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Abstra
t. In this paper we establish the uniqueness of radial solutions for

a semipositone Diri
hlet problem in an annulus, having a pres
ribed large

number of nodal regions. Shooting method and Prüfer transformation are

the main tools used in this work.
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Sobre la uni
idad de solu
iones que 
ambian de signo

para un problema Semipositone en anillos

Resumen. En este artí
ulo estable
emos la uni
idad de solu
iones radiales

para un problema de Diri
hlet, de tipo Semipositone, en un anillo, 
on un

número pres
rito (grande) de regiones nodales. Las prin
ipales herramien-

tas usadas en este trabajo son el método del disparo y la transforma
ión de

Prüfer.
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ambian de signo, problemas de Diri
hlet 
on peso, problemas

elípti
os no lineales.

1. Introdu
tion and Statement of the Results

We 
onsider the annulus Ω := {x ∈ R
N : 0 < a < ‖x‖ < b}, where N ≥ 3. In this paper

we study the problem











∆u+ f(‖x‖, u) = 0, x ∈ Ω,

u(x) = 0 for x ∈ ∂Ω,

u has exa
tly k nodal regions in Ω,

(1.1)
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208 H. Aduén & S. Herrón

where f(‖x‖, u) = K(‖x‖)
(

|u|p−1u− C ||x||−p(N−2)
)

for some 
onstant C > 0. Here, ∆
denotes the Lapla
ian operator and K ∈ C2([a, b]) is a given positive weight whi
h is

nonde
reasing.

Be
ause f(‖x‖, 0) < 0 for every x ∈ Ω, our problem is 
alled semipositone. These

problems are harder than positone even in the 
ase of positive solutions (see [4℄, [26℄).

When we are looking for positive solutions the di�
ulty is due to the fa
t that in the

semipositone 
ase, solutions have to live in regions where the rea
tion term is negative

as well as positive (see [7℄).

A radial solution u(r) of (1.1), where r = ‖x‖, satis�es















u′′(r) +
N − 1

r
u′(r) +K(r)

(

|u(r)|p−1u(r)− Cr−p(N−2)
)

= 0, a < r < b,

u(a) = u(b) = 0,

u has exa
tly k zeros in (a, b).

(1.2)

To the best of our knowledge, uniqueness results about sign-
hanging solutions to (1.2)

(more general, in the semipositone 
ase) are not known. By 
onsidering exterior domains,

a uniqueness result of nonnegative solution for a semipositone problem is a
hieved in [32℄

(also see referen
es therein). More re
ently, in [35℄ the author obtained uniqueness of

sign-
hanging radial solutions in some ball and annulus 
onsidering K = 1, C = 0 and

the parti
ular nonlinearity f(u) = |u|p−1u − u. In the superlinear 
ontext it seems hard

to get uniqueness of sign-
hanging radial solutions with a pres
ribed number of zeros.

Some previous works as, for instan
e, [34℄, [35℄ have attained su
h uniqueness, but at

the expense of giving up too mu
h generality; some of these are homogeneous problems,

very parti
ular geometry of the domain, spe
i�
 
ases of nonlinearity or impossing low-

dimensional domains. In this work we prove a uniqueness result for the problem (1.2) in

a ring-shaped domain restri
ted to

2(b/a)N−1 − 1 < p < (N + 2)/(N − 2). (1.3)

Note that these inequalities imply that b < a(N/(N−2))1/(N−1)
. This is our 
ompromise;

but we are able to get su
h uniqueness in a more general 
ontext, namely for a weighted

semipositone problem. We use some ideas inspired by the work of H. Aduén, A. Castro

and J. Cossio in [1℄. We extend and improve a previous result exhibited in [1℄. This im-

provement is re�e
ted in several aspe
ts: �rst, our nonlinearity K(‖x‖)|u|p−1u in pla
e

of |u|p−1u; namely, the nonlinearity involves a weight. Se
ond, our non-homogeneity also

has a weight and mainly, the third reason, the result of uniqueness. Tanaka, in [34℄,


onsidered the problem (1.2) in a ball with C = 0 and also demonstrated uniqueness.

Although our region is di�erent, we 
ompensate this di�eren
e 
onsidering an inhomo-

geneous problem, making it a more di�
ult problem of partial di�erential equation. In

this sense we 
an say that we have improved a theorem obtained in [34℄.

In order to fa
e (1.1) we rewrite it in the form











∆u+K(‖x‖)|u|p−1u = q(‖x‖), x ∈ Ω,

u(x) = 0 for x ∈ ∂Ω,

u has exa
tly k nodal regions in Ω,

(1.4)
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with q(‖x‖) := C ·K(‖x‖)‖x‖−p(N−2)
and C > 0 is a 
onstant.

There are a lot of works related to the existen
e, nonexisten
e and multipli
ity of radial

solutions for di�erential equations with the stru
ture appearing in (1.4), but without the

nodal 
ondition. Results about uniqueness of positive radial solutions are also known.

Almost all those results involve homogeneous problems, i.e., q ≡ 0 (see, for instan
e,

[6℄, [30℄, [31℄, [36℄). In [6℄, the authors studied the equation ∆u +K(‖x‖)f(u) = 0, with
K ∈ C2

and they showed that the problem has at most one positive solution, assuming

f being sublinear, more pre
isely f(s)/s > f ′(s) for s 6= 0. In [30℄ and [31℄, 
onsidering

the nonlinearity f(u) = |u|p−1u,N ≥ 3 and p > 1, the authors obtained uniqueness of

positive radial solutions under one additional 
ondition over rK ′(r)/K(r). In [36℄, the

author studied the same problem with K = 1 and f(u) = −u+up
subje
t to the Diri
hlet

boundary 
ondition on an annulus in R
N . As a by-produ
t, his approa
h also provides a

mu
h simpler, if not the simplest, new proof for the uniqueness of positive solutions to the

same problem, in a �nite ball or in the whole spa
e R
N .Without pretense of 
ompleteness,

we refer for instan
e to the papers [2℄, [9℄, [12℄, [17℄, [24℄, [25℄, [28℄, [27℄, [38℄, [39℄ and [40℄, as

well as the referen
es therein, where results about uniqueness of positive radial solutions


an be found. On the other hand, by 
onsidering K = 1 and C = 0, Kajikiya in [23℄ and

the authors in [10℄ showed uniqueness to the di�erential equation in (1.1). In an annulus,

also uniqueness was obtained by Ni and Nussbaum [31℄ with K(t) = tl, l ∈ R and C = 0.
Additionally, in [34℄ a uniqueness result for problem (1.1) was proved in the homogeneous


ontext (C = 0). Also, in [22℄, [33℄, authors 
onsidered a sublinear nonlinearity. We must

mention that existen
e results have been obtained by Y. Naito [29℄ in the homogeneous


ase. In relation to the 
ase q 6= 0 
onsidered here, in�nitely many radially symmetri


solutions were found in [8℄ while, more relevantly, [14℄, [15℄ showed results with a large

pres
ribed number of zeros. Other works as [1℄, [3℄, [5℄, [11℄, [16℄, [18℄, [19℄ also 
onsider

nonhomogeneous problems. The referen
es [3℄, [5℄ and [18℄ show existen
e of solutions

for the non-homogeneous ellipti
 equation∆u+|u|p−1u+g(x) = 0 in R
N
and its weighted

version with nonlinearity K(x)|u|p−1u in pla
e of |u|p−1u. The results in [3℄, [5℄ and [18℄


onsider the range N/(N − 2) < p that 
overs the 
riti
al and super
riti
al variational

ones p > (N+2)/(N−2). In [3℄ and [5℄, it was 
onsidered bounded 
ontinuous for
e terms

g(x) while singular for
es like g(x) = ‖x‖−γ
were treated in [18℄. Papers [11℄, [13℄, [19℄

studied quasilinear equations but they do not showed a uniqueness result.

To investigate the uniqueness of nodal radial solutions of the problem (1.4), we 
onsider

the following:















v′′(r) +
N − 1

r
v′(r) +K(r)|v(r)|p−1v(r) = q(r), a < r < b,

v(a) = v(b) = 0, v′(a) =: α > 0,

v has exa
tly k zeros in (a, b),

(1.5)

where

′ ≡ d
dr and v(r) := u(x) with r = ‖x‖.

Sin
e we apply the shooting method (
f. [20℄, [21℄, [37℄), we study the initial value problem

(1.5) with v′(a) = α > 0 as the shooting parameter.

The following theorem is an existen
e result for (1.5) and it has been established by

Vol. 34, No. 2, 2016℄



210 H. Aduén & S. Herrón

Dambrosio [15, Theorem B℄.

Theorem 1.1 (Dambrosio). If 1 < p < (N + 2)/(N − 2), then there exists k∗ ∈ N su
h

that for every integer k ≥ k∗ the problem (1.5) has at least one solution.

Let v(·, α) be a fun
tion that satis�es (1.5). Hen
e v, v′ ∈ C1([a, b] × (0,∞)) and

vα(r, α) =
∂v
∂α (r, α) is a solution of the linearized problem







w′′ +
N − 1

r
w′ + pK(r)|v|p−1w = 0, a < r < b,

w′(a) = 1, w(a) = 0.
(1.6)

(See, for example, [37℄).

Most of the lemmas or results presented here involving 
omputations with the term of

the right hand side of the equation (1.5) are valid for more general fun
tions q, more

pre
isely for 
ontinuous fun
tions.

Our �rst result, aside from its own relevan
e, is 
ru
ial in our approa
h in order to get our

se
ond theorem. It establishes the os
illatory behavior of the solution w to the linearized

equation (1.6). In other words, it exposes the intera
tion of the zeros of the solution v
to the inhomogeneous di�erential equation (1.4) with any bounded external for
e q > 0,
and the respe
tive solution w to the linearized equation (1.6). Thus, we 
an prove the

following theorem.

Theorem 1.2. There exists α̃1 > 0 su
h that if |v′(a)| > α̃1 and z1, z2 are 
onse
utive

zeroes of v, then the fun
tion w has a zero in (z1, z2).

Remark 1.3. The previous result holds true for any bounded and positive fun
tion q in

problem (1.5).

Let us de�ne V (r) := rK ′(r)/K(r) for r ∈ [a, b]. Our main se
ond result reads as follows:

Theorem 1.4. Let q(r) := C r−p(N−2)K(r) with K ′ ≥ 0. There exists k∗ ∈ N su
h that

if k ≥ k∗ and if for all r ∈ [a, b],

[V (r) − p(N − 2)−N + 4][V (r) − p(N − 2) +N ]− 2rV ′(r) < 0, (1.7)

then the solution of problem (1.2) exists and it is unique.

Remark 1.5. Let us 
onsider h ∈ R and K(r) := rh for r ∈ [a, b]. If p > max{N/(N −
2), 2(b/a)N−1 − 1} and

p(N − 2)−N < h < p(N − 2) +N − 4,

then the 
ondition (1.7) is satis�ed and therefore we get Theorem 1.4 with this weight K
and p ∈ (N/(N − 2), (N + 2)/(N − 2)). Hen
e, there are examples of fun
tions K that

give us uniqueness with p in the well-known gap (N/(N − 2), (N + 2)/(N − 2)).

This paper is organized as follows. In Se
tion 2 we prove some useful fa
ts related to

the energy of the solution. In Se
tion 3 we present te
hni
al lemmas and Se
tion 4 is

devoted to show Theorem 1.2 whi
h gives us a zero of the solution of the linearized

equation, between two 
onse
utive zeros of the solution to the problem (1.5). Se
tion 5


on
erns the study of a transformed problem, whi
h is equivalent to (1.5), and �nally, in

Se
tion 6 we prove Theorem 1.4.

[Revista Integración
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2. Energy analysis

We will denote by 0 < m := minK and ‖K‖∞ = ‖K‖.

We de�ne the energy fun
tion asso
iated to a solution v:

E(r, α) ≡ E(r) =
1

2K(r)
|v′(r)|2 +

1

p+ 1
|v(r)|p+1. (2.1)

Lemma 2.1. The energy fun
tion de�ned in (2.1) satis�es the following properties:

1. lim
α→+∞

E(r, α) = +∞ uniformly for all r ∈ [a, b].

2. There exist positive 
onstants α0 and C2 su
h that for all α ≥ α0 and a ≤ s < t ≤ b,

C2E(s, α) ≤ E(t, α) ≤ 2E(s, α). (2.2)

Proof. Di�erentiating (2.1) with respe
t to r and applying (1.5) it follows that

E′(r, α) =
q(r)v′(r, α)

K(r)
−

(

N − 1

rK(r)
+

K ′(r)

2K2(r)

)

|v′(r, α)|2. (2.3)

Taking into a

ount (2.3) and from the regularity ofK and q there exist positive 
onstants
C := ‖q‖/m and D := (N − 1)/(ma) + ‖K‖/(2m2), su
h that for all r ∈ [a, b],

E′(r, α) ≥ −C|v′(r, α)| −D|v′(r, α)|2

≥ −
C2

2
−

1

2
|v′(r, α)|2 −D|v′(r, α)|2

= −C̄ − D̄|v′(r, α)|2.

Thus, if k1 := 2 ||K||∞D̄ then

e−k1r
(

ek1rE(r, α)
)′

≥ (k1/2K(r)− D̄)|v′(r, α)|2 − C̄ ≥ −C̄. (2.4)

Hen
e

(

ek1rE(r, α)
)′

≥ −C̄ek1b := −k2. Integrating we obtain positive 
onstants k3
and k4 su
h that E(r) ≥ k3|α|

2 − k4. This proves the �rst part of the lemma. Again,

a suitable integration of (2.4) on [s, t] gives us positive 
onstants c1 and c2 su
h that

E(t, α) ≥ c1E(s, α) − c2. From the previous inequality and the 
on
lusion of the �rst

part of the lemma, there exists α1 > 0 su
h that for all α ≥ α1 holds C2E(s, α) ≤ E(t, α),
where C2 := c1/2.

On the other hand, for all r ∈ [a, b] we have

E′(r, α) ≤ C|v′(r, α)| −
N − 1

b‖K‖
|v′(r, α)|2 (sin
e K ′ ≥ 0)

≤
C2ε2

2
+

1

2ε2
|v′(r, α)|2 −D0|v

′(r, α)|2

=
C2

4D0
=: c3,

where we took ε2 = 1/2D0. Integrating on [s, t] we have E(t, α) ≤ E(s, α) + c4. From
the �rst part of the lemma there exists α2 > 0 su
h that for all α ≥ α2, E(s, α) ≥ c4.
De�ning α0 := max{α1, α2} we get E(t, α) ≤ 2E(s, α). This proves the se
ond part of

the lemma. �XXX

Vol. 34, No. 2, 2016℄



212 H. Aduén & S. Herrón

3. Preliminary lemmas

From now on, when we mention a solution v with k zeros in (a, b), we denote z0 :=
a, zk+1 := b and zi as the ith zero of v(·, α) in (a, b) for i = 1, 2, . . . , k. Due to the

uniqueness of the initial value problem we note that v(·, α) and v′(·, α) 
annot vanish

simultaneously. Thus zi is a simple zero and, moreover,

(−1)iv′(zi, α) ≡ (−1)i
d

dr
v(zi, α) > 0 for i = 0, 1, 2, . . . , k + 1. (3.1)

Another useful tool that we need is the Prüfer transformation for the solution v(·, α) of
the di�erential equation, with initial 
onditions in (1.5). We de�ne the fun
tions ρ(r, α)
and θ(r, α) by

v(r, α) = ρ(r, α) sin θ(r, α),

rN−1v′(r, α) = ρ(r, α) cos θ(r, α).

Thus we see that ρ(r, α) and θ(r, α) 
an be written in the form

ρ(r, α) = (v2(r, θ) + r2(N−1)[v′(r, θ)]2)1/2 > 0

and

θ(r, α) = arctan

(

v(r, α)

rN−1v′(r, α)

)

.

From v, v′ ∈ C1([a, b]× (0,∞)), it follows that ρ, θ ∈ C1([a, b]× (0,∞)). Straightforward

al
ulations give

∂θ

∂r
(r, α) ≡ θ′(r) =

rN−1

ρ2
[(v′(r, α))2 − v(r, α) q(r) +K(r)|v(r, α)|p+1 ],

for r ∈ [a, b]. We will see that θ(r, α) is stri
tly in
reasing in r ∈ [a, b] for ea
h α > 0
�xed and large enough. In fa
t, it is su�
ient to show that v(r, α) q(r) < (v′(r, α))2 +
K(r)|v(r, α)|p+1

. For simpli
ity of notation we omit the arguments (r, α). Let s =
(p + 1)/p, s′ = p + 1 and ε > 0 be su
h that εp+1 = 1/m(p − 1), with m = minK.
From the �rst part of Lemma 2.1, there exists α∗ > 0 su
h that for α > α∗

we have

E(r, α) > εs||q||s∞/(2sm) uniformly in r. By using Young's Inequality with this ε we �nd

v q = (v/ε)(qε) ≤
|v|p+1

(p+ 1) εp+1
+

εs ||q||s∞
s

<
m(p− 1)

p+ 1
|v|p+1 + 2mE(r, α)

≤ |v′|2 +K(r)|v|p+1,

for every α > α∗
and uniformly in r ∈ [a, b].

We note that ρ(a, α) = aN−1α, and for simpli
ity we de�ne θ(a, α) = 0; therefore it is

simple to 
he
k that v(r, α) is a solution of (1.5) if and only if

θ(b, α) = kπ. (3.2)

Hen
e, the number of solutions of (1.5) is equal to the number of roots α > 0 of (3.2).

The following lemma is proved in the same way as Lemma 2.3 in [1℄.
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Lemma 3.1. There exists M̂ > 0 su
h that if |v′(a)| ≥ M̂ , then, between two 
onse
utive

zeroes of v there is exa
tly one 
riti
al point.

Lemma 3.2. Given δ > 0 there exists M1(δ) ≡ M1 > 0 su
h that if |v′(a)| ≥ M1, then

z2−z1 ≤ δ for any two 
onse
utive zeroes z1, z2 of v. Moreover, M1(δ) → +∞ as δ → 0.

Proof. Let Γ be a �xed 
onstant su
h that Γ > (N − 1)(N − 3)δ2/(4a2) + 64π2
and


onsider y satisfying, for all r > 0,
{

y′′ + N−1
r y′ + Γ

δ2 y = 0,

y(0) = 1, y′(0) = 0.

By applying the Sturm's 
omparison theorem (
f. [20℄, [21℄, [37℄) with the solution φ to

the problem y′′ + 64π2

δ2 y = 0, y(0) = 1 and y′(0) = 0, we 
on
lude

d− c <
δ

4
, (3.3)

where c < d are 
onse
utive zeroes of y. Let K2(δ) ≡ K2 > 0 be su
h that for |v| ≥ K2

holds

(

m|v|p−1 −
‖q‖∞
|v|

)

≥
Γ

δ2
. (3.4)

Let t ∈ (z1, z2) be su
h that |v(s)| ≤ K2 for all s ∈ (z1, t). Hen
e, re
alling the de�nition
of the energy and taking into a

ount 2E(s) ≥ C2E(a), we get

|v′(s)|2 ≥ K(s)

(

C2|v
′(a)|2

2||K||∞
−

2Kp+1
2

p+ 1

)

. (3.5)

Now, for some s̄ ∈ (z1, t) we have |t− z1| = |v(t)|/|v′(s̄)|. Considering (3.5), and if

|v′(a)| ≥

{

4||K||

C2

(

8K2
2

mδ2
+

Kp+1
2

p+ 1

)}1/2

≡ M2, (3.6)

we 
on
lude t− z1 ≤ δ
4

√

m/K(s̄) ≤ δ/4. Similarly, if (3.6) holds and |v(s)| ≤ K2 for all

s ∈ (t, z2), then z2 − t ≤ δ/4.

Thus, if |v′(a)| satis�es (3.6) and |v′(a)| ≥ M̂ (from Lemma (3.1)) then v has a unique


riti
al point in (z1, z2) and there exist t1 < t2 in the interval (z1, z2) su
h that |v| ≥ K2

in [t1, t2] and |v| ≤ K2 on [z1, t1] ∪ [t2, z2]. We 
laim that t2 − t1 ≤ δ/2. In fa
t, if

t2 − t1 > δ/2 then, by (3.3), y has at least two zeroes in [t1, t2]. Hen
e, by the de�nition

of t1, t2 and the Sturm Comparison Theorem (keeping in mind (3.4)), v has a zero in

(t1, t2), whi
h is a 
ontradi
tion. Hen
e, t2 − t1 ≤ δ/2 and z2 − z1 ≤ δ. Therefore, the

�rst part of the lemma is proved.

From (2.2),

E(t, v′(a)) ≥ C2|v
′(a)|2/(2||K||) ≥ δ−1,

provided that

|v′(a)| ≥

√

2||K||

δC2
.

Vol. 34, No. 2, 2016℄



214 H. Aduén & S. Herrón

Thus, the se
ond part is a
hieved by 
hoosing

M1(δ) := max{M̂,M2,
√

2||K||/(δC2) }.

The lemma is proved. �XXX

4. Proof of Theorem 1.2

Proof. De�ne M∗ := 2((N − 1)/a)(b/a)N−1, δ0 := (p− 1)/(3M∗),

Φ2 :=
||K||

C2

[

2

p+ 1

(

p+ 1

p− 1

‖q‖∞
m

)

p+1

p

+
‖q‖2∞(b − a)2

m

(

p+ 1

p− 1

||K||

m
+ 1

)2
]

,

Ψ2 :=
||K||

C2

[

1

m

(

‖q‖∞
M∗

)2(
p+ 1

p− 1

||K||

m
+ 1

)2

+
2

p+ 1

(

p+ 1

p− 1

‖q‖∞
m

)(p+1)/p
]

and

α̃1 := max{α0, M̂ ,M1(δ0),Φ,Ψ}. (4.1)

Sin
e z1 and z2 are 
onse
utive zeroes of v we may assume, without loss of generality,

that v > 0 in (z1, z2).

Suppose that w > 0 in (z1, z2) (similar arguments prove the 
ase w < 0 in (z1, z2)). Let
ρ ∈ (z1, z2) be su
h that v′(ρ) = 0. Sin
e α̃1 ≥ M̂ , by Lemma 3.1, v(ρ) = max{v(r) : r ∈
(z1, z2)}. By (4.1) and Lemma 2.1,

E(ρ, v′(a)) = E(ρ) >
1

p+ 1

(

(p+ 1)‖q‖∞
m(p− 1)

)(p+1)/p

.

From here follows vp(ρ) > [(p + 1)/(p− 1)][‖q‖∞/m]. Thus, by the Intermediate Value

Theorem there exist t1, t2 su
h that z1 < t1 < ρ < t2 < z2 and

vp(t1) =
(p+ 1)‖q‖∞
(p− 1)m

= vp(t2). (4.2)

Multiplying (1.5) by rN−1 w and (1.6) by rN−1 v, and integrating by parts on [s, t] ⊂
[t1, t2] we have

tN−1(w′v − v′w)(t) − sN−1(w′v − v′w)(s)

+

∫ t

s

rN−1[(p− 1)K(r)|v|p + q]w(r)dr = 0.
(4.3)

Claim: w′(ρ) < 0.

Proof of the 
laim. Suppose that w′(ρ) ≥ 0. Thus

−sN−1(w′v − v′w)(s) +

∫ ρ

s

rN−1[(p− 1)K(r)|v|p + q]w(r)dr ≤ 0, (4.4)

for any s ∈ [t1, ρ).
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On the other hand, for s ∈ [t1, ρ] we have (from (1.6))

sN−1w′(s) = ρN−1w′(ρ) + p

∫ ρ

s

rN−1K(r)|v(r)|p−1w(r) dr. (4.5)

Sin
e the right hand side of (4.5) is positive, it follows that w′(s) > 0 for s ∈ [t1, ρ],
whi
h implies that w is in
reasing on that interval. Thus w(s) ≥ w(t1) for all s ∈ [t1, ρ].
Multiplying the ODE in (1.5) by rN−1

and integrating we get

tN−1
1 v′(t1) =

∫ ρ

t1

rN−1(K(r)vp(r) − q(r)) dr. (4.6)

By using (4.2) and v(t1) ≤ v(r) the right hand side is less than or equal to

∫ ρ

t1
rN−1[K(r)vp(r) +mp−1

p+1v
p(r)] dr, and hen
e

tN−1
1 v′(t1) ≤

2p

p+ 1

∫ ρ

t1

rN−1K(r)vp(r) dr. (4.7)

Now,

∫ ρ

t1

rN−1[(p− 1)K(r)|v|p + q(r)]w(r)dr

≥ w(t1)

∫ ρ

t1

rN−1[(p− 1)K(r)|v|p + q(r)] dr

= w(t1)

(
∫ ρ

t1

rN−1(p− 1)K(r)|v|p dr +

∫ ρ

t1

rN−1q(r) dr

)

≥
p− 1

2
tN−1
1 w(t1)v

′(t1) ( by (4.6) and (4.7)).

(4.8)

We also observe that we have used the fa
t

(p− 1)K(r)|v|p + q(r) ≥ (p− 1)m|v|p(t1) + q(r) ≥ (p+ 1)||q|| − ||q|| ≥ 0.

Combining (4.4) and (4.8) we obtain

−tN−1
1 (w′v − v′w)(t1) +

p− 1

2
tN−1
1 w(t1)v

′(t1) ≤ 0. (4.9)

Sin
e r 7→ rN−1w′(r) is de
reasing in (z1, z2) (see (1.6)) then for t ∈ (z1, t1], t
N−1w′(t) ≥

tN−1
1 w′(t1), and thus, by (4.9),

w′(t) ≥ (
p− 1

2
)w(t1)v

′(t1)/v(t1).

Therefore

w(t1) ≥ w(t1)− w(z1) ≥
(p− 1)w(t1)v

′(t1)

2v(t1)
(t1 − z1). (4.10)

By Taylor's formula

0 = v(z1) = v(t1) + v′(t1)(t1 − z1) +
v′′(ζ)

2
(t1 − z1)

2

= v(t1) + v′(t1)(t1 − z1)

−
1

2

{

N − 1

ζ
v′(ζ) +K(ζ)|vp(ζ)| − q(ζ)

}

(t1 − z1)
2,

(4.11)
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for some ζ ∈ (z1, t1). Also, by (1.5),

ζN−1v′(ζ) = tN−1
1 v′(t1) +

∫ t1

ζ

rN−1[K(r)vp(r)− q(r)]dr

≤ tN−1
1

[

v′(t1) + (
p+ 1

p− 1

||K||

m
+ 1)‖q‖∞(t1 − z1)

]

.

(4.12)

The above and (4.1) give

v′(ζ) ≤ (b/a)N−12v′(t1). (4.13)

In order to see this, a

ording to the de�nition of α̃1 and by the se
ond part of Lemma

2.1, C2Φ
2 ≤ C2|v

′(a)|2 = 2C2K(a)E(a) ≤ 2C2||K||E(a) ≤ 2||K||E(t1), whi
h implies

‖q‖2∞(b − a)2

m

(

p+ 1

p− 1

||K||

m
+ 1

)2

+
2

p+ 1

(

p+ 1

p− 1

‖q‖∞
m

)(p+1)/p

≤ 2E(t1),

and due to (4.2),

‖q‖2∞(b − a)2

m

(

p+ 1

p− 1

||K||

m
+ 1

)2

≤ 2E(t1)−
2

p+ 1

(

p+ 1

p− 1

‖q‖∞
m

)

p+1

p

= |v′(t1)|
2/K(t1).

From this and (4.12) we have (4.13).

On the other hand,

C2Ψ
2 ≤ C2|v

′(a)|2 = 2C2K(a)E(a) ≤ 2C2||K||E(a) ≤ 2||K||E(t1).

Reasoning as before we prove that

||q||

(

p+ 1

p− 1

‖K‖

m
+ 1

)

≤ M∗v′(t1),

and 
ombining it with (4.13) and (4.11) we get

v(t1) ≤
1

2

(

N − 1

a
(b/a)N−12v′(t1) + ||q||

(p+ 1

p− 1

‖K‖

m
+ 1
)

)

(t1 − z1)
2

≤ M∗ v′(t1)(t1 − z1)
2.

(4.14)

From (4.10) it is 
lear that t1 − z1 ≤ 2v(t1)/((p− 1)v′(t1)). Taking into a

ount (4.14),

v(t1) ≤
4M∗v′(t1)v

2(t1)

(p− 1)2|v′(t1)|2
,

or equivalently, v′(t1) ≤ 4M∗v(t1)/(p− 1)2. Then, by using (4.14),

(z2 − z1)
2 ≥ (t1 − z1)

2 ≥
v(t1)

M∗v′(t1)
≥

(p− 1)2

4(M∗)2
,

whi
h implies

z2 − z1 ≥
p− 1

2M∗
> δ0,
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This 
ontradi
ts Lemma 3.2 and thus the 
laim is proved. Therefore

w′(ρ) < 0.

Using the previous inequality, taking t = t2 and s = ρ in (4.3), we have

tN−1
2 (w′v − v′w)(t2) = ρN−1w′(ρ)v(ρ)

−

∫ t2

ρ

rN−1[(p− 1)K(r)vp(r) + q(r)]w(r)dr

< −

∫ t2

ρ

rN−1[(p− 1)K(r)vp(r) + q(r)]w(r)dr.

(4.15)

Multiplying the ODE in (1.6) by rN−1
and integrating in [ρ, s] with s ∈ [ρ, t2] we prove

that w is de
reasing in [ρ, t2]. Using the same pro
edure with the ODE in (1.5), we arrive

to

−tN−1
2 v′(t2) =

∫ t2

ρ

rN−1[K(r)vp(r)− q(r)] dr

≤

∫ t2

ρ

rN−1(K(r)vp(r) + ||q||) dr

=

∫ t2

ρ

rN−1[K(r)vp(r) +
m(p− 1)

p+ 1
vp(t2)] dr

≤
2p

p+ 1

∫ t2

ρ

rN−1K(r)vp(r) dr.

(4.16)

In a similar fashion as in (4.8), and using (4.16), we 
on
lude

∫ t2

ρ

rN−1[(p− 1)K(r)vp(r) + q(r)]w(r) dr ≥ −
p− 1

2
tN−1
2 v′(t2)w(t2).

This implies that (4.15) be
omes

tN−1
2 (w′v − v′w)(t2) ≤

p− 1

2
tN−1
2 v′(t2)w(t2). (4.17)

Now, we 
on
entrate on the 
orresponding subinterval to the right of ρ. Sin
e the map

r 7→ rN−1w′(r) is de
reasing in (z1, z2), taking t ∈ [t2, z2) we get t
N−1
2 w′(t2) ≥ tN−1w′(t),

and by (4.17),

tN−1
2 w′(t2) ≤

1

v(t2)

[

p− 1

2
tN−1
2 w(t2)v

′(t2) + tN−1
2 w(t2)v

′(t2)

]

,

and thus,

w′(t) ≤ −
p+ 1

2

(

t2
t

)N−1
w(t2)|v

′(t2)|

v(t2)
≤ −

p+ 1

2

(a

b

)N−1 w(t2)|v
′(t2)|

v(t2)
.

Therefore

−w(t2) ≤ w(z2)− w(t2) ≤ −
p+ 1

2

(a

b

)N−1 w(t2)|v
′(t2)|

v(t2)
(z2 − t2). (4.18)
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As before, by Taylor's formula,

0 = v(z2) = v(t2) + v′(t2)(z2 − t2) +
v′′(τ)

2
(z2 − t2)

2

= v(t2) + v′(t2)(z2 − t2)

−
1

2

{

N − 1

τ
v′(τ) +K(τ)|vp(τ)| − q(τ)

}

(z2 − t2)
2,

(4.19)

for some τ ∈ (t2, z2). On the other hand,

τN−1v′(τ) = tN−1
2 v′(t2) +

∫ τ

t2

rN−1[q(r) −K(r)vp(r)] dr

and

∫ τ

t2
rN−1[K(r)vp(r) − q(r)] dr ≤ τN−1(||K|| p+1

(p−1)m + 1)||q||(τ − t2) imply

τN−1v′(τ) ≥ tN−1
2 v′(t2)− τN−1

(

||K||

m

p+ 1

p− 1
+ 1

)

||q||(τ − t2).

Moreover, |v′(τ)| ≤ (b/a)N−1 |v′(t2)|+
(

||K||
m

p+1
p−1 + 1

)

||q||(τ − t2). From the de�nition of

Φ it is 
lear that

C2Φ
2 ≤ C2|v

′(a)|2 = 2C2K(a)E(a) ≤ 2C2||K||E(a) ≤ 2||K||E(t2),

and thus

‖q‖2∞(b − a)2

m

(

p+ 1

p− 1

||K||

m
+ 1

)2

≤ 2E(t2)−
2

p+ 1

(

p+ 1

p− 1

‖q‖∞
m

)

p+1

p

= 2E(t2)−
2

p+ 1
vp+1(t2)

= |v′(t2)|
2/K(t2) ≤ |v′(t2)|

2/m.

Consequently,

(

||K||
m

p+1
p−1 + 1

)

||q||(τ − t2) ≤ |v′(t2)|, and therefore

|v′(τ)| ≤ [(b/a)N−1 + 1]|v′(t2)|. (4.20)

Also, as we mentioned, it is simple to 
he
k that

||q||

(

p+ 1

p− 1

‖K‖

m
+ 1

)

≤ M∗|v′(t2)|.

Combining (4.20), (4.19), the previous inequality, v(τ) ≤ v(t2) and repla
ing the se
ond

equality of (4.2), we have

v(t2) ≤
1

2

{

N − 1

a
[(b/a)N−1 + 1]|v′(t2)|+ ||q||

(

||K||(p+ 1)

m(p− 1)
+ 1

)}

(z2 − t2)
2

− v′(t2)(z2 − t2)

≤ Θ|v′(t2)|(z2 − t2)
2 − v′(t2)(z2 − t2).
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Here Θ := 1
2

{

N−1
a [(b/a)N−1 + 1] +M∗

}

= N−1
2a [3(b/a)N−1 + 1]. Now, an elementary


omputation shows that

(

z2 − t2 +
1

2Θ

)2

≥
1

4Θ2
−

v(t2)

Θ v′(t2)
.

Next, using (4.18), we dedu
e

(

z2 − t2 +
1

2Θ

)2

≥
1

4Θ2
+

1

Θ

p+ 1

2

(a

b

)N−1

(z2 − t2).

This implies that z2−t2 ≥ (1/Θ)
(

p+1
2

(

a
b

)N−1
− 1
)

> 0, provided that p+1 > 2(b/a)N−1

(see (1.3)), whi
h 
ontradi
ts Lemma 3.2.

This se
ond 
ontradi
tion implies that w 
annot be positive on (z1, z2). Repla
ing w by

−w in the above arguments we see that w 
annot be negative at all points in (z1, z2).
Hen
e w must have a zero in (z1, z2), whi
h proves our Theorem 1.2. �XXX

5. Transforming the problem

We re
all that q : [a, b] → R is a di�erentiable fun
tion. By using the transformation

φ : [a, b] → [a, a3−NbN−2] given by φ(t) = a3−N tN−2
, we transform (1.5) into a new

annulus and a new problem. In fa
t, we de�ne

U(t, α) = a−1(N − 2)tv(a1−βtβ , α), W (t) = a−1(N − 2)tw(a1−βtβ),

with β = 1/(N − 2), v the solution of (1.5) and w the solution of (1.6). Noti
e that

U(a) = 0 = U(b1) and U ′(a) = α, where b1 := a3−NbN−2. Then U = U(t, α) and

W = W (t) satisfy

U ′′(t) +M(t)|U |p−1U(t) = Q(t), a < t ≤ b1, (5.1a)

U(a) = 0, U ′(a) = α, (5.1b)

W ′′(t) + pM(t)|U |p−1W (t) = 0, a < t ≤ b1, (5.1
)

W (a) = 0, W ′(a) = 1, (5.1d)

where M(t) = βp+1ap−2β+1t2β−p−1K(a1−βtβ) and Q(t) = βa1−2βt2β−1q(a1−βtβ). We

de�ne Zi = φ(zi) = a3−NzN−2
i , i = 0, 1, 2, . . . , k + 1. Then we see that

U(Zi, α) = 0, for i = 0, 1, 2, . . . , k + 1,

(−1)i−1U(t, α) > 0 for t ∈ (Zi−1, Zi), i = 1, 2, . . . , k + 1.

Also, there exist Si ∈ (Zi−1, Zi) su
h that U ′(Si, α) = 0, for i = 1, 2, . . . , k + 1 and α
large. A
tually, Si is unique as we show next. It is easy to 
he
k that v′(a1−βtβ) =
aβt−β [U ′(t)− t−1U(t)]. Therefore,

E(a1−βtβ , α, v) ≡ E(a1−βtβ)

=
a2βt−2β

2K(a1−βtβ)
[U ′(t)− t−1U(t)]2 +

ap+1t−p−1

(p+ 1)(N − 2)p+1
|U(t)|p+1.
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Parti
ularly, if τ ∈ (a, b1) is a 
riti
al point of U, then

E(a1−βτβ) =
a2βτ−2β−2

2K(a1−βτβ)
U2(τ) +

ap+1τ−p−1

(p+ 1)(N − 2)p+1
|U(τ)|p+1. (5.2)

Applying the Young's Inequality with ε = τ2, s = (p + 1)/2 and its 
onjugate r =
(p+1)/(p−1) in the �rst term in (5.2), we �nd positive 
onstants λ1 and λ2 independent

on α and τ su
h that

E(a1−βτβ) ≤ λ1 + λ2|U(τ)|p+1.

On the other hand, by Lemma 2.1 we 
an say that |U(τ)|p+1
is large for α >> 1. Finally,

taking into a

ount (5.1a), it follows that U(τ)U ′′(τ) < 0 for every 
riti
al point τ . Thus,
U has only one 
riti
al point in (Zi−1, Zi), whi
h 
on
ludes the 
laim.

In addition, it is 
lear that U ′(t, α) > 0 for t ∈ (a, S1) and

(−1)iU ′(t, α) > 0 for t ∈ (Si, Si+1), i = 1, 2, . . . , k, (5.3)

(−1)kU ′(t, α) > 0 for t ∈ (Sk+1, Zk+1]. (5.4)

Lemma 5.1. Let W be the solution of (5.1
), (5.1d). Then, for ea
h i ∈ {1, 2, . . . , k +
1},W has at least one zero in (Zi−1, Zi).

Proof. We �x i ∈ {1, 2, . . . , k + 1}. As a 
onsequen
e of Theorem 1.2, there exists ri ∈
(zi−1, zi) su
h that w(ri) = 0. If we de�ne Ri = a3−NrN−2

i , we see that Ri ∈ (Zi−1, Zi)
and W (Ri) = 0. �XXX

Lemma 5.2. The Inequality (1.7) holds if and only if ([M(t)]−1/2)′′ < 0 for a < t < b.

Proof. Let t = a3−NrN−2
. Then [M(t)]−1/2 = Crρ[K(r)]−1/2

, where

C = β−p/2−1/2a−ρ
and ρ = 1

2 [p(N − 2) +N − 4]. Hen
e, we obtain

d

dt
[M(t)]−1/2 = CaN−3β[ρrρ−N+2K−1/2 −

1

2
rρ−N+3K−3/2K ′].

Moreover,

d2

dt2
[M(t)]−1/2 = Ca2(N−3) β

2rρ−2N+4

K1/2
×

[

ρ(ρ−N + 2)−
1

2
(2ρ−N + 3)

rK ′

K
+

3

4

(

rK ′

K

)2

−
1

2

r2K ′′

K

]

.

Sin
e r2K ′′/K = rV ′ − V + V 2, we have

4C−1β−2a2(3−N)K1/2

rρ−2N+4

d2

dt2
[M(t)]−1/2

= 4ρ(ρ−N + 2)− 2(2ρ−N + 2)V + V 2 − 2rV ′

= (V − 2ρ)(V − 2ρ− 4 + 2N)− 2rV ′

= [V − p(N − 2)−N + 4][V − p(N − 2) +N ]− 2rV ′.

From this, the lemma follows. �XXX
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6. Uniqueness result

In this se
tion we prove our uniqueness result for the problem















v′′(r) +
N − 1

r
v′(r) +K(r)|v(r)|p−1v(r) = C r−p(N−2)K(r), a < r < b,

v(a) = v(b) = 0, v′(a) =: α > 0,

v has exa
tly k zeros in (a, b),

(6.1)

where C > 0 is 
onstant.

First, we establish some fa
ts where the parti
ular form of q(r) := C r−p(N−2)K(r) is


ru
ial. Due to the de�nition of q, we obtain:

Lemma 6.1. Let U be a solution of (5.1a), (5.1b), and W be a solution of (5.1
), (5.1d).

Then, for a ≤ t ≤ b1,

d

d t

(

[M(t)]−1/2[W ′ U ′ −W U ′′]− ([M(t)]−1/2)′W U ′
)

= −([M(t)]−1/2)′′W U ′. (6.2)

Proof. By (5.1a), we note that U ′′′ = Q′ − M ′(t)|U |p−1U − pM(t)|U |p−1U ′
for every

a ≤ t ≤ b1. From here, and repla
ing U ′′
and W ′′

from (5.1a) and (5.1
) respe
tively, the

assertion follows from dire
t 
omputations. �XXX

Lemma 6.2. Assume that (1.7) holds. Let W be a solution of (5.1
), (5.1d). Then the

following hold:

(i) W (t) > 0 for t ∈ (a, S1].

(ii) W has at most one zero in (Si, Si+1] for ea
h i ∈ {1, 2, . . . , k}.

(iii) W has at most one zero in (Sk+1, Zk+1].

Proof. (i) Suppose that there exists t2 ∈ (a, S1] su
h that W (t2) = 0 and W (t) > 0
for t ∈ (a, t2). Then we have W ′(t2) < 0. Sin
e t2 ∈ (a, S1], then U ′(t2) ≥ 0, and
thus W ′(t2)U

′(t2) ≤ 0. Integrating (6.2) over (a, t2] and using Lemma 5.2, we get

W ′(t2)U
′(t2) > 0, whi
h is a 
ontradi
tion. The proof of (i) is 
omplete.

(ii) Assume that there exist t1 and t2 su
h that Si < t1 < t2 ≤ Si+1,W (t1) = W (t2) = 0
and W (t) 6= 0 for t ∈ (t1, t2). We may suppose that W (t) > 0 for t ∈ (t1, t2). Then we

have W ′(t1) > 0 and W ′(t2) < 0. Let U be a solution of (5.1a), (5.1b). Integrating (6.2)

over [t1, t2], then multiplying by (−1)i and using Lemma 5.2 and (5.3), we obtain

0 > (M(t2))
−1/2W ′(t2)(−1)iU ′(t2)− (M(t1))

−1/2W ′(t1)(−1)iU ′(t1) > 0,

whi
h is a 
ontradi
tion. The 
ase where W (t) < 0 for t ∈ (t1, t2) is treated in a similar

way. The proof of (ii) is 
omplete.

(iii) The proof is similar to the previous one and taking into a

ount (5.4). �XXX

Lemma 6.3. If v(r, α) is a solution of (6.1) with k zeros in (a, b), w = vα is a solution

of (1.6) and (1.7) holds, then (−1)iw(zi) > 0 for i = 1, 2, . . . , k + 1.
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Proof. By Lemmas 5.1 and 6.2, there exists a number C1 ∈ (S1, Z1) su
h that W (t) > 0
for t ∈ (a, C1),W (C1) = 0 and W (t) < 0 for t ∈ (C1, S2]. In parti
ular, we have

W (Z1) < 0. Also, from Lemmas 5.1 and 6.2 we see that there exists a number C2 ∈
(S2, Z2) su
h that W (t) < 0 for t ∈ (S2, C2),W (C2) = 0 and W (t) > 0 for t ∈ (C2, S3].
Sin
e C2 < Z2 < S3, we have W (Z2) > 0. Repeating the pro
ess, we 
on
lude that

(−1)iW (Zi) > 0 for ea
h i = 1, 2, . . . , k + 1. This implies that (−1)iw(zi) > 0 for ea
h

i = 1, 2, . . . , k + 1. The lemma is proved. �XXX

Using the previous lemma in the same way presented in [34, Lemma 2.2℄, the following

important ingredient in the proof of the main theorem is shown.

Lemma 6.4. Let k ∈ N and let v(r, α0) be a solution of (1.5) for some α0 > 0. If (1.7)

holds, then θα(b, α0) > 0.

Proof of Theorem 1.4. Re
alling Theorem 1.1, we see that (1.5) has at least one solution.

Now we show that the solution of (1.5) is unique. Assume, to the 
ontrary, that there

exist numbers 0 < α1 < α2 su
h that v(·, α1) and v(·, α2) are solutions to (1.5). Then

θ(b, α1) = θ(b, α2) = kπ.

Lemma 6.4 implies that θα(b, α1) > 0 and θα(b, α2) > 0. By the regularity of θα(b, ·)
we have that θ(b, α0) = kπ and θα(b, α0) ≤ 0 for some α0 ∈ (α1, α2). This 
ontradi
ts
Lemma 6.4 and, 
onsequently, (1.5) has only one solution. The proof of Theorem 1.4 is


omplete.
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