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Abstract. In his paper, “The group of automorphisms of the Fermat curve”
(see [7]), Tzermias proved that the automorphism group of the projective
Fermat curves in characteristic 0 is the semidirect product of the direct sum
of 2 copies of the cyclic group of order n and the symmetric group on 3 letters.
In this paper we present an alternative proof of this fact accessible to someone
with basic knowledge of Riemann surfaces and group theory. Also we include
the geometric correspondence of the action.
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El grupo de automorfismos de las curvas de Fermat

Resumen. Pavlos Tzermias en su articulo “The group of automorphisms of the
Fermat curve” (ver [7]), prueba que el grupo de automorfismos de las curvas
de Fermat proyectivas en caracteristica 0 es el producto semidirecto de la
suma directa de 2 copias del grupo ciclico de orden n y el grupo simétrico
de 3 letras. En este articulo se presenta una prueba alternativa de este hecho
accesible para alguien con conocimientos bésicos en superficies de Riemann
y teoria de grupos. Ademas, se incluye la correspondencia geométrica de la
accion.

Palabras clave: Superficies de Riemann, automorfismos.

1. Introduction

If S is a Riemann surface, then we denote by Aut(S) its group of conformal automor-
phisms. If F(z,y, z) is a nonsingular homogeneous polynomial, then the projective plane
curve W, which is the zero locus in CP?, is a compact Riemann surface. The automor-
phism group of an algebraic curve is one of its most important invariants. Such a group
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is finite, except for rational and elliptic curves. The construction and classification of
curves with large automorphism groups with respect to their genera has been considered
a relevant problem in algebraic geometry. A landmark paper in this direction is [3],
in which Hurwitz proved his bound |Aut(W)| < 84(g(W) — 1), valid for any complex
(projective, geometrically irreducible) algebraic curve W of genus g > 2. The Hurwitz
bound is attained by the Klein quartic. For a long time, various authors sought to find
Riemann surfaces with a finite automorphism group attaining a given bound. Macbeath
in [5] showed that there are infinite values of g (the genus) for which the Hurwitz bound
is attained, and also infinite values of g for which the bound isn’t attained. Thus, group
theory is an essential tool in this area. In fact, groups provide a unifying framework for
topics such as geometric symmetry, permutations, matrix arithmetic and more. Group
theory is vital in many areas of mathematics (algebra, number theory, geometry, har-
monic analysis, representation theory, geometric mechanics) and in areas of science such
as theoretical physics and quantum chemistry.

In this paper we focus on the (projective) nonsingular plane algebraic curve
F(n)={[X:Y:Z] €CP?: X" +Y" + Z" = 0},n > 4, called the nth Fermat curve. In
[7], Tzermias proved that the automorphism group of F'(n) is a semidirect product of the
direct sum of 2 copies of the cyclic group Z,, of the order n, and the symmetric group
on 3 letters S3. Leopoldt did the same in his paper [4], including the cases over fields of
positive characteristic. Here, we will give an alternative proof of this fact from a different
point view. We also study some geometric properties of F'(n), and we shall describe the
geometric action of its automorphism group.

2. Preliminaries

We start recalling some known results about group actions.

An abstract finite group G acts on genus g > 2 if it is (isomorphic to) a group of
automorphisms of some compact Riemann surface of genus g. We say that G acts as
a full group on genus g if G is the full automorphism group of some compact Riemann
surface of genus g.

Suppose that G acts on genus g and let VW be a compact Riemann surface of genus g,
for which G C Aut(W). We write G =T'/A when I" and A are Fuchsian groups, and A is
a normal subgroup of I', with signature (g; —). If T has signature (v; m1, ma, ..., m,.), we
say that G acts on genus g with signature (v;m1, ma, ...,m,); and if G = Aut(W), we say
that G acts as full automorphism group on genus g with signature (vy; m1, ma,...,m;). G
may act with different signatures on the same genus g.

If G is a finite group of conformal automorphisms of the compact Riemann sur-
face W, we will denote by W/G the quotient Riemann surface. The branched
covering wg : W — W/G may be partially characterized by a vector of numbers
(v; m1, ma,...,m,.), called signature (or branching data) of G on W, where ~ is the
genus of W/G, r < 2y + 2 is the number of branch values of the covering and the m; are
positive integers associated to the branch values on W/G (they represent the degree of
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injectivity of m¢ at that point). The Riemann-Hurwitz formula (see [6])

o203 (1)) W

i=1

26—2=|G|

must be satisfied by the integers mq, ms, ..., m, in the signature. This imposes restrictions
on |G| and the branching data that can occur.

Broughton, in his paper [2], define a generating (y; m1,ma, ..., m,)-vector as follows.

Definition 2.1. A 2y +r tuple (a1, as, ..., ay, b1, b2, ..., by, c1, C2, ..., ¢;) of elements of G is
called a generating (v; m1,ma, ..., m,)-vector if it satisfies:

1. G= <a1,a2, ...,a,y,bl,bg, ...,bny,Cl,CQ, ...,CT>,

2. order (¢;) = my,

3. ITlaib ]Hcg—l

’:]4

=1

The following theorem is the basic theorem translating the topological problem of cons-
tructing group actions to a problem in finite group theory (see [1],[2],[8])-

Theorem 2.2. Riemann’s existence Theorem
A finite group G acts on a Riemann surface W of genus g, with signature
(’Ya my,ma, "'amr); Zf and Only Zf

1. The Riemann-Hurwitz formula is satisfied;

2. G has a generating (y; mi1,ma, ..., m,)-vector.

3. Fermat curves

Let n > 4. The projective Fermat curve of degree n over C is the algebraic non singular
curve
F(n)={[X:Y:Z]€CP*: X" +Y" + 2" = 0}.

It is well known that F(n) is a smooth compact Riemann surface of genus

(n—1)(n-2)
g(F () = S0
We are interested in finding the automorphisms group of the projective Fermat curve of
degree n over C. Let G = Aut(F(n)) be the group of automorphisms of F(n). Then G
is a finite group; in fact, |G| < 48n(n — 3). Let w = e be a nth primitive root of unity
and let ¢; : F(n) — F(n), i=1,2,3,4, be a function given by :

0 ([ X:Y:Z]) =1V, X, 7],
P2 ([X:Y:2]) = [Z,X,Y],
o3([X:Y:Z]) = [wX:Y:Z],
([ X:Y:Z]) = [X:wY:Z].
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Then for each ¢, ¢; is an automorphism of F(n). It is clear that (¢1, ¢2) < G is isomorphic
to Ss, the symmetric group on 3 letters. Also (@3, ¢4) < G is isomorphic to Z,, X Zi.
From now on, we will use the notation S3 and Z,, X Z,, to refer to the above subgroups

of G.

Let H be the subgroup of G generated by Ss3 and Z, x Z,. It is easily seen that
S3N (Zn X Zn) = {1}. Also

$1(d3(07 ' ([X:Y:2])) = 0a([X:Y: Z)); pu(da(ey ' ([X:Y:2]))) = ¢5([X:Y: 2));

G2 (s (3 (XY 2]))=¢a([X:Y: Z])); ¢o(oa(dy ' ([X:Y:2]))) =05 (¢7 ' ([X:Y:2))).
Then Z,, x Z, is a normal subgroup of H. Therefore, H = (Z,, x Z,,) x S3 and |H| = 6n2.

The following theorem was proved in [7]; here we shall prove the same theorem from
another point of view.

Theorem 3.1. Let n > 4 and G the automorphism group of F(n). Then G = H.

Proof. On one hand, since H < G and |H| = 6n?, we get |G| = 6n?*m, for some positive
integer m. On the other hand, G acts in F'(n) and we will denote by F'(n)/G the quotient
Riemann surface. Let w : F'(n) — F(n)/G be the natural projection and let r; be the
corresponding ramification indices. Then, by the Riemann-Hurwitz formula (1), we have

n(n —3) = 6n*m <2g(F(n)/G) -2+ Z <1 - %)) ’
i=1

K3

where r > 0, r; > 2, for ¢ = 1,2,---,r. Also, we have g(F(n)/G) = 0. Indeed, if
g(F(n)/G) > 1, then n — 3 > 3nm, which is absurd. So we obtain

n—3:6nm<—2+§:<1—%>>. (2)
P ;

Asn >4, wehaven—3 >0,s0 R = 22:1 (1 — %) > 2. It is clear that » > 3. Moreover

i

we can see that each point in the set S = {[X:Y:Z] € F(n) : XYZ = 0} is fixed by a
subgroup of size 2n. First, we can see that the points [X :Y : Z] € F(n) such that not
all its entries are non-zero are in the same orbit. In fact, if X = 0, then (Y/2)" = —1,
so we have n points [0 : e™/"w’ : 1], with j = 0,1,--- ,n—1; if Y = 0, we get the points
[em/mwi 0:1],5=0,1,---,n—1; and if Z =0, [e"/"w/ :1:0],j=0,1,---,n— 1.
These points belong to the same orbit, since ¢4([0 : e™/"w’ : 1]) = [0 : e™/"wWi T 2 1],
$1([0 : €™/ mwl 1 1]) = [e™/mw’ 1 0: 1] and ¢5 ([0 : €™/"w’ : 1] = [¢™/"w : 1:0]. Thus,
if p € S, then p is fixed by a subgroup of H of order 2n (for example, the stabilizer
subgroup of p = [0 : ™/ : 1] is H, = (p1), where ¢,[X :Y :Z] = [X : wZ:Y]); then
the stabilizer subgroup of p, G, has order at least 2n, and therefore r; > 2n, for some
i =1,---,r. We can assume ry > 2n.

If » > 4, we have R > %4—(7‘—1)—2;2%2 %-}-Tgl > %+%:%,becausem22,
for i = 2,3,---,r. Then, replacing in (2), we get n — 3 > 2nm, which is impossible.

Therefore r = 3.
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As R =3~ (7 + ;- + ;-) > 2, then we can’t have r; = 2 for more than one value of
i=1,2,3.

Summarizing, we have that the signature of the action of G in F'(n) is (0;71,72,73), with
r1 > 2n,ry > 3 and rg > 2.

Replacing in the 2 we obtain

1 1 1 1 1
n—-3=6nm(l1—-(—+—+— >6nm|=——], thenn—3>(n—3)m;
re Ty T3 6 2n

thus m = 1, and G = H is claimed, also the signature of action of G in F'(n) is (0; 2n, 3, 2).
v

In the following section, we describe the action of G = (Z,, x Z,) x Ss in the projective
Fermat curve F'(n), n > 4.

4. Geometric correspondence

As has been seen here, the automorphism group, G, of the projective Fermat curve is
generated by the automorphisms ¢, ([X:Y :Z]) = [V, X, Z], ¢2([X:Y : Z]) = [Z: X :Y],
$3([X:Y:Z]) = [wX:Y:Z] and ¢u([X:Y : Z]) = [X : wY : Z], and acts in F(n) whit
signature (0;2n,3,2). In this section we will give a realization of the ramification type
(0;2n,3,2) by finding a set of generators of G that satisfy the signature.

Proposition 4.1. Let n > 4 and a = ¢psd3¢5 1, b = pad3 and ¢ = ¢1¢5 " elements of
G. Then G acts in F(n) with signature (0;2n,3,2) and (a,b, c) is a generating vector of
type (0;2n,3,2).

Proof. As we saw before, the signature (0;2n,3,2), satisfies Riemann-Hurwitz formula
(see (1)). As a,b,c€ G, (a,b,c) < G and

a([X:Y: Z]) = gagsdry 1 ([X 1Y : 2))
= du(¢3(dy ([Y: X:2))))
= ¢a(¢3([X:Z:Y]))
= (WX :wZ:Y]) =[X:Z:w Y],
b([X:Y:Z]) = ¢pa0p3([X:Y : Z])
=¢o([wX:Y:Z])=[Z: wX:Y],

(XY 2]) = oy (XY 2))
= o1(¢y ([X:Y:2))) = ou([Y:Z2: X)) = [Z:Y : X],
we get that |a| = 2n, |b| = 3, |¢| = 2. Moreover, abc = 1. In fact

abe([X:Y:Z]) = a(b([Z:Y : X]))
=ao([X,wZ,Y]) = [X:Y:Z].
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Finally, we will prove that G = {(a,b,c). Since a }([X : Y : Z]) = [X,wZ,Y] and
V(X:Y:Z]) = [Y,wZ,wX], we get

ack*([X:Y :Z]) = a(c([Y,wZ,wX]))
=a(wX:wZ:Y]) =[wX:Y:Z] =¢3([X:Y:Z]),

a D2 eb([X:Y:Z]) = a (b (c([Z: wX :Y])))
=a 'Y :wX:Z]) =a 1 ([X:Z:Y))
=[X:wY:Z] = ¢u([X:Y:2]),

bps XY Z) = b(w™ XY :Z])
=[Z:X:Y] =¢([X:Y:Z]),

by te([X:Y:Z)) = ¢5 ([Z:Y: X))
=[Y:X:Z]=6([X:Y:Z2]).

Hence (a, b, ¢) = G. Thus, according to the Riemann’s existence Theorem 2.2, (a, b, c) is
a generating vector of type (0;2n, 3,2). ]
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