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Abstract. In this paper we establish the uniqueness of radial solutions for
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Sobre la unicidad de soluciones que cambian de signo

para un problema Semipositone en anillos

Resumen. En este articulo establecemos la unicidad de soluciones radiales
para un problema de Dirichlet, de tipo Semipositone, en un anillo, con un
nimero prescrito (grande) de regiones nodales. Las principales herramien-
tas usadas en este trabajo son el método del disparo y la transformacion de
Priifer.

Palabras clave: Semipositone, problema no homogéneo, unicidad de solu-
ciones que cambian de signo, problemas de Dirichlet con peso, problemas
elipticos no lineales.

Introduction and Statement of the Results

We consider the annulus  := {x € RN : 0 < a < ||z|| < b}, where N > 3. In this paper

we study the problem

Au—+ f(|lzll,u) =0, z €Q,
u(z) =0 for x € 09,

u has exactly k nodal regions in €,
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208 H. ApUEN & S. HERRON

where f([|z[|,u) = K(||z||) (Ju[P~'u — C||z||7PN=2)) for some constant C' > 0. Here, A
denotes the Laplacian operator and K € C?([a,b]) is a given positive weight which is
nondecreasing.

Because f(||z|,0) < 0 for every x € §2, our problem is called semipositone. These
problems are harder than positone even in the case of positive solutions (see [4], [26]).
When we are looking for positive solutions the difficulty is due to the fact that in the
semipositone case, solutions have to live in regions where the reaction term is negative
as well as positive (see [7]).

A radial solution u(r) of (1.1), where r = ||z||, satisfies

N -1
T

a<r<hb,

u’(r) + 0,
0. (1.2)

W/ (1) + K () (Ju(r) P~ ur) = CrorN =2 ) =
u(a) = u(b)

u has exactly k& zeros in (a,b).

To the best of our knowledge, uniqueness results about sign-changing solutions to (1.2)
(more general, in the semipositone case) are not known. By considering exterior domains,
a uniqueness result of nonnegative solution for a semipositone problem is achieved in [32]
(also see references therein). More recently, in [35] the author obtained uniqueness of
sign-changing radial solutions in some ball and annulus considering K = 1,C' = 0 and
the particular nonlinearity f(u) = |u[P~1u — u. In the superlinear context it seems hard
to get uniqueness of sign-changing radial solutions with a prescribed number of zeros.
Some previous works as, for instance, [34],[35] have attained such uniqueness, but at
the expense of giving up too much generality; some of these are homogeneous problems,
very particular geometry of the domain, specific cases of nonlinearity or impossing low-
dimensional domains. In this work we prove a uniqueness result for the problem (1.2) in
a ring-shaped domain restricted to

2(b/a)N 7t —1<p< (N +2)/(N—2). (1.3)

Note that these inequalities imply that b < a(N/(N—2))"/ (V=1 This is our compromise;
but we are able to get such uniqueness in a more general context, namely for a weighted
semipositone problem. We use some ideas inspired by the work of H. Aduén, A. Castro
and J. Cossio in [1]. We extend and improve a previous result exhibited in [1]. This im-
provement is reflected in several aspects: first, our nonlinearity K (||z||)|u[P~ u in place
of |u[P~!u; namely, the nonlinearity involves a weight. Second, our non-homogeneity also
has a weight and mainly, the third reason, the result of uniqueness. Tanaka, in [34],
considered the problem (1.2) in a ball with C = 0 and also demonstrated uniqueness.
Although our region is different, we compensate this difference considering an inhomo-
geneous problem, making it a more difficult problem of partial differential equation. In
this sense we can say that we have improved a theorem obtained in [34].

In order to face (1.1) we rewrite it in the form

Au+ K (||lz[Dlul"~ u = q(2]), = € @,
u(z) =0 for x € 09, (1.4)

u has exactly k nodal regions in €,
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On the uniqueness of sign-changing solutions to a semipositone problem in annuli 209

with ¢(||z||) := C - K(||z|)||z||~?¥=2) and C > 0 is a constant.

There are a lot of works related to the existence, nonexistence and multiplicity of radial
solutions for differential equations with the structure appearing in (1.4), but without the
nodal condition. Results about uniqueness of positive radial solutions are also known.
Almost all those results involve homogeneous problems, i.e., ¢ = 0 (see, for instance,
[6],[30],[31],[36]). In [6], the authors studied the equation Au + K (||z||)f(u) = 0, with
K € C? and they showed that the problem has at most one positive solution, assuming
f being sublinear, more precisely f(s)/s > f'(s) for s # 0. In [30] and [31], considering
the nonlinearity f(u) = |u|P~"'u, N > 3 and p > 1, the authors obtained uniqueness of
positive radial solutions under one additional condition over rK'(r)/K(r). In [36], the
author studied the same problem with K = 1 and f(u) = —u+wu? subject to the Dirichlet
boundary condition on an annulus in RY. As a by-product, his approach also provides a
much simpler, if not the simplest, new proof for the uniqueness of positive solutions to the
same problem, in a finite ball or in the whole space R". Without pretense of completeness,
we refer for instance to the papers [2],[9],[12], [17],[24], [25], [28], [27], [38], [39] and [40], as
well as the references therein, where results about uniqueness of positive radial solutions
can be found. On the other hand, by considering K = 1 and C = 0, Kajikiya in [23] and
the authors in [10] showed uniqueness to the differential equation in (1.1). In an annulus,
also uniqueness was obtained by Ni and Nussbaum [31] with K (t) = #,1 € R and C = 0.
Additionally, in [34] a uniqueness result for problem (1.1) was proved in the homogeneous
context (C' = 0). Also, in [22],[33], authors considered a sublinear nonlinearity. We must
mention that existence results have been obtained by Y. Naito [29] in the homogeneous
case. In relation to the case ¢ # 0 considered here, infinitely many radially symmetric
solutions were found in [8] while, more relevantly, [14],[15] showed results with a large
prescribed number of zeros. Other works as [1],[3],[5],[11],[16],[18],[19] also consider
nonhomogeneous problems. The references [3],[5] and [18] show existence of solutions
for the non-homogeneous elliptic equation Au+|u[P~tu+g(z) = 0 in RY and its weighted
version with nonlinearity K (z)u[P~tu in place of |u|P~1u. The results in [3], [5] and [18]
consider the range N/(N — 2) < p that covers the critical and supercritical variational
ones p > (N+2)/(N—2). In[3] and [5], it was considered bounded continuous force terms
g(x) while singular forces like g(z) = ||z||~7 were treated in [18]. Papers [11], [13],[19]
studied quasilinear equations but they do not showed a uniqueness result.

To investigate the uniqueness of nodal radial solutions of the problem (1.4), we consider
the following;:

N -1

V() + == () + K)o o) = g(r), a<r<b,
v(a) =v(b) =0, v'(a) =: a >0, (1.5)
v has exactly k zerosin (a,b),
where ' = dir and v(r) := u(z) with r = ||z||.

Since we apply the shooting method (cf. [20],[21], [37]), we study the initial value problem
(1.5) with v'(a) = a > 0 as the shooting parameter.

The following theorem is an existence result for (1.5) and it has been established by
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210 H. ApuEN & S. HERRON

Dambrosio [15, Theorem B].
Theorem 1.1 (Dambrosio). If 1 < p < (N 4 2)/(N — 2), then there exists k* € N such
that for every integer k > k* the problem (1.5) has at least one solution.

Let v(-,a) be a function that satisfies (1.5). Hence v,v’ € C!([a,b] x (0,00)) and

Vo (1, @) = g—”(r, «) is a solution of the linearized problem

«
N-1
w’ + ——w' + pK ()P lw =0, a<r<b,
r

w'(a) =1, w(a) = 0.

(1.6)

(See, for example, [37]).

Most of the lemmas or results presented here involving computations with the term of
the right hand side of the equation (1.5) are valid for more general functions ¢, more
precisely for continuous functions.

Our first result, aside from its own relevance, is crucial in our approach in order to get our
second theorem. It establishes the oscillatory behavior of the solution w to the linearized
equation (1.6). In other words, it exposes the interaction of the zeros of the solution v
to the inhomogeneous differential equation (1.4) with any bounded external force ¢ > 0,
and the respective solution w to the linearized equation (1.6). Thus, we can prove the
following theorem.

Theorem 1.2. There exists a1 > 0 such that if [v'(a)] > d1 and 21,22 are consecutive
zeroes of v, then the function w has a zero in (21, 22).

Remark 1.3. The previous result holds true for any bounded and positive function ¢ in
problem (1.5).

Let us define V (r) := rK'(r)/K(r) for r € [a,b]. Our main second result reads as follows:

Theorem 1.4, Let q(r) := Cr PW=2K(r) with K' > 0. There exists k* € N such that
if k> Ek* and if for all r € [a,b],

[V(r) —p(N —2) = N +4][V(r) — p(N —2) + N] = 2rV'(r) <0, (1.7)
then the solution of problem (1.2) ewists and it is unique.

Remark 1.5. Let us consider h € R and K(r) := r" for r € [a,b]. If p > max{N/(N —
2),2(b/a)N=t — 1} and

p(N—-2)—N<h<pN—-2)+N —4,

then the condition (1.7) is satisfied and therefore we get Theorem 1.4 with this weight K
and p € (N/(N —2),(N +2)/(N — 2)). Hence, there are examples of functions K that
give us uniqueness with p in the well-known gap (N/(N —2), (N +2)/(N —2)).

This paper is organized as follows. In Section 2 we prove some useful facts related to
the energy of the solution. In Section 3 we present technical lemmas and Section 4 is
devoted to show Theorem 1.2 which gives us a zero of the solution of the linearized
equation, between two consecutive zeros of the solution to the problem (1.5). Section 5
concerns the study of a transformed problem, which is equivalent to (1.5), and finally, in
Section 6 we prove Theorem 1.4.
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On the uniqueness of sign-changing solutions to a semipositone problem in annuli 211

2. Energy analysis

We will denote by 0 < m := min K and ||K||s = || K]

We define the energy function associated to a solution v:

/ 2 1 p+1
E(r,a) = E(r) [v"(r)]7 + m|v(r)| +1. (2.1)

1
2K (r)
Lemma 2.1. The energy function defined in (2.1) satisfies the following properties:

1. lim E(r,a) =+4oco wuniformly for all r € [a,].

a——+o00
2. There exist positive constants oy and Co such that for all o > ag anda < s <t < b,

CyE(s,a) < E(t,a) < 2E(s, o). (2.2)

Proof. Differentiating (2.1) with respect to r and applying (1.5) it follows that

a)'(ra) (N-1 K'Y\ o o
K(r) <7”K(r) + 2K2(,r)) [v"(r, )" (2.3)

Taking into account (2.3) and from the regularity of K and ¢ there exist positive constants
C :=||ql|/m and D := (N —1)/(ma) + || K||/(2m?), such that for all r € [a,b],

E'(r,a) > =C'(r,a)| = D' (r, )|

E/(T', a) =

> L)t = Do)
= —C — D (r,a)
Thus, if k; := 2||K||sD then
e (M E(r,a)) > (ki /2K (r) — D)W (r,))? = C > ~C. (2.4)
Hence (eM"E(r, a))l > —CeMb .= —k,. Integrating we obtain positive constants ks

and k4 such that E(r) > k3|a|?> — ks. This proves the first part of the lemma. Again,
a suitable integration of (2.4) on [s,t] gives us positive constants ¢; and cg such that
E(t,a) > c1E(s,a) — ca. From the previous inequality and the conclusion of the first
part of the lemma, there exists a1 > 0 such that for all @ > «; holds C2E(s, ) < E(t, ),
where CQ = 61/2.

On the other hand, for all r € [a, b] we have

E'(r,a) < CP' (r,a)| — mh}'(r, a)|?  (since K’ >0)
c* 1, 9
< - — Dalo' 2
<2 L e - Dol(ra)
02
T iD, @

where we took €2 = 1/2D,. Integrating on [s,t] we have E(t,a) < E(s,a) + c4. From
the first part of the lemma there exists as > 0 such that for all a > «ag, E(s,a) > ¢4.
Defining ag := max{ai, az} we get E(t,a) < 2E(s,a). This proves the second part of
the lemma. v
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212 H. ApuEN & S. HERRON

3. Preliminary lemmas

From now on, when we mention a solution v with k zeros in (a,b), we denote zy :=
a,zp+1 = b and z; as the ith zero of v(-,a) in (a,b) for ¢ = 1,2,...,k. Due to the
uniqueness of the initial value problem we note that v(-,«) and v’(-, ) cannot vanish
simultaneously. Thus z; is a simple zero and, moreover,

A d
(=) (z5,) = (—1)l%v(zi,a) >0 for i=0,1,2,...,k+ 1. (3.1)
Another useful tool that we need is the Priifer transformation for the solution v(-, @) of

the differential equation, with initial conditions in (1.5). We define the functions p(r, a)
and 6(r, @) by

v(r,a) = p(r, ) sin(r, a),
N=Ly'(r, a

T ) = p(r, ) cos O(r, a).

Thus we see that p(r, ) and 6(r, @) can be written in the form
plr.a) = (v2(r,8) + "N D[, 6)]2) /2 > 0

and (r.c)
v(r, o
0 = arct — .
(r,a) = arctan (TN—lv’(r, oz))
From v,v’ € C'([a,b] x (0,00)), it follows that p,0 € C'([a,b] x (0,00)). Straightforward
calculations give
@ N _ TN_l
2
for r € [a,b]. We will see that O(r,«) is strictly increasing in r € [a,b] for each a@ > 0
fixed and large enough. In fact, it is sufficient to show that v(r,a)q(r) < (v'(r,a))? +
K(r)|v(r,a)|P*t. For simplicity of notation we omit the arguments (r,a). Let s =
(p+1)/p,s" = p+1and ¢ > 0 be such that e’ = 1/m(p — 1), with m = min K.
From the first part of Lemma 2.1, there exists o® > 0 such that for a > o* we have
E(r, o) > €°|]q||%,/(2sm) uniformly in r. By using Young’s Inequality with this € we find

i e llgll5

(p+1)ertt s

(V' (r,@))? —v(r,a) q(r) + K(r)|v(r,a)[PT],

vg = (v/e)(ge) <

m(p—1)
p+1
< PP+ K ()Pt

|v|erl +2mE(r, a)

for every a > o* and uniformly in r € [a, b].

We note that p(a,a) = a¥~'a, and for simplicity we define §(a,a) = 0; therefore it is
simple to check that v(r, @) is a solution of (1.5) if and only if

0(b, ) = k. (3.2)
Hence, the number of solutions of (1.5) is equal to the number of roots oo > 0 of (3.2).

The following lemma is proved in the same way as Lemma 2.3 in [1].
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On the uniqueness of sign-changing solutions to a semipositone problem in annuli 213

Lemma 3.1. There exists M > 0 such that if |v'(a)| > M, then, between two consecutive
zeroes of v there is exactly one critical point.

Lemma 3.2. Given § > 0 there exists M1(6) = My > 0 such that if [v'(a)] > M1, then
29— 21 < § for any two consecutive zeroes z1, z2 of v. Moreover, M1(8) — +00 as § — 0.

Proof. Let ' be a fixed constant such that I' > (N — 1)(N — 3)6%/(4a®) + 6472 and
consider y satisfying, for all » > 0,

y'+ 2y + 5y =0,
y(0) =1, y'(0)=0.

By applying the Sturm’s comparison theorem (cf. [20],[21],[37]) with the solution ¢ to

the problem g + 6 y =0, y(0) =1 and ¢'(0) = 0, we conclude
)
d— 3.3
c< = 7 (3.3)
where ¢ < d are consecutive zeroes of y. Let Ka(§) = K2 > 0 be such that for |v] > Kj
holds lal r
p=1_ Nllee ) o & 34
(-1 ) 2 5 &4

Let t € (21, 22) be such that |v(s)| < K for all s € (21,t). Hence, recalling the definition
of the energy and taking into account 2E(s) > CoE(a), we get

Colv/(a)?  2KET!
v'(s)]? > K (s -2 . 3.5
W (s)P > ”<2||K||oo L (35)
Now, for some § € (z1,t) we have [t — z1| = |v(¢)|/|v(5)|. Considering (3.5), and if
4||K|| [ 8K?2 KP“
"(a)| > 2 =M. .

v <a>|{ o | S+t 2 (36)

we conclude ¢t — z; < $/m/K(5) < §/4. Similarly, if (3.6) holds and |v(s)| < K> for all

s € (t,22), then zo —t < /4.

Thus, if |v/(a)| satisfies (3.6) and [v/(a)| > M (from Lemma (3.1)) then v has a unique
critical point in (21, z2) and there exist ¢; < t9 in the interval (21, z2) such that |v| > K»
in [t1,t2] and |v] < Ka on [z1,t1] U [t2, z2]. We claim that to — ¢; < 6/2. In fact, if
to —t1 > 0/2 then, by (3.3), y has at least two zeroes in [t1,t2]. Hence, by the definition
of t1,t2 and the Sturm Comparison Theorem (keeping in mind (3.4)), v has a zero in
(t1,t2), which is a contradiction. Hence, to —t; < 6/2 and 22 — 21 < 4. Therefore, the
first part of the lemma is proved.

From (2.2),

E(t,v'(a)) > C2|v'(a)|?/ (2| K]]) = 677,
provided that
2| K|

!
> .
HOEE =
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214 H. ApuEN & S. HERRON

Thus, the second part is achieved by choosing

M, (0) == max{M, My, \/2||K]|/(6C>) }.

The lemma is proved. v

4. Proof of Theorem 1.2

Proof. Define M* :=2((N —1)/a)(b/a)N =1, §o := (p—1)/(3M*),

pi1 2

o2, IEI |2 (pHllallee) ™ | lall5(b=a) (p+ 1K,
Gy |p+1l\p—-1 m m p—1 m ’

2 2 +1
g2 o LEI[ L (llallo\* (p 21K, ), 2 (4 gl )7

Oy |m\ M p—1 m p+1\p—1 m
and R
ay := max{ag, M, M1(dp), P, U}. (4.1)

Since z; and zo are consecutive zeroes of v we may assume, without loss of generality,
that v > 0 in (21, 22).

Suppose that w > 0 in (21, 22) (similar arguments prove the case w < 0 in (z1,22)). Let
p € (21, 22) be such that v'(p) = 0. Since a3 > M, by Lemma 3.1, v(p) = max{v(r) : r €
(21,22)}. By (4.1) and Lemma 2.1,

1 (@+mmu>w””.

E(p,v'(a)) = E(p) > p+1 U mlp-1)

From here follows v?(p) > [(p + 1)/(p — D)][l|lg|lco/m]. Thus, by the Intermediate Value
Theorem there exist ¢1,t2 such that z; < t; < p < t2 < 29 and

@+ Dlalle

V) = (p—1)m

= vP(ts). (4.2)

Multiplying (1.5) by 7¥~tw and (1.6) by r¥~!v, and integrating by parts on [s,t] C
[t1,t2] we have

N (w'y — v'w)(t) — sV (w'v — vw)(s)

t (4.3)
+ [ Yo - DRl + gu)dr =0,
Claim: w'(p) < 0.
Proof of the claim. Suppose that w’(p) > 0. Thus
p
—sV N w'v — v'w)(s) + / N H(p — DK (r)|v]P + qw(r)dr <0, (4.4)

for any s € [t1, p).

[Revista Integracion



On the uniqueness of sign-changing solutions to a semipositone problem in annuli 215

On the other hand, for s € [t1, p] we have (from (1.6))

P
Nl () = N () [ RO () (45)
Since the right hand side of (4.5) is positive, it follows that w’(s) > 0 for s € [t1, p],
which implies that w is increasing on that interval. Thus w(s) > w(ty) for all s € [t1, p].
Multiplying the ODE in (1.5) by 7V ~! and integrating we get

0 (f) = / rNTHE (r)o? () — g(r) dr- (4.6)

By using (4.2) and v(¢t;) < wo(r) the right hand side is less than or equal to
P pN=YK (r)oP(r) + mE=vP(r)] dr, and hence

—1,/ 2p P oN-1 p
tY 1 (1) < o1, rNTLK ()0 (r) dr. (4.7)
Now, ,
) PN (p = DE(r)[of” + g(r))w(r)dr
> w(tl)/prN Hip = DE(r)]of? + q(r)] dr
t (4.8)

> f%tf—lw(tl)v’(tl) (by (4.6) and (4.7)).
We also observe that we have used the fact

(= DE @0 +q(r) = (p— Dmlol(t) +q(r) > (p+ 1)llal] — [lgl| > 0.
Combining (4.4) and (4.8) we obtain

-1
Ny — vw) () + I’Tt{V ~Luw(t )’ (t1) < 0. (4.9)

Since r +— vV ~1w/(r) is decreasing in (21, z2) (see (1.6)) then for t € (21,t1], tV 1w/ (t) >
tN =1/ (t1), and thus, by (4.9),

W/ (6) > (E 2 yultn)o! (0 fo(t).

Therefore
(p — Dw(t1)v'(t)

w(ty) > w(ty) —w(z) > 20(t1)

(t1 — z1). (4.10)

By Taylor’s formula

0=wv(z1) =v(t1) +v'(t1)(t1 —z1) + 2(0 (t1 — 21)?
= 'U(tl) + U,(tl)(tl — Zl) (411)
-5 {E O KOR O - a0 - 2
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216 H. ApuEN & S. HERRON
for some ¢ € (z1,t1). Also, by (1.5),

VR () =tV (1) + / 1 rNTHE (r)oP (r) — g(r))dr
¢

K] (4.12)
< oo + (B g - 20
The above and (4.1) give
v'(¢) < (b/a)N 7120/ (1), (4.13)

In order to see this, according to the definition of @3 and by the second part of Lemma
2.1, C2®? < Co|v/(a)|? = 2C2K (a)E(a) < 203||K||E(a) < 2||K||E(t1), which implies

2 1 N2 2 (p+1)/p
lgll2, (b — a) (p+1||K||+1> L2 (p+1llqlloo) <28 (1),

m p—1 m p+1l\p—1 m

and due to (4.2),

+

gl (b — a) <p+1||K|| 1) <2B(t) - —2 <p+1|q|oo>

m -1 m p+1 -1 m

= v/ (1) /K ().

From this and (4.12) we have (4.13).
On the other hand,

Co¥? < Colv'(a)|? = 202K (a)E(a) < 2Cs||K||E(a) < 2||K||E(ty).

Reasoning as before we prove that

+1 K] .
m

and combining it with (4.13) and (4.11) we get

(T2t + (P 0 1)) - a2
* Ul(tl)(tl — Zl)z.

From (4.10) it is clear that t; — 21 < 2v(t1)/((p — 1)v/(#1)). Taking into account (4.14),

(4.14)

4M*U/(t1)112(t1)
(p =12/ (t1)]*
or equivalently, v/ (t1) < 4M*v(t1)/(p — 1)2. Then, by using (4.14),

v(t1) (p—1)°
Mro(t) = A

’U(tl) S

(22— 21)> > (t1 — 21)% >

which implies
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On the uniqueness of sign-changing solutions to a semipositone problem in annuli 217

This contradicts Lemma 3.2 and thus the claim is proved. Therefore
w'(p) < 0.

Using the previous inequality, taking ¢ = t5 and s = p in (4.3), we have

1y (w'v — v'w)(t2) "' (p)v(p)

= pN_
B /p N (= DR ()P (r) + g(r)w(r)dr (4.15)

<= [ e - DKWY + ol

Multiplying the ODE in (1.6) by 7V ~! and integrating in [p, s] with s € [p, t2] we prove
that w is decreasing in [p, t2]. Using the same procedure with the ODE in (1.5), we arrive
to

) = [ PR ) — gl dr

: / VLK (o (1) + [lgl]) dr
. 1) (4.16)

_ / erl[K(r)vp(rH%vp(tg)] dr
2p b2 1 »

< PR} ’ rN LR ()P (r) drr,

In a similar fashion as in (4.8), and using (4.16), we conclude
" P—1 na
/ PV (p = DE ()" (n) + q(r)w(r) dr > ===t~/ (t2)w(t2).
P

This implies that (4.15) becomes

-1
N (w'v — v'w)(ta) < I’Ttgv ~L/ (£ Jw(ts). (4.17)

Now, we concentrate on the corresponding subinterval to the right of p. Since the map

= N1/ (1) is decreasing in (21, z), taking t € [ta, 22) we get t5 1w’ (to) > tN 1w/ (t),

and by (4.17),

_ 1 -1 N_ _
) < s [P ) () + 6 () ()]
and thus,

/ p+1 (2wt (t2)] p+1 ra\N-1w(tz)|v'(t2)]
wt) S == <_) o) = 2 (3) o)

Therefore

p+1 (a)N—1 w(tz)[v' (t2)]

—U}(tg) < U}(ZQ) — w(tg) < —— U(tg) (22 — tg). (418)
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As before, by Taylor’s formula,

0= vlz) = vl(ta) +0/(t2) (22 — 1) + ) (2 — to)?
= v(t2) +0'(t2)(22 — t2) (4.19)
B kO @ -0} G- w2

for some 7 € (2, 22). On the other hand,

NN (1) = 15 M (t2) + /T rN g (r) = K(r)oP (r)) dr

ta

and [;, N 7K (r)o? (r) — q(r)] dr < 7N K| g2 + Dllal|(r — t2) imply

K 1
PN () > 1 () — 7V <|| llp+
m p

1) laltr = ),

Moreover, |v/(7)] < (b/a)™ v/ (t2)] + (—”ﬁ + 1) llg||(T — t2). From the definition of
® it is clear that

28 < Caolt/ (a)]? = 202K (a) Ea) < 205K | E(a) < 2|| K| E(t),

and thus
2 2 otd
0 e (IR <oy - 2 (nttlale)
m -1 m p+1 -1 m
=2E(ty) — 1vp+1(t2)
= |v'(t2)|? /K( 2) < [V (t2)?/m.
Consequently, (%g—i + 1) llgl|(T — t2) < |v'(t2)], and therefore
[0'(7)] < [(0/a)" ™1 + 1]/ (t2)]- (4.20)

Also, as we mentioned, it is simple to check that
p+1 IIK I, ‘
ol (25 < M (1)

Combining (4.20), (4.19), the previous inequality, v(7) < v(t2) and replacing the second
equality of (4.2), we have

olte) < 3 { S0/ )+l (DD 1) e - 2

—V'(t2)(22 — t2)
<O (t2)[(22 — t2)? = ' (2) (22 — t2).
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Here © := L {&=L[(b/a)N "1 + 1]+ M*} =
computation shows that

—1[3(b/a)N~! + 1]. Now, an elementary

102 0v/(t)

1\*_ 1 v(ts)
— J— >
<zz to + 2@) =

Next, using (4.18), we deduce

2

1 1 1p+1a\N-1

ot ) > (-) — ).
<Z2 2+2@> “ete 2 \p) (oh)

This implies that zo—t2 > (1/0) (p_—|2—1 (%)Nfl - 1) > 0, provided that p+1 > 2(b/a)N 1

(see (1.3)), which contradicts Lemma 3.2.

This second contradiction implies that w cannot be positive on (z1, z2). Replacing w by
—w in the above arguments we see that w cannot be negative at all points in (z1, 22).
Hence w must have a zero in (21, z2), which proves our Theorem 1.2. v

5. Transforming the problem

We recall that ¢ : [a,b] — R is a differentiable function. By using the transformation
¢ : [a,b] — [a,a®> NN =2] given by ¢(t) = a®> NtV =2 we transform (1.5) into a new
annulus and a new problem. In fact, we define

Ut,a) = a YN — 2)tv(a' =Pt a), W(t) = a Y(N — 2)tw(al=PtP),

with f = 1/(N — 2), v the solution of (1.5) and w the solution of (1.6). Notice that
U(a) = 0 = U(b1) and U'(a) = «, where by := a3 VbpVN=2 Then U = U(t,a) and
W = W (t) satisfy

U (1) + MOUP U @) = Q(t), a <t < by, (5.1a)

Ula) =0, U'(a) = a, (5.1b)

W () +pM@®)|UP*W () =0, a <t < by, (5.1c)

W(a) =0, W'(a) =1, (5.1d)

where M(t) = prtlaP=20+1426-r=1K (a1 =AtF) and Q(t) = Ba'~2Pt2P~1q(a' = tP). We

define Z; = ¢(z;) = a®> NzN"2, i=0,1,2,...,k + 1. Then we see that

U(Zi,a) =0, for i=0,1,2,....k+1,
(1)U (t,a) >0 fort € (Zi_1,Z;), i=1,2,....k+ 1.
Also, there exist S; € (Z;—1, Z;) such that U'(S;,a) =0, for i = 1,2,...,k+ 1 and «

large. Actually, S; is unique as we show next. It is easy to check that v'(a'=Pt%) =
aPt=PU'(t) — t~U(t)]. Therefore,

E(a'=Pt?, a,v) = E(a'=PtP)

2[3.{/.—2[3
a4 (8) — T U)]2 +

- aptl—p—1
EETRUTE

(p+1)(N -2)

(U
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Particularly, if 7 € (a,b;) is a critical point of U, then

28 -—2p—-2 +1.,-—p—1
E(a[liﬂfrﬂ) o a~"T 2 ap T p

“ @ Ot g g VO 62

Applying the Young’s Inequality with ¢ = 72,5 = (p + 1)/2 and its conjugate r =
(p+1)/(p—1) in the first term in (5.2), we find positive constants A; and A2 independent

on « and 7 such that
E(al’ﬂTﬂ) <A+ >\2|U(T)|p“.

On the other hand, by Lemma 2.1 we can say that |U(7)[P*! is large for « >> 1. Finally,
taking into account (5.1a), it follows that U(7)U" (1) < 0 for every critical point 7. Thus,
U has only one critical point in (Z;_1, Z;), which concludes the claim.

In addition, it is clear that U’(¢,«) > 0 for ¢ € (a,S1) and

(=1)'U'(t,a) >0 forte (S;,Siy1), i=1,2,...,k,

(=D*U'(t,a) >0 for t € (Ski1, Zia]. (5.4)
Lemma 5.1. Let W be the solution of (5.1c), (5.1d). Then, for each i € {1,2,...,k +
1}, W has at least one zero in (Z;—1, Z;).

Proof. We fix i € {1,2,...,k+ 1}. As a consequence of Theorem 1.2, there exists r; €
(2i—1, %) such that w(r;) = 0. If we define R; = a®> Nr¥ ™2 we see that R; € (Zi_1,Z;)

and W(R;) = 0. 4
Lemma 5.2. The Inequality (1.7) holds if and only if ([M(t)]=/2)" <0 fora <t <b.

Proof. Let t = a® NrN=2 Then [M(t)]='/2 = Cr?[K (r)]~'/?, where
C = B7P/27Y2q7F and p = $[p(N — 2) + N — 4]. Hence, we obtain

%[M(t)]—l/Q — CCLN_Bﬁ[pr_N+2K_1/2 _ %TP_N+3K_3/2K/].
Moreover,
d? —1/2 o(N—z) BErPT 2N+
1 rK' 3 (rK'\* 1r2K"
—N+2)—-2p—N+3 - - = .
o~ N2 - - N3+ () -3 K]

Since K" /K =rV' —V + V2 we have
AC1372g2B-N) E1/2 g2
p—2N+4 12
=dp(p—N+2) =220 =N +2)V+ V220V’
—(V—2p)(V —2p—4+2N) —2/V"
= [V —p(N—2)—N+4][V—p(N—2)+N] - 2V".

M)~

From this, the lemma follows. v

[Revista Integracion



On the uniqueness of sign-changing solutions to a semipositone problem in annuli 221

6. Uniqueness result

In this section we prove our uniqueness result for the problem

N=Li) + K@) P-toi) = CrrS-2KG), a<r<b

v(a) =v(b) =0, v'(a) =t a >0, (6.1)
v has exactly k zerosin (a,b),

v (r) +

where C' > 0 is constant.

First, we establish some facts where the particular form of ¢(r) := Cr PN=2D K (r) is
crucial. Due to the definition of ¢, we obtain:

Lemma 6.1. Let U be a solution of (5.1a), (5.1b), and W be a solution of (5.1c), (5.1d).
Then, for a <t < by,

d

= (M@ T - WU - (M)W ) = —(M )W (62)

Proof. By (5.1a), we note that U = Q' — M'(t)|U[P~1U — pM(#)|U[P~1U’ for every
a <t < b;. From here, and replacing U” and W from (5.1a) and (5.1c) respectively, the
assertion follows from direct computations. v

Lemma 6.2. Assume that (1.7) holds. Let W be a solution of (5.1c), (5.1d). Then the
following hold:

(i) W(t) >0 fort € (a,S1].
(ii) W has at most one zero in (S;, Si+1] for each i € {1,2,...,k}.

(iii) W has at most one zero in (Sk+1, Zi+y1)-

Proof. (i) Suppose that there exists 2 € (a,S1] such that W(tz) = 0 and W (t) > 0
for t € (a,t2). Then we have W'(t3) < 0. Since t3 € (a,S1], then U'(t2) > 0, and
thus W'(t2) U'(t2) < 0. Integrating (6.2) over (a,t2] and using Lemma 5.2, we get
W'(t2) U'(t2) > 0, which is a contradiction. The proof of (i) is complete.

(ii) Assume that there exist ¢; and to such that S; < t1 < to < S;j41, W(t1) =W(t2) =0
and W(t) # 0 for t € (t1,t2). We may suppose that W (t) > 0 for t € (¢1,t2). Then we
have W'(t1) > 0 and W’(t2) < 0. Let U be a solution of (5.1a), (5.1b). Integrating (6.2)
over [t, 2], then multiplying by (—1)* and using Lemma 5.2 and (5.3), we obtain

0> (M(t2)"/2W/ (t2)(=1)'U" (t2) — (M (t2)) " /2W' (1) (~1)'U" (t12) > 0,

which is a contradiction. The case where W (t) < 0 for t € (¢1,t2) is treated in a similar
way. The proof of (ii) is complete.

(iii) The proof is similar to the previous one and taking into account (5.4). 4

Lemma 6.3. If v(r,a) is a solution of (6.1) with k zeros in (a,b), w = vy is a solution
of (1.6) and (1.7) holds, then (—1)w(z;) >0 for i =1,2,...,k+ 1.
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Proof. By Lemmas 5.1 and 6.2, there exists a number Cy € (S1, Z1) such that W(¢) > 0
for t € (a,C1),W(C1) = 0 and W(t) < 0 for t € (C4,S2]. In particular, we have
W(Z1) < 0. Also, from Lemmas 5.1 and 6.2 we see that there exists a number Cy €
(S2, Z2) such that W(t) < 0 for ¢ € (S2,C2), W (Cs) = 0 and W(t) > 0 for ¢ € (Cs, Ss].
Since Cy < Z3 < S3, we have W(Z3) > 0. Repeating the process, we conclude that
(—=1)'W(Z;) > 0 for each i = 1,2,...,k + 1. This implies that (—1)%w(z;) > 0 for each
i=1,2,...,k+ 1. The lemma is proved. v

Using the previous lemma in the same way presented in [34, Lemma 2.2], the following
important ingredient in the proof of the main theorem is shown.

Lemma 6.4. Let k € N and let v(r, ag) be a solution of (1.5) for some ag > 0. If (1.7)
holds, then 0,,(b, o) > 0.

Proof of Theorem 1.4. Recalling Theorem 1.1, we see that (1.5) has at least one solution.
Now we show that the solution of (1.5) is unique. Assume, to the contrary, that there
exist numbers 0 < a; < g such that v(-, 1) and v(-, a2) are solutions to (1.5). Then

9([),0[1) = O(b,ag) = k.

Lemma 6.4 implies that 0,(b,@1) > 0 and 6,(b,as) > 0. By the regularity of 6,(b, )
we have that 0(b, ag) = k7 and 0,(b, o) < 0 for some ag € (aq, 2). This contradicts
Lemma 6.4 and, consequently, (1.5) has only one solution. The proof of Theorem 1.4 is
complete.
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