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Abstract. Given a sequence of moments {c, },cz associated with an Hermi-
tian linear functional £ defined in the space of Laurent polynomials, we study
a new functional Lo which is a perturbation of £ in such a way that a finite
number of moments are perturbed. Necessary and sufficient conditions are
given for the regularity of Lq, and a connection formula between the corres-
ponding families of orthogonal polynomials is obtained. On the other hand,
assuming Lo is positive definite, the perturbation is analyzed through the
inverse Szeg¢ transformation.
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Sobre una perturbaciéon finita de momentos de un
funcional lineal y la transformacion inversa de Szegé

Resumen. Dada una sucesion de momentos {c, }nez asociada a un funcional
lineal hermitiano £ definido en el espacio de los polinomios de Laurent, es-
tudiamos un nuevo funcional L que consiste en una perturbacion de £ de
tal forma que se perturba un ntmero finito de momentos de la sucesion. Se
encuentran condiciones necesarias y suficientes para la regularidad de Lq, y
se obtiene una formula de conexion que relaciona las familias de polinomios
ortogonales correspondientes. Por otro lado, suponiendo que L, es definido
positivo, se analiza la perturbacion mediante de la transformacion inversa de
Szegd.
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40 E. FUeENTES & L.E. GARzZA

1. Preliminaries and introduction

Consider a linear functional £ defined in the linear space of Laurent polynomials A =
span{z"}nez such that £ is Hermitian, i.e.,

cn =(L,2")y=(L,z7") =C_p, NEZ.

Then, a bilinear functional can be defined in the linear space P = span{z"},>o of
polynomials with complex coefficients by

(p(2),a(2))e = (L.p(2)a(z7")), P €P.

The sequence of complex numbers {cy, },ez is called the sequence of moments associated
with £. On the other hand, the Gram matrix associated with the canonical basis {z" },>0
of P is

Co C1 Cp,
C-1 Co Cn—1

T= : : " : , (1)
C—n Copt1 " Co

which is known in the literature as Toeplitz matrix [7]. A sequence of monic polynomials
{¢n}n>0, with deg (¢,) = n, is said to be orthogonal with respect to £ if the condition

<¢na ¢m>£ = 5m,nkna

where k,, # 0, holds for every n,m > 0. Notice that the sequence {¢,}n>0 can be
obtained by using the Gram-Schmidt orthogonalization process with respect to the basis
{#"}n>0. The necessary and sufficient conditions for the existence of such a sequence
can be expressed in terms of the Toeplitz matrix T: {¢, },>0 satisfies the orthogonality
condition if and only if T,,, the (n + 1) x (n + 1) principal leading submatrix of T, is
non-singular for every n > 0. In such a case, £ is said to be quasi-definite (or regular).
On the other hand, if det T,, > 0 for every n > 0, then £ is said to be positive definite
and it has the integral representation

wﬂm:kmmw,mﬁ @)

where o is a nontrivial positive Borel measure supported on the unit circle T = {z :
|z| = 1}. In such a case, there exists a (unique) family of polynomials {¢),}n>0, with
deg ¢, = n and positive leading coefficient, such that

A%w%@w@=%w 3)

{¢n}n>0 is said to be the sequence of orthonormal polynomials with respect to o. If we
denote by k, the leading coefficient of ¢, (z), then we have ¢,,(2) = ¢, (2)/kn. These
polynomials satisfy the following forward and backward recurrence relations (see [7], [10],

[11]):
bni1() = 200(2) + Gun(0)0(2), 020, ()
on1(2) = (1=16011(0)F) 200(2) + 601 (51 (2), n=0,  (5)
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Finite moment perturbation of linear functionals 41

where ¢ (2) = 2"¢,(271) is the so-called reversed polynomial and the complex numbers
{#n(0)}n>1 are known as Verblunsky (Schur, reflection) parameters. It is important to
notice that in the positive definite case we get |¢,,(0)] < 1, n > 1, and

kn = <¢n»¢n>£ > Oa n 2 0.
Moreover, we have

det T,

= — >1, ko= T 1=0. 6
n detT"717 n-=1, 0 Co, 1 ( )

The n-th kernel polynomial K,,(z,y) associated with {¢},>0 is defined by

~ 0 (1)9i(2) _ i1 (W)Phe1(2) = dnt1(y)dnra(2)
Kn(z,y):; (yl)(j (2) _ Pnp1l¥ ir(nﬂ(l,y;)y + ’ (7)

and the right hand side is known in the literature as Christoffel-Darboux formula and it
holds if gz # 1. It satisfies the so called reproducing property

/T Ko (2 9)p()do(2) = p), (8)

for every polynomial p of degree at most n. Kr(li’j )(z,y) will denote the i-th and j-th
partial derivative of K, (z,y) with respect to z and y, respectively. Notice that we have

@5 (2) = koK, (2,0),n > 0.

Furthermore, in terms of the moments, an analytic function can be defined by

F(z) :co-I—QZc_kzk. 9)
k=1

If £ is a positive definite functional, then (9) is analytic in D) and its real part is positive
in D. In such a case, (9) is called a Carathéodory function, and can be represented by
the Riesz-Herglotz transform

eio z
F(z):/ 2 0500,

Tele—z

where o is the positive measure associated with £. By extension, for a quasi-definite
linear functional, (9) will denote its corresponding Carathéodory function.

On the other hand, given a positive, nontrivial Borel measure o supported in [—1,1], we
can define a positive, nontrivial Borel measure o supported in [—7, 7] in such a way that
if do(z) = w(z)dx, then

do(6) = %w(cos@ﬂ sin 0d6. (10)

There exists a relation between the corresponding families of orthogonal polynomials
(see [6]). On the other hand, since the moments {c,},>0 are real (see [6]), F(z), the
Carathéodory function associated with o, has real coefficients. Therefore, we have

ReF () = ReF (e'?37=0),
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42 E. FUENTES & L.E. GARzZA

and then do(0) + do(2r — 0) = 0. Thus, there exists a simple relation between the
Stieltjes function (the real line analog of the Carathédory functions, given by S(x) =
Zf:o pnz~ (D swhere {ftn}n>0 are the moments associated with the measure on the
real line) and the Carathéodory function associated with « and o, respectively, given by

(e [9)
—22 [ da — 22
e =55 [ 20 s, (1)

where z = Z+§71 , z=ax++vx? — 1. In the literature, this relation is known as the Szegd
transformation. Conversely, if o is a positive, nontrivial Borel measure with support in
the unit circle such that its moments are real, then there exists a positive, nontrivial
Borel measure «, supported in [—1,1], such that (10) holds. This is called the inverse
Szegd transformation.

Given a measure o supported on the unit circle, the perturbations
(1) doc = |2 — fPdo, |2| =1,€ € C,
(2) doy =do + M3(z — &) + M.o(z — € ),£ € C—{0}, M. €C,

(3) dog = 22 + Mcd(z — €) + Md(z—€ ),6 €C— {0}, M € C,[¢[ #1,

are called Christoffel, Uvarov, and Geronimus transformations, respectively. They are
the unit circle analogue of the Christoffel, Uvarov and Geronimus transformations on the
real line (see [12]). In general, a linear spectral transformation of a Stieltjes function is
another Stieltjes function S(z) that has the form

S(o) - AISa) £ B2)

where A, B and D are polynomials in . The three transformations defined above are
important due to the fact that any linear spectral transformation of a given Stieltjes
function (i.e., for any polynomials A, B and D) can be obtained as a combination of
Christoffel and Geronimus transformations (see [12]). A similar result holds for linear
spectral transformations of Carathéodory functions, which are defined in a similar way
(see [4]).

In [2], the authors studied the perturbation associated with the linear functional

dz

2miz’

P(2),4(2)) z = (p(2), 4(2)) +mAp(z)Q(z) (12)
where m € R, p,q € P, and L is (at least) a quasi-definite Hermitian linear functional
defined in the linear space of Laurent polynomials. Notice that all moments associated
with £ are equal to the moments associated with £, except for the first moment, which
is ¢g = ¢ +m. The corresponding Toeplitz matrix T is the result of adding m to the
main diagonal of T. Later on, the linear functional

(p(2),4(2))e, = (p(2), a(2)) 2 + m(2'p(2), 4(2)) 2, + M(p(2). 2 q(2)) 2y (13)
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Finite moment perturbation of linear functionals 43

where j € N is fixed and (-, )z, is the bilinear functional associated with the normalized
Lebesgue measure on the unit circle was studied in [3]. It is easily seen that the moments
associated with £; are equal to those of £, except for the moments of order j and —j,
which are perturbed by adding m and m, respectively. In other words, the correspon-
ding Toeplitz matriz is perturbed on the j-th and —j-th subdiagonals. In both cases,
the authors obtained the regularity conditions for such a linear functional and deduced
connection formulas between the corresponding orthogonal sequences.

Assuming that both £ and £, are positive definite, the perturbation (13) can be expressed
in terms of the corresponding measures as
-do

-do
do =do + mz]% + mzﬁ%. (14)

On the other hand, the connection between the measure (14) and its corresponding
measure supported in [—1,1] via the inverse Szegd transformation was analyzed in [5],
and it is deduced that the perturbed moments on the real line depend on the Chebyshev
polynomials of the first kind.

In this contribution, we will extend those results to the case where a perturbation of a
finite number of moments is introduced in (13). In Section 2, necessary and sufficient
conditions for the regularity of the perturbed functional are obtained, as well as a connec-
tion formula that relates the corresponding families of monic orthogonal polynomials.
For the positive definite case, the study of the perturbation through the inverse Szegd
transformation will be analyzed in Section 3. An illustrative example will be presented
in Section 4.

2. A perturbation on a finite number of moments associated with a
linear functional L

Let £ be a quasi-definite linear functional on the linear space of Laurent polynomials,
and let {c,, }nez be its associated sequence of moments.

Definition 2.1. Let Q be a finite set of non negative integers. The linear functional Lq
is defined such that the associated bilinear functional satisfies

(p(2):4(2)) 2 = P(2),a(2)) e + Y (Mo(z"p(2),4(2)) 0 + M, (p(2),27q(2))z,) »  (15)
reQ

where M, € C, p,q € P, and (-, "), is the bilinear functional associated with the nor-
malized Lebesgue measure in the unit circle.

Notice that, from (15), one easily sees that
Cn, if n ¢ Q,
n={L0,2") =" 1)gg =% cn+M_,, if ncQandneZ, (16)
en+M,, if ncQandn¢?Z .
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44 E. FuenTES & L.E. GARZA

In other words, L represents an additive perturbation of the moments ¢, and c_, of L,
with » € ©. The rest of the moments remain unchanged. This is, the Toeplitz matrix
associated with Lq is

M, is on the r—th subdiagonal

and therefore L is also Hermitian. Moreover, if £ is a positive definite functional, then
the above perturbation can be expressed in terms of the corresponding measures as

o — _ db
dog =do+ ) (]\/[TZT% + Mrz*Tg)

reQ » (17)
= 2 M.z")—.
do + T;Z%e( z )27r

On the other hand, if Fo(z) is the Carathéodory function associated with Lq, then

Fo(z) =F(2)+2)_ M,2", (18)
ref)
which is a linear spectral transformation of F(z). The following notation will be used

hereinafter:

= A, iy 1oy Will denote a (so — 51 + 1) x (la — I3 + 1) matrix whose entries are
as,1), s where 51 < s < s9 and [ <1 < ls,. For instance,

a2,4)s  A(25)6

Asase =
G350 T 4, a5,
= U, (0) = [b3(0),- -, V()T and @, (0) = [¢57(0),- -, ol V(0]

= I, will denote the n x n identity matrix.

= Derivatives of negative order are defined as zero. For instance, K,(L0’72)(z, y)=0.

Necessary and sufficient conditions for the regularity of Lq, as well as the relation between
the corresponding sequences of orthogonal polynomials, are given in the next result.

Proposition 2.2. Let L be a quasi-definite linear functional and let {¢n}n>0 be its asso-
ciated monic orthogonal polynomials sequence (MOPS). The following statements are
equivalent !

IThis result generalizes the case when  has a single element k # 0 (see [3]) and the case Q = {0}
(see [2]).
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Finite moment perturbation of linear functionals

1. Lq is a quasi-definite linear functional.

2. The matriz I, + 3, .o S, is nonsingular, and

K, =k, +(Q, W) Z}”+ZM (0)7“) n >0,
ref) reQ
with
_ — .
M, 22 (0)

T r—D2r—1)!

o7 ( 7 64 (0)
M, T )> + M, 22

¢ﬂ (0 s W
M; T (n—r)!(n)! + T (n—r)!(n—2r)!

A S (V)
T (n—r+1){(n—2r+1)!

_ m
I My G i1y

=L+ S)

reQ

W’n - (DTL(O) - Z MTn!C(O,'rL—l;n,n;r)7
ref)

K (2,0

M, "ot

KS,O;"’.T’“(Z,O)
My G

K27 (2,0) K9 (2,0
M, == + M, =

7101
T

anl(zﬁ 0) = . ’

K(o n 1)<z 0) —  gOmn-2r-1)

©n=2r-1 (5 )
M, o= 2y T M ===

J(0m—2r)

n—1 (2,0)
My & =Sim=ant

K(D71.7 1)(20)
I M, G-
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46 E. FUeENTES & L.E. GARzA

and

]‘/[TA(O,'r'fl;O,'rfl;'r*) B(O,r'fl;'r,nfrflz,'r) _]‘/[7 C(O,rfl;'nf'r,nfl;r)
S:L = M’I‘A(T,TL—’!‘—I;O,T—l;T‘) B(T,n—r—l;r,n—r—l;r) %r C(r,n—r—l:n—r,n—l;r) s
AI’I‘A(TL—’I‘,’IL—I;O,T—I;’I‘) B(n—rm,—l:,'r,n—r—l;r) M, C(n—'r,n—l;n—'r,n—l;r)

where the entries of the matrices A, B and C are given by

_ KS0,0)
L TT RIS TR

b K00 KE(0,0)
S TS TS T
s,l—r
ET7(0,0)

C(s,l), = W
Furthermore, if {1y }n>0 denotes the MOPS associated with Lq, then

,T)
Un(2) = 6n(2) — (@ W) S K, 1 (2,0)~ Y I, K ()’ O e

reQ req
for every n > 1.

Remark 2.3. Notice that Q,, and S;, are n xn matrices, whereas Y,, W,, and K _,(z,0)
are n-th dimensional column vectors.

Proof. Assume Lq is a quasi-definite linear functional, and denote by {¢, }n>0 its asso-
ciated MOPS. Let us write

n—1
k=0
where, for 0 < k <n —1,
o ) s
n,k — kn
<'¢n(z)~, (ﬁk(Z)) ZTEQ M f’]I‘ y w’n ¢k (y) 27\—“/ - Z’I‘EQ MT‘ f']l' y77.’(1/}n (y)¢k (y) Q;irzz{y
k
=-— Z /y U (y)or () 271'17/ - Z /y "y </>k(y) 271'71;

resfl €N

and notice that (1,(2), ¢x(2))c # 0 (in general), and (1, (2), px(2))c, = 0 for n > k.

[Revista Integracién



Finite moment perturbation of linear functionals 47

Substituting in (23) and using (7), we get

Yal2) = dul(x) ~ <M Lot Z ¢k<z oty >2my>

rEN k
n—1
_ —r or(2)on(y) d
5 (7 [ SR )

d — d
= 0n(e) = X (M [ a0 Kaseon e =3, [ 0K ).

reN

From the power series expansion of ¢, (y) and K, _1(z,y), we have
, vy 9 (0)
Y nly) =y Z T
_ “z*: w” HON
) ——y,
r)

and for |y| =1,

n—1 7-(0,0)
K,"7(z,0) 1
Koi(eg) = 3 B0 L

=0

and since f']r y' t;fé’y =1 if r =t and zero otherwise, we arrive at
n+r o (I—r) n— 1
. Yn (0) 4 )1 dy
! K,
/er Un(y)Kn1(2:9) 271'1y /TZ (- 7‘)' Z Yl 27y

=
n—r—1 0l+r)(z O)

wn ( ) n )
Z ! l1+ r)!

Similarly,

0 K2 (=0

d
/T?Jf”/fn(y)anl(% y)ﬁ -

(T4 !
& (0) KT(2,0)
(1)! (l—r)!

l=r

As a consequence, we get

_ " 1w 0) KO (z,00 gl 0) KOT(2,0)
¥n(2) = ¢u(2) %(M Z 0! (l1+7')! *M"g ! (ll—r)! ’

(24)
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48 E. FuenTES & L.E. GARZA

which after a reorganization of the terms becomes

W) K KO (5 0)

z (Ol T)Z
wn(z):%( Z(M Zd) "l1+ )' +]v[ Z w () l_r()70)>

reQ l=n—r
n—r—1 (0,14r) (0,1—7)
wn 0) n—1 (270) Vi Kn—l (270)
_;2< g (]\L U+ + M, =) ))

(25)

In order to find the constant values 1/121) (0), we take s derivatives, 0 < s < n, with respect
to the variable z and evaluate at z = 0 to obtain the (n+ 1) x (n + 1) linear system

s,l ) (s,l—1)
s s 1/)<Z) - ( ) 1/] K — (0 0)
¥ (0) = 97)(0) Z(MZ 0T Lo, Z () =
reQ l=n—r ’
" w@ (0) Kﬁf_’lf’”)(w) — Kffff”(om
- Z (I +7)! A (1=t '
reQ l=r ’ .
If we denote
B K(s I+r) (0 0)
Uadr = u(z )l
K 0,00  — KST(0,0)
biasy, = M, ="t 0, oot o
(s M Nl —r)!

s,l—r
o ET0,0)
U TS T

then the linear system becomes

G(0) = ¢ (0)
n—r—1 n
-> (M Z% 0 AD0)+ D b, eP0)+ M, Y C(s,l)rwr(zl)(o)>'

reQ l=r l=n—r

Notice that the last equation (i.e., when s = n) gives no information, since a(, ), =
b(n1y, = C(n,), = 0 and wﬁl")(()) = qﬁ%n)(()) = nl. As a consequence, the (n+1) x (n + 1)
linear system can be reduced to an n x n linear system that can be expressed in matrix

form as
(In + Z S;)\Pn(o) = (I)n(o) - Zﬁrnlc(o,nfl;n,n;r)
reQ req) (26)
—-W,.

Since Lg is quasi-definite, it has a unique MOPS and therefore the linear system has a
unique solution. As a consequence, the matrix I, + > . S;, is nonsingular and

=T+ > S, 'W,. (27)

reQ

[Revista Integracion



Finite moment perturbation of linear functionals 49

This is, we have

T K(O n— T)(Z 0)
Un(z) = )= > W] <(1 Zs;)1> K;, 1(2,0)=> M, lfr)' (28)
res) ref) req) ’
which is (22). On the other hand, for n > 0,
= (¥n(2), 9 ( Nea = (¥n(2),n(2))cq
= (Yn(2), 0 £+Z ]W 2" (2), dn(2)) 2y + M, W’n(z) 2" n (2 )> )

reQ

¢n O ™ ¢ d
—x, Z (M /Z ‘( S Z z%;>
res)

( /ZW MZ¢ 0 _12;1;)

T =0
0 o 0) =) [ s 0) o4 (0)
(IZ ST +l; 0 2 D]

M
0} o) S0
M, Z w” (0) ¢" (0 ) + ZM (O)

l=n—r+1

=k, +
+

>
reQ
€N

Q

>
%

Using (20) and (27), we get

reQ

(n—r)
ky =k, + Y W <(IR+ZSZ;)‘1> +ZM ; 77«(0)

ref) ref) reQ

Converqely, assume I, + 37 S}, is nonsingular for every n > 1 and define {1, }n>0 as
n (22). For 0 < k <n—1, we have

n—r—1 )g) 0 nO l1+r) 0 —r— { 0 K(O l+r
<12; LGRS (H(). >7¢k(z)> _ <w (0) () >’¢k(z)>£
= L
. <l+v>
=Z< H((i)zw 0 ()>
1=0 L
e 6 0)
N I+

and, similarly,

(Ol T)

d)’glw O n 1 (Z’O) '(/}nl) 0 ¢ 1) 0
<Z o (- > Z () z—r()v)'

Vol. 34, No. 1, 2016]




50 E. FuenTES & L.E. GARZA

In addition,

(T on(2), 1(2)) 2y = /T T (2)0(2)

2miz

L (=02 [ o0z dz
_/Tz (ZE_; I l; I iz

and also

(1) l P
(Yn(2), 2" Pi(z Z ¥ .(0) = r()')

Thus, for 0 < k < n — 1, and taking into account (24) and the previous equations, we
have

(Pn(2), 1(2)) £ = (Un(2), d1(2)) 2 + > (M O1(2)) 2o + Mr(ton(2), 2" 01 (2)) 25

reQ)
_ e Kz 0)
= (dn(2), In(z z—%;M < lz:: R b1 (2) .

v [0 KT(2,0)
T;QMT <; O] O (2) .
n—r— 11!)7(}) 0 (l+r)(0) o ¢n 0 W
+ZMT< > OATO) sy (51 o) 0
reQ reQ I=r

=0.

On the other hand,

En = <wn(3)7¢n(z)>ﬂn
= (¥n(2), Pn(2))c + Z (MT<ZT¢n(Z)a ¢n(z)>£9 + Hr@/}n(z)?'zr(bn(z»ﬁe)

ref
?/Jn 0) | ¢
_ kn +r
+ Z ( / Z Z 27T’LZ
€N
3 (w /ZW 9oL TR
2miz
ref
=kt S WIOYL0) + YW 7 (0)
n /]’L o 7") b
reQ reQ
which is different from 0 by assumption. Therefore, L is quasi-definite. %]
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Finite moment perturbation of linear functionals 51

Notice that if 7, = min{r : r € Q}, then from Proposition 2.2 we conclude that if
n < 1y, then K™, is the zero vector, K,(lo_'yll_r'")(z7 0) = 0 and according to (22) we have

¥n(2) = én(z). This means that the only affected polynomials are those with degree
n = ry.

3. Finite moments perturbation through the inverse Szegé transfor-
mation

Let o be a positive measure supported on the unit circle such that its corresponding
moments {c, }nez are real. Assume also that the perturbed measure G, defined by (17),
is also positive and that M, with r € € is real, so that the moments associated with g
are also real. Our goal in this section is to determine the relation between the positive
Borel measures o and dq, supported in [—1,1], which are associated with o and ¢,
respectively, via the inverse Szegd transformation. This relation will be stated in terms
of the corresponding measure and their sequences of moments.

Proposition 3.1. Let o be a positive nontrivial Borel measure with real moments suppor-
ted in the unit circle, and let « be its corresponding measure supported in [—1,1], obtained
through the inverse Szegd transformation. Let {c,}nez and {fn}n>0 be their correspon-
ding sequences of moments. Assume that 6q, defined by (17) with r € Q and M, € R, is
positive. Then, the measure G, obtained by applying the inverse Szegd” transformation
to oq, is given by

2 dx
dag = do + = M, T, () ———es,
? T TEZQ ( ) 1- 1‘2

where T(x) := cos(rf) is the r-th degree Chebyshev polynomial of the first kind. Its
corresponding sequence of moments is

(29)

s Zf 0 <n< Tms
ﬂn = (30)
Pn + % Z’!‘ESZ M’”B(n7 T‘)7 7/f Tm <N,

with
= B(n,r) = ’TTZT/Q (%,(rk—zllz;(mri)k), if r+n—-2k=0,
= B(n,r) =0, ifr+mnisodd,

T 2 r—k—1)1(2)"2F r4+n—2k)/2 r+n—2k—(2i—1 . .
= B(n,r) = % Z[T/ ]( (k‘(r 212)v> HE tn i rin 2h— é(z 13)7 if r+mnis
even.

Proof. Notice that, setting z = €, & = cosf, and taking into account that the in-

verse Szeg§ transformation applied to the normalized Lebesgue measure df/27 yields
the Chebyshev measure of the first kind \/j the measure aq obtained by applying
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the inverse Szegd transformation to ¢ is given by

a0 = do+ 3 (Mo + VT ) + Mo+ iV T ) ) A

req
dx
= do + M, (cosrf +isinrd) + M,(cosrf —isinrf)) ———
%( ( )+ M ) s
= da + M

Notice that a measure that changes its sign in the interval [—1, 1] is added to da. Then,
the moments associated with aq are given by

1

. - T, (x)dx
n = 2" déag (x n+ — M, :c

fi [1 olz) =p Z A

As a consequence, by the orthogonality of T;.(z), we obtain for the n-th moments with
né¢Q
M, if 0§TL<7"m,,
1 4 .
p’n—'—%ZTEQJ\/‘{" ffl zn’l:;%wdfa if Ty < N

Furthermore (see [8]), we have

[r/2] k r—2k
r (=1)%(r —k —1)1(22)
T(z) = - L r=1,2,3, ...,
(@)=3 kz:; kl(r — 2k)! "

where [r/2] =r/2 if r is even and [r/2] = (r — 1)/2 if r is odd. Therefore,
[

/1 T () dx T /1 n L2 (=D — k- DI22)"~*  do
T (1) ——— = = x
1 Vi-a? 2/ = El(r — 2k)! V1—2a2

[r/2] .
- (=D)*(r =k —1)!(2)" 2" /l prHn—2k dx
2= k!(r—Qk)! 1 V122
and, since
, it k=0,
1
/ P 0, if kisodd,
Jo1 V1—a?
<HZ§ ﬁ:;zj;) m, if kis even,

(31) becomes (30). v

From the previous proposition we can conclude that a perturbation of the moments ¢,
and c_, with r € €, associated with a measure o supported in the unit circle, results
in a perturbation, defined by (30), of the moments pu,, n > r,, associated with a
measure « supported in [—1,1], when both measures are related through the inverse
Szegd transformation.
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4. Example

Let £ be the Christoffel transformation of the normalized Lebesgue measure with pa-
rameter §{ = 1, ie., <p(z)7Q(z)>C = <(Z - 1)p(z)v(z - 1)q(z)>E97 and let 2 = {172}
Then,

(p(2),a(2)) 2 2y = (2 = Dp(2), (2 = D)a(2)) £, + Mi(2p(2), 4(2)) 2o + M1(p(2), 20(2))
+ Ma(2*p(2),4(2)) co + Ma(p(2), 2%a(2))
(32)

i.e., the moments of order 1 and 2 are perturbed. Since the sequence {z"},,>¢ is ortho-
gonal with respect to Lg, the MOPS associated with ((z —1)p(z), (z—1)q(2))z, is given
by (see [1])

1 n+1 1 J
= — >1
On(z) Py z 1 E 2], n>1,

or, equivalently,
n n
n = n— 5 2 13
On(z) = 2"+~ dar(2), 0

and its corresponding reversed polynomial is

1 1 <
(2) = 1-— J+l > 1.
On(2) = 7— n+1j§z , n>

Furthermore, if 0 < s < n, we have

s B (s+ 1)
o0 =y

slin+1—3s)
(n+1)
n-4 2
n+1’

200) =

n

and if 0 <t,s<n-—1,
n—1

i (t+1)!
K”(l—tl)(z70): ; PR op(2),

n—1

(5,8) t+Dli(s+ 1)
K,”7/(0,0) = E .
" 1 2

p=max{s,t} (p+ )(p+ )
As a consequence, we have
n—1

ags,1), = , — o
i p=max{s,l+r} (p + 1)(p + 2)
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-1
(s+ DIl —r+1) 5
o, = EF D3R
p=max{s,l
s+1)! — I+r+1
b(s,l)r = ( N ) ]\/[r Z

1 2
p=max{s,l+r} (p+ )(p+ )

—r}

1
(p+1)p+2)

n—1

>

p=max{s,l—r}

l—r+1
(p+1p+2)

T

We now proceed to obtain the MOPS associated with Ly 2y, denoted by {%n}n>0

Notice that we have c(, n), = %, Cs,n)s = s,((g:ﬂ if0<s<n-—2andcp_1pn), =
nZL +11), and thus
(0)
(ZS?l)(O) C(O,n 6(0,71)2
¢n(0) C(1m) (1m)s
W, = — Mln' . — Mgn! .
(n 2)(0) C(n—2,n) Cln—2,n)s
(n—1) (0) Cn—1,n)1 Cn—1,n)2
1! 1!
_ 2! _ 2!
1-M, ) 2M o
n+1 : n+1
(n—1)! (n—1)!
-1
n! nlt
On the other hand, for n > 2 we have
[ My Y el ]
y 1 ¢p( 1 ¢p(2)
3My ZZ 2 pp+2 +M, ZZ=0 pp+2
Kn 1(,270) = : )
M $p(2)
(Z 21' Zp n—1 p+2 + (n )! Zp n—3 ;4—22
M Pp(2)
L (n—12)' Zp n—2 ;+; A
Mao), Do), bon-2,  Micon-1),
Mag o), b1,1), b(1,n—2), Micg -1,
Sl — . . . .
Mian-2,0), bmn-21), bin—2,n—2), Elc(n—Zn—l)l
Miam-10), bn-1,1), bin—1n-2), Micm-1,n-1),

[Revista Integracion



Finite moment perturbation of linear functionals

and for n > 3,

r n—1 ¢,(2)
3M; ZP=2 pp+2
n—1 ¢p(2)
4My ZP=3 pp+2
5M. n—1 ¢p(2) M n—1 ¢,(2)
: p=4 pp+2 +5 Zz} 0 pp+2
Ki—l(’% 0) =
nM #p(2) M Pp(2)
(n732)' Zp n—1 ;+2 + (n— 3)(721 5)! Zp n—>5 ;+2
n—1  ¢p(2)
(n—2)(n—4)! (n 4)! Zp—nfél pp+2
M. n—1  ¢ép(2)
L o) (=) 2op=n—3 33
Maapo, — My, b2, bon-3,  Macon-2),
Mzag,  Maaay, b1,2), bam-3,  Mzcan-2),
Mza0), — Maag), b2,2), b2,n—-3) Mzc2n—2),
2 . ) . . )
S, = : : :
Maan—3,0), M2a(m-31), bn-32), bin—3,n—-3), Macm_3n—2),
Maan-2,0), Maamn-2,1), bn-22), bin—2n-3), MaCn—2n-2),
L M2a(n-1,00, M2am-1,1), bn-12), bn—1,n-3)s M2C(n_1,n-2),

For illustrative purposes, we compute the first polynomials of the sequence:

= Degree one:

(0,0)
pi(2) = () - o 0)
o UM,

since K§(z,0) = 0, K3(2,0) = 0 and ¢1(2) = z + 3¢ (2).
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Macn-1),

EQC(TL—&TL—UQ
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= Degree two:

V2(z) = ¢2(2)

__ I\ T
_ . M, 20,
pMﬂu}T 2A12{1']T +L5
- - 1
3 2! 3 2 2My My +1
206, (z) —
’ _ B o, (¢o( 2) ¢>1(Z)>
AT z z 3 2 3
i (¢02< ) 4 1 )>
L [ e -2 )
=24 - 1 2¢1(Z)7A[2;} -
-S4 )

— [ do(z)  ¢i(z) 2, ,[1]"
M| T §A{ }

T ] %()

_2M, 1\11 +1

since K1(2,0) = 0, ¢2(2) = 2” + ¢1(2) and A = det(12+Sl+52 \M]Jrslz A2

= In general, the n-th degree polynomial is

1 r 1 i
_ 2 _ 2l , T
B 1- 3, _ 9} R
Yn(2) = on(z) — w1 : e : (In +Z:Sn) }
(n—1)! (n—1)! r=1
n! nl(n —1)/2n
M T n n
<ZK71 (2 0) n 1¢n \(2) = Ma(n— )<¢ :( z) +¢n4i(1)>
1 i
_ 2! 5 T
=z"+ % nn-1(z) — : (I,L+ZS;)1] <2Kn 1(2,0 >
(n—1)! =1
n!

AT d)n—l(z) ¢n—2(z)

_Mg(n—l)(—n_‘rl +—7L >
1! 5

oM. . 2 T

tg | (stml] (ZKH%O))
(n—1)! r=1 r=1
|n—1

T 2n

since ¢n(2) = 2" + g dn-1(2).

On the other hand, assuming that the linear functional (32) is positive definite, the
associated measure is

do do
do = |z — 1|2 a0 —+ ZE)%(Mlz)— + 29Re( My 2? )2
7T
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and the corresponding moments are given by

2, if n =20,
—1+ My, if n=1,
- —1+ M, if n=-—1,
" Mo, if n=2,
My, if n=-2,

0, in other case.

Thus, the perturbed Toeplitz matrix is

2 —1+ M, M, 0 0
—1+4 M, 2 —1+ M, M, 0
- M, -1+ M 2 —1+ M, M,
T= 0 My — —14M 2 1My - |
0 0 Mo —14+ M, 2 e
i.e., the first and second subdiagonals are perturbed. Furthermore, since da = % i;—;d:p

do

is the measure obtained applying the inverse Szegd transformation to do = |z — 1‘2E’

then according to (29) the measure supported in [—1,1] is

2 [1-x 2 1 2 1
da = — d —MT () ——=d —MoTh () ——=dx. 33
Vit x+7r ! 1(:L)\/lfx? x+7r ? 2(@\/1712 ! (33)

Then, according to (30), the perturbed moments associated with the measure (33) are

Mn7 lf n= 07
2 41— (2i—1) . .
ﬂn — U, + 2M, i:21 nrl_20i-1)° if nis Odd7

2 2 (2i— 5 n—(2i— . .
i+ 2My <2 LA 7;;7;2(1.73 114, nﬁ%i;) , if niseven,

where {1, }n>0 are the moments associated with the measure dow = 2 \/ i;—i, and

™

2, it n=0,
n+1 .
=4 2112 Z:%ﬂ if nisodd,
2 Hil %, if nis even.
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