for each choice of x,„ E X. Another of our

"favourite" constructions above is related to the universal covering space.

If X is a CW-complex, we have mentioned the crossed complex rt(X) of the

filtered space, X, i.e. X filtered by its skeletal filtration.	 There is a

functor from t.he category of chain complexes of modules to that of crossed

complexes.	 This functor has a left adjoint which is a sort of "relative

abelianisation". 	 When applied to 7r( X) one obtains the "chains on 1" chain

complex as a comilex of	 modules (see Brown-Hieg,ins [19901).

If we apply thest. constructions to e(X) for X in	 then we clearly have

potentially important information - but how can we interpret it? 	 It there

a proper analogue of a universal covering space?
	

Not just something in

pro(Top) or (pro(Top),Top), but an "honest space".	 If not can we use

ri,E(x)	 and	 rc(EX)	 as	 substitutes,	 identifying	 their	 properties	 and

abstracting	 to	 analogues	 of (non- universal)	 covering	 spaces,	 within	 these

algebraic models?

A final question within this area is whether there is a geometric notion

classified by subobjects of	 I (X), or for that matter of any of the other

candidates for a proper fundamental eroup(oid). 	 There is a view which says

that the use of paths to obtain homotopy information on spaces is misplaced

since paths are .-nly useful if the space is ''Iocally nice". From such a

view point, n i (X) or íI 1 X is che "classifier" for covering spaces, and the

van Kampen theorem is about eluing together categories of covering spaces.

This view is wide enough to allow Galois theory to be interpreted as being

about coverines and a fundamental group(oid) (c.f.	 Grothendieck ' s SGA I

[1971] or Douady and Douady [19771).	 Perhaps we should look to the methods
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of algebraic geometry to sce if there is not some way of interpreting the

end E(X) as a germ of a space and to use sheaf-t.heory to give geometric

meaning to the proper fundamental group(oid)s. The work of Golctman (Thcsis

Yale, late 1960s) mentioned by Larry Siebenmann at the Workshop, may

indicate a possible way forward in this. 	 Even if this can be resolved,

there remains the problem of the higher homotopy invariants of E(X) for

instance the n-type.	 As it is far from clear even in the compact classical

situation, what the n-type classifles (see "Pursuing Stacks": Grothendieck

[19831 or the discussion in my own "Abstract Homotopy Theory", Bressanone

1991, Porter [19921, for a discussion of some of the many facets of this

area.) What does seem fairly clear is that from this viewpoint the higher

rc,(X) or for our purposes rc(X) or run (E(X)) do not classify vcry much.

This area, relatively untrodden even in the classical case, is more or less

completely unexplored in the proper homotopy context, but as it would seem

to connect up v.,th algebras of continuous functions, it may be a way in

which proper homotopy theory will influence or at least interact with areas

other than that of geometric topology.
4
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