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Abstract. In this paper, we consider perturbations to a sequence of moments
associated with an orthogonality linear functional that is represented by a
positive measure supported in [−1, 1]. In particular, given a perturbation
to such a measure on the real line, we analyze the perturbation obtained
on the corresponding measure on the unit circle, when both measures are
related through the Szeg´́o transformation. A similar perturbation is analyzed
through the inverse Szeg´́o transformation. In both cases, we show that the
applied perturbation can be expressed in terms of the singular part of the
measures, and also in terms of the corresponding sequences of moments.
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Análisis de perturbaciones de momentos asociados a

funcionales de ortogonalidad a través de la

transformación de Szeg´́o

Resumen. En el presente trabajo, analizamos las perturbaciones a una sucesión
de momentos asociada a un funcional lineal de ortogonalidad que se representa
por una medida positiva con soporte en [−1, 1]. En particular, dada una cierta
perturbación a dicha medida en la recta real, analizamos la perturbación
obtenida en la correspondiente medida en la circunferencia unidad, cuando
dichas medidas están relacionadas por la transformación de Szeg´́o. También
se analiza una perturbación similar a través de la transformación inversa de
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62 E. Fuentes & L.E. Garza

Szeg´́o. En ambos casos, se muestra que la perturbación aplicada puede ser
expresada en términos de la parte singular de las medidas, y también a través
de las correspondientes sucesiones de momentos.
Palabras clave: Polinomios ortogonales, funciones de Stieltjes y Carathéodory,
matrices de Hankel y Toeplitz, transformación de Szeg´́o.

1. Introduction

The theory of orthogonal polynomials with respect to measures supported on the real line
has numerous applications, including numerical integration, integrable systems, spectral
theory, approximation, and moment problem, among others. In the last decades, spectral
properties of Jacobi matrices (the matrix representation of the multiplication operator
in terms of the orthonormal basis) have been studied (see, for instance, [11], [14]) in
connection with some spectral transformations of the orthogonality measures, which
can be expressed as LU factorizations of the corresponding Jacobi matrices, and also in
terms of the corresponding Stieltjes functions (the Cauchy transform of the orthogonality
measure). Such transformations have been studied in the context of Darboux transfor-
mations, which are related with the bispectral problem: to find all situations in which a
pair of differential operators have a common eigenfunction.

On the other hand, orthogonal polynomials with respect to nontrivial probability mea-
sures supported on the unit circle have been studied more recently. The basic references
on this topic are the classical Szeg´́o book [12] and the recent monograph [10]. Some of
the more studied applications of orthogonal polynomials on the unit circle are numerical
integration, prediction theory and control theory. Much of the research efforts in this
area are conducted using analogies with the real line case: If orthogonal polynomials on
the real line satisfy some property, the corresponding property for orthogonal polynomi-
als on the unit circle is studied. In particular, the analysis of spectral transformations
on the unit circle has been developed in [7, 8], among others.

Furthermore, the analysis of perturbations on the moments associated with an orthog-
onality measure on the real line has been developed in [1], and on the unit circle in [2].
In both cases, the authors show that such perturbations constitute particular cases of
linear spectral transformations, and obtain some properties of the perturbed sequence
of orthogonal polynomials. In this paper, we analyze perturbations of moments from
the perspective of the Szeg´́o transformation: a well known relation between measures in
[−1, 1] and measures in the unit circle. The structure of the manuscript is as follows: in
Section 2, we present some basic results regarding orthogonal polynomials on the real
line, as well as some results about moment perturbations for measures supported on the
real line. The analogous results for measures supported on the unit circle are described
in Section 3. Finally, the relation of these perturbations through the Szeg´́o transforma-
tion and the inverse Szeg´́o transformation is studied in Sections 4 and 5, respectively.
This constitutes the original contribution of this paper. Some illustrative examples are
provided.
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2. Perturbation of a Hankel matrix

2.1. Orthogonal polynomials and linear spectral transformations on the real line

Let {µn}n≥0 be a sequence of complex numbers and let L be a linear functional defined
in the linear space P of polynomials with complex coefficients such that

�L, xn� = µn, n ≥ 0. (1)

L is called a moment linear functional, and the complex numbers {µn}n≥0 are the mo-
ments associated with L (see [3, 12]).

A sequence of polynomials {pn(x)}n≥0, where

pn(x) = γnx
n + δnx

n−1 + · · · , γn �= 0, n ≥ 0,

is called an orthogonal polynomials sequence (OPS) with respect to L, if for every non
negative integers n and m, the conditions

1. pn(x) is a polynomial of degree n,

2. �L, pm(x)pn(x)� = 0, for m �= n,

3. �L, pn(x)pn(x)� = �L, p2n(x)� �= 0, n ≥ 0,

hold. The corresponding monic sequence (MOPS), denoted by {Pn(x)}n≥0, whose lead-

ing coefficient is 1, is defined by Pn(x) =
pn(x)
γn

.

The Gram matrix associated with the bilinear form B associated with L, defined by
B(p, q) = �L, pq�, p, q ∈ P, with respect to the monomial basis {xn}n≥0 of P, is

H = [�L, xi+j�]i,j=0,1,... = [µi+j ]i,j=0,1,... =











µ0 µ1 · · · µn · · ·
µ1 µ2 · · · µn+1 · · ·
...

...
. . .

... · · ·
µn µn+1 . . . µ2n . . .
...

...
. . .

...
. . .











.

These matrices with constant values along the anti diagonals are known in the literature
as Hankel matrices.

Not every linear functional has an associated OPS. A necessary and sufficient condition
for the existence of an OPS associated with L is

∆n = detHn = det(µi+j)
n
i,j= =

�
�
�
�
�
�
�
�
�

µ0 µ1 · · · µn

µ1 µ2 · · · µn+1

...
...

. . .
...

µn µn+1 . . . µ2n

�
�
�
�
�
�
�
�
�

�= 0, n ≥ 0,

where Hn is the (n + 1) × (n + 1) principal leading submatrix of H. L is called quasi-
definite if ∆n �= 0 for every n ≥ 0, and positive definite if and only if all the moments
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are real and ∆n > 0 for every n ≥ 0. If L is positive definite, then there exists a unique
sequence of polynomials

pn(x) = γnx
n + δnx

n−1 + · · · , γn > 0, n ≥ 0

satisfying
�L, pn(x)pm(x)� = δn,m,

where δn,m is the Kronecker’s delta. {pn(x)}n≥0 is called the sequence of orthonormal
polynomials associated with L. From the Riesz’s representation theorem, there exists an
integral representation (not necessarily unique)

�L, xn� =
∫

E

xndα(x),

where α is a positive non trivial Borel measure, whose support E is an infinite subset of
the real line. Some of the most remarkable properties of orthonormal polynomials are
the following.

1. The sequence {pn(x)}n≥0 satisfies the three term recurrence relation

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x), n ≥ 0,

with initial conditions p−1(x) = 0, p0(x) = µ
−1/2
0 , and recurrence coefficients given

by

an =

∫

E

xpn−1(x)pn(x)dα(x) =
γn−1

γn
> 0, bn =

∫

E

xp2ndα(x) =
δn
γn

− δn+1

γn+1
.

2. The n-th orthonormal polynomial, pn(x), can be expressed in terms of Hankel
determinants as follows:

pn(x) =
1

√
∆n∆n−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

µ0 µ1 µ2 · · · µn

µ1 µ2 µ3 · · · µn+1

...
...

...
...

...
µn−1 µn µn+1 · · · µ2n−1

1 x x2 · · · xn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, n ≥ 0,

with ∆−1 = 1. This is called the Heine’s formula. The leading coefficient is given
by the ratio of two Hankel determinants

γn =

√
∆n−1

∆n
.

3. The zeros of pn(x) are real, simple, and located in the interior of the convex hull
of the support E of the measure.

4. Let xn,1 < xn,2 < · · · < xn,n be the zeros pn(x). The zeros of pn(x) and pn+1(x)
satisfy the interlacing property

xn+1,i < xn,i < xn+1,i+1, i = 1, 2, ..., n.
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The Stieltjes function associated with α is defined as

S(x) =

∫

E

dα(t)

x− t
.

If L is quasi-definite, S(x) admits the formal series expansion at infinity

S(x) =

∞∑

k=0

µk

xk+1
,

where µk are the moments associated with α, given by (1). In what follows, we will
assume that µ0 = 1. A rational spectral transformation of a Stieltjes function S(x) is a
transformation of the form

S̃(x) =
A(x)S(x) +B(x)

C(x)S(x) +D(x)
,

where A(x), B(x), C(x) y D(x) are polynomials in x with AD − BC �= 0 and such that
S̃(x) has a formal series expansion around infinity. The transformation is said to be
linear if C(x) ≡ 0.

Given a linear functional L, some canonical perturbations analyzed in the literature are:

1. The Christoffel transformation dα̃c = (x− β)dα, β /∈ supp(α).

2. The Uvarov transformation dα̃u = dα+Mrδ(x− β), β /∈ supp(α), Mr ∈ R.

3. The Geronimus transformation dα̃g = dα
x−β +Mrδ(x − β), β /∈ supp(α), Mr ∈ R,

where δ(x− β) is the Dirac’s delta functional, defined by

�δ(x − β), q� = q(β), q ∈ P, β ∈ R.

The three canonical perturbations defined above correspond to linear spectral transfor-
mations of the corresponding Stieltjes functions (see [7, 8, 14]).

2.2. Perturbation of the j−th moment of the Hankel matrix

Let L be a positive definite linear functional associated with a Borel measure α supported
in E ∈ R. Instead of considering the monomial basis of P, we deal with the basis
{1, (x−a), (x−a)2, ...}, where a ∈ R. The reason for this will be evident in what follows.
The sequence of moments associated with this basis, {νn}n≥0, is given by

νn = µn +

n−1∑

j=0

(
n

j

)

(−1)n+jan−jµj , (2)

where µ0 = ν0 (see [1]).

We will be interested in analyzing a perturbation of the j-th moment of a given sequence
of moments. Before that, the following definition is needed. Given a linear functional L,
its distributional derivative DL (see [13]) is defined as

�DL, q� = −�L, q′�, q ∈ P.
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If j is a non negative integer, the j−th distributional derivative is

�DjL, q� = (−1)j�L, q(j)�, q ∈ P.

In particular, for the functional δ(x−a), it is easy to see that the the j−th distributional
derivative is

�Djδ(x− a), q� = (−1)jq(j)(a).

Definition 2.1 ([1]). Let L be a quasi-definite linear functional. The linear functional Lj

is defined by

�Lj , p(x)� = �L, p(x)� + (−1)j
mj

j!
�D(j)δ(x − a), p(x)�

= �L, p(x)� + mj

j!
p(j)(a),

(3)

where mj and a are real constants, and p(j)(x) denotes j−th derivative of p(x).

Necessary and sufficient conditions for Lj to be quasi-definite can be found in [1], as well
as the explicit relation between the corresponding MOPS. If both L and Lj are positive
definite, then the previous transformation can be expressed in terms of the orthogonality
measures as follows:

dα̃j = dα+ (−1)j
mj

j!
D(j)δ(x− a). (4)

On the other hand, from (3) it is easily obtained that

ν̃k = �Lj , (x− a)k� =






νk, if k < j,
νj +mj , if k = j,

νk, if k > j.

In other words, Lj only perturbs the generalized j−th moment of the linear functional L.

Furthermore, if Lj is quasi-definite and S̃(x) denotes its corresponding Stieltjes function,

S(x) =
�∞

k=0
νk

(x−a)k+1 and S̃(x) are related by

S̃j(x) = S(x) +
mj

(x− a)j+1
. (5)

As a consequence, (5) is a linear spectral transformation of S(x), where A(x) = (x−a)j+1,
B(x) = mj and D(x) = (x− a)j+1.

3. Perturbation of a Toeplitz matrix

3.1. Orthogonal polynomials and spectral transformations on the unit circle

The following definitions and theorems can be found in [4, 8, 10, 12]. Notice the analogy
with the concepts presented in the previous section. Let L be a linear functional in the
linear space of Laurent polynomials (Λ = span{zk}k∈Z) such that L is Hermitian, i.e.

cn = �L, zn� = �L, z−n� = c−n, n ∈ Z.
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The complex numbers {cn}n∈Z are said to be the moments associated with L. Under
this conditions, a bilinear functional can be defined in the linear space P = span{zk}k∈N

of polynomials with complex coefficients by

�p(z), q(z)�L = �L, p(z)q̄(z−1)�, p, q ∈ P.

The Gram matrix associated with the canonical basis {zn}n≥0 of P is

T =











c0 c1 · · · cn · · ·
c−1 c0 · · · cn−1 · · ·
...

...
. . .

... · · ·
c−n c−n+1 . . . c0 . . .

...
...

. . .
...

. . .











, (6)

known in the literature as Toeplitz matrix. As in the real line case, L is said to be
quasi-definite if the (n + 1) × (n + 1) principal leading submatrices (Tn)n≥0 are non
singular, i.e.,

detTn =

�
�
�
�
�
�
�
�
�

c0 c1 · · · cn
c−1 c0 · · · cn−1

...
...

. . .
...

c−n c−n+1 . . . c0

�
�
�
�
�
�
�
�
�

�= 0, n ≥ 0.

If L is quasi-definite, there exists a sequence of monic polynomials {Φn}n≥0 satisfying:

1. deg Φn = n, n ≥ 0,

2. �Φn,Φm�L = 0, for m �= n, m,n ≥ 0,

3. �Φn,Φn�L = Kn, n ≥ 0,

where Kn �= 0 for every n � 0. {Φn}n≥0 is called the sequence of monic orthogonal
polynomials sequence associated with the Hermitian linear functional L.

If Tn, n ≥ 0, has positive determinant, then L is said to be positive definite. In such a
case we can define an inner product, and we have

�L,Φn(z)Φ̄n(z
−1)� = �Φn,Φn� = �Φn�2 = Kn, Kn > 0.

There also exists an integral representation

�L, p(z)� =
�

T

p(z)dσ,

where σ is a nontrivial probability measure supported in the unit circle T = {z ∈ C :
|z| = 1}.
{Φn}n≥0 satisfies the forward and backward recurrence relations

Φn+1(z) = zΦn(z) + Φn+1(0)Φ
∗
n(z), n ≥ 0,
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Φn+1(z) = (1− |Φn+1(0)|2)zΦn(z) + Φn+1(0)Φ
∗
n+1(z), n ≥ 0,

where Φ∗
n(z) = znΦn(z

−1). In the literature (see [10]), the polynomial Φ∗
n(z) is known as

reversed polynomial. The complex numbers {Φn(0)}n≥1 are called Verblunsky (reflection,
Schur) parameters and play a central role in the study of orthogonal polynomials on the
unit circle. If L is positive definite, we have |Φn(0)| < 1, for every n ≥ 1.

Assume L to be positive definite, and let σ be its corresponding measure on the unit
circle. Then, there exists (see [5]) a sequence of polynomials {ϕn}n≥0,

ϕn(z) = κnz
n + · · · , κn ≥ 0,

such that ∫ π

−π

ϕn(e
iθ)ϕm(eiθ)dσ(θ) = δm,n, z = eiθ, m, n ≥ 0. (7)

Clearly, we have Φn(z) =
ϕn(z)
κn

. κn can be expressed in terms of two Toeplitz determi-
nants,

κn =

√
detTn−1

detTn
, n ≥ 1,

and from the above equation we have

Kn =
1

κ2
n

=
detTn

detTn−1
, n ≥ 1.

On the other hand, the k-th moment ck associated with σ is defined by

ck =

∫ π

−π

eikθdσ(θ), k ∈ Z,

and the n-th orthonormal polynomial can be computed by

ϕn(z) =
1

√
detTn detTn−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

c0 c1 c2 · · · cn
c−1 c0 c1 · · · cn−1

...
... . . .

. . .
...

c−(n−1) c−(n−2) c−(n−3) · · · c1
1 z z2 · · · zn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, n ≥ 0,

with the convention detT−1 = 1.

Given an analytic function F : D → C, we say F is a Carathéodory function if and only
if F (0) ∈ R and Re(F (z)) > 0 in D = {z ∈ C : |z| < 1}. If L is positive definite, the
Taylor series

F (z) = c0 + 2

∞∑

k=1

c−kz
k. (8)

is analytic in D and Re(F (z)) > 0 in D. (8) is thus called the Carathéodory function
associated with L. F (z) can be represented as the Riesz-Herglotz transform of σ,

F (z) =

∫

T

eiθ + z

eiθ − z
dσ(θ).
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Furthermore, σ can be decomposed into a part that is absolutely continuous with respect
to the normalized Lebesgue measure dθ

2π and a singular part (see [10]). If we denote by
ω(θ) = σ′ the Radon-Nikodyn derivative of σ and by σs singular measure, then

dσ(θ) = ω(θ)
dθ

2π
+ dσs(θ). (9)

Also, there exists a relation between the Carathéodory function and ω(θ) (see [9]).
Namely, if θ ∈ ∂D, then

F (eiθ) ≡ lim
r→1

F (reiθ),

and therefore,

ω(θ) = ReF (eiθ). (10)

The singular part σs is supported in {θ| limr↑1 Re(reiθ) = ∞}.
Given a linear functional L, some perturbations that have been studied in the literature
are (see [2]):

1. The Christoffel transformation dσ̃C = |z − ξ|2dσ, |z| = 1, ξ ∈ C,

2. The Uvarov transformation dσ̃U = dσ +Mcδ(z − ξ) +Mcδ(z − ξ
−1

), ξ ∈ C− {0},
Mc ∈ C,

3. The Geronimus transformation dσ̃G = dσ
|z−ξ|2 + Mcδ(z − ξ) + Mcδ(z − ξ

−1
),

ξ ∈ C− {0},Mc ∈ C, |ξ| �= 1.

Again, notice the analogy with the transformations defined in the previous section. A
rational spectral transformation of a Carathéodory function F (z) is a transformation of
the form

F̃ (z) =
A(z)F (z) +B(z)

C(z)F (z) +D(z)
,

where A(z), B(z), C(z) and D(z) are polynomials in z with AD − BC �= 0, and such
that F̃ (z) is analytic in D and has positive real part therein. Again, if C(z) ≡ 0, the
transformation is said to be linear. The three transformations defined above correspond
to linear spectral transformations, when they are expressed in terms of the corresponding
Carathéodory functions (see [8]).

3.2. Perturbation of the j−th moment of a Toeplitz matrix

Perturbations in the subdiagonal of a Toeplitz matrix were studied in [2].

Definition 3.1. Let L be an Hermitian linear functional and define a linear functional
Lj such that the associated bilinear functional satisfies

�p(z), q(z)�Lj
= �p(z), q(z)�L +Mj�zjp(z), q(z)�Lθ

+M j�p(z), zjq(z)�Lθ
, (11)

where Mj ∈ C, p, q ∈ P, j ∈ N is fixed, and �·, ·�Lθ
is the bilinear functional associated

with the normalized Lebesgue measure in the unit circle.
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70 E. Fuentes & L.E. Garza

If L is quasi-definite, necessary and sufficient conditions in order for Lj to be quasi-
definite, as well as the connection formula between the corresponding families of monic
orthogonal polynomials, were obtained in [2]. If L is a positive definite linear functional,
then the above transformation can be expressed in terms of the corresponding measures
as

dσ̃j = dσ +Mjz
j dθ

2π
+M jz

−j dθ

2π
. (12)

From (11), one easily sees that

c̃k = �Lj , z
k� = �zk, 1�Lj

=






ck, si k /∈ {j,−j},
c−j +Mj, si k = −j,
cj +M j , si k = j.

(13)

In other words, Lj perturbs the moments cj and c−j from the sequence of moments
associated with L. The rest of the moments remain unchanged. This is, the Toeplitz
matrix associated with Lj is equal to the Toeplitz matrix associated with L, except for
the j-th and −j-th moments, which are equal to cj +M j and c−j +Mj, respectively. In
matrix form, we have

�Tn =















c0 · · · cj +M j cj+1 · · · cn
c−1 · · · cj−1 cj +M j · · · cn−1

...
...

. . .
...

. . .
...

c−j +Mj c−j+1 . . . c0 · · · cn−j

c−j−1 c−j +Mj . . . c−1 · · · cn−j−1

...
...

. . .
...

. . .
...

c−n c−n+1 · · · c−n+j · · · c0















, n ≥ 0.

Clearly, the Caratheódory function associated with Lj is

�Fj(z) = F (z) + 2Mjz
j, (14)

which is a linear spectral transformation of F (z) with A(z) = D(z) = 1 and B(z) =
2Mjz

j.

4. Analysis of moment perturbations through the Szeg´́o transfor-
mation

From a positive, nontrivial Borel measure α supported in [−1, 1], we can define a positive,
nontrivial Borel measure σ supported in [−π, π] by

dσ(θ) =
1

2
|dα(cos θ)|, (15)

in such a way that if dα(x) = ω(x)dx, then

dσ(θ) =
1

2
ω(cos θ)| sin θ|dθ. (16)
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There exists a relation between the corresponding families of orthogonal polynomials
(see [5]). On the other hand, since the moments {cn}n≥0 are real (see [5])), F (z), the
Carathéodory function associated with σ has real coefficients. Therefore, we have

ReF (eiθ) = ReF (ei(2π−θ)),

and then dσ(θ) + dσ(2π − θ) = 0. Thus, there exists a simple relation between the
Stieltjes and Carathéodory functions associated with α and σ, respectively, given by

F (z) =
1− z2

2z

∫ 1

−1

dα(t)

x− t
=

1− z2

2z
S(x), (17)

where x = z+z−1

2 and z = x+
√
x2 − 1 (see [9]). In the literature, this relation is known

as the Szeg´́o transformation. Conversely, if σ is a positive, nontrivial Borel measure with
support in the unit circle such that its moments are real, then there exists a positive,
nontrivial Borel measure α, supported in [−1, 1], such that (15) holds. This is called the
inverse Szeg´́o transformation.

In this Section, we consider some perturbations of sequences of moments associated with
measures supported in [−1, 1] and then analyze the type of perturbation obtained in
the corresponding measure supported on the unit circle, when both measures are related
through the Szeg´́o transformation. The main tool is the relation (17).

4.1. Perturbation of the j-th moment. Case a = 0

Let α be a nontrivial probability measure supported in [−1, 1] and let {νn}n≥0 be its
corresponding sequence of moments, associated with the basis {1, x− a, (x− a)2, . . .}. If
we apply the perturbation (4), then we obtain a measure whose corresponding sequence
of moments coincide with {νn}n≥0, except for the j-th moment, which is perturbed by
adding to it a mass mj . Notice that, in order to apply the Szeg´́o transformation (15),
the perturbed linear functional Lj has to be positive definite (i.e. it has an integral
representation in terms of a positive measure). More generally, we can define the Szeg´́o
transformation for quasi-definite linear functionals using (17).

Assume a = 0,1 so that the Stieltjes function is

S̃j(x) = S(x) +
mj

xj+1
, (18)

where S(x) =
∑∞

k=0
νk

xk+1 =
∑∞

k=0
µk

xk+1 , since in this case the two bases coincide. Ap-

plying the Szeg´́o transformation (17) to (18), and using x = z+z−1

2 , we obtain the
Carathéodory function

F̃ (z) =
1− z2

2z
S̃j(x)

=
1− z2

2z

(
2z

1− z2
F (z) +

mj

xj+1

)

= F (z) +
1− z2

2z

mj

( z+z−1

2 )j+1
,

1This means that the mass associated with the Dirac’s delta is added at the origin. Furthermore, if

j = 0, then L0 will be positive definite if m0 > 0.
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which becomes

F̃ (z) = F (z) +
2jmjz

j(1 − z2)

(z2 + 1)j+1
. (19)

Notice that, from the relation z = x +
√
x2 − 1, the mass point at x = 0 gives two

mass points z = ±i, which are the poles of F̃ (z). Furthermore, since we have poles
at z = ±i with multiplicity j + 1, the corresponding measure on the unit circle can be
obtained directly using the general Riesz-Herglotz transform. Naturally, the perturbation
only affects the singular part of the measure. From (19), we can deduce the moments
associated with the perturbed Carathéodory function or, in other words, the effect on
the moments associated with σ caused by the perturbation.

Comparing (19) with (14), we obtain

Mj =
2j−1mj(1 − z2)

(z2 + 1)j+1
. (20)

From this, we conclude that a perturbation of the j-th moment associated with a measure
supported in [−1, 1] does not translate to a perturbation on the j-th moment associated
with the corresponding measure supported in the unit circle, when both measures are
related through the Szeg´́o transformation. In other words, a perturbation on the j-th anti
diagonal of a Hankel matrix does not result in a perturbation of the j-th sub diagonal of
the corresponding Toeplitz matrix.

In order to determine the type of perturbation obtained, set

F̃ (z) = F (z) + 2zjR(z), (21)

where

R(z) =
2j−1mj(1 − z2)

(z2 + 1)j+1
= 2j−1mj(1 − z2)

(
1

(z2 + 1)j+1

)

. (22)

To deduce the perturbed moments, we will write (22) as a power series. Notice that

1

(z2 + 1)j+1
=

∞∑

n=j

(−1)n−j

(
n

j

)

z2(n−j), (23)

and replacing (23) in (22), we obtain

R(z) = 2j−1mj(1− z2)
∞∑

n=j

(−1)n−j

(
n

j

)

z2(n−j)

= 2j−1mj(1− z2)

∞∑

n=0

(−1)n
(
n+ j

j

)

z2n.

(24)

Substituting (24) in (21), we get

F̃ (z) = F (z) + 2zj

(

2j−1mj(1− z2)

∞∑

n=0

(−1)n
(
n+ j

j

)

z2n

)

= F (z) + 2jmj

∞∑

n=0

(−1)n
(
n+ j

j

)

z2n+j − 2jmj

∞∑

n=0

(−1)n
(
n+ j

j

)

z2n+2+j.

(25)
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From (25) we conclude that, if the j−th moment associated with α is perturbed and we
apply the Szeg´́o transformation, then the obtained perturbation in F (z) corresponds to
a perturbation of the moments associated with σ in the following way:

If j is even, all even moments starting from cj are perturbed.

If j is odd, all odd moments starting from cj are perturbed.

Also, the explicit perturbation is

c̃−n =






c−n, if n < j or n = j + 2k + 1,
for k ∈ N,

c−n + in−j2j−1mj

��
(n+j)/2

j

�
+

�
(n+j−2)/2

j

��
, if n = j + 2k,

for k ∈ N,
(26)

with
�
j−1
j

�
:= 0. We summarize our findings in the following Proposition.

Proposition 4.1. Let α be a nontrivial positive Borel measure with support in [−1, 1] and
let σ be its associated measure with support in the unit circle, defined through the Szeǵó
transformation. Let {νn}n≥0 and {cn}n∈Z be their corresponding sequences of moments.
If we apply the perturbation (4) with parameter a = 0 to α, then the perturbed measure
σ̃ obtained in the unit circle is a linear spectral transformation of σ, with moments given
by

c̃−n = c−n + in−j2j−1mj

��
(n+ j)/2

j

�

+

�
(n+ j − 2)/2

j

��

, n = j + 2k, k ≥ 0,

with the convention
�
j−1
j

�
:= 0. The remaining moments remain unchanged. Further-

more, the perturbation affects only the singular part of σ.

Example 4.2. If j = 0 in (25), then the perturbed Carathéodory function is

F̃0(z) = F (z) +m0 + 2m0

∞�

n=1

(−1)nz2n,

and, as a consequence, the perturbed moments associated with the measure σ are

c̃−n =

�
c−n, if n is odd,

c−n + inm0, if n is even,
(27)

or, equivalently,

c̃−n = c−n + 2in
��

n+ 1

2

�

− n+ 1

2

�

m0, (28)

where ⌈·⌉ is the ceiling function. This means that all even moments associated with σ
are perturbed. In matrix form, we have
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�H =










µ0 +m0 µ1 µ2 µ3 · · ·
µ1 µ2 µ3 µ2 · · ·
µ2 µ3 µ4 µ1 · · ·
µ3 µ4 µ5 µ6 · · ·
...

...
...

...
. . .










⇓
Szeǵó transformation

⇓

�T =










c0 +m0 c1 c2 −m0 c3 · · ·
c−1 c0 +m0 c1 c2 −m0 · · ·

c−2 −m0 c−1 c0 +m0 c1 · · ·
c−3 c−2 −m0 c−1 c0 +m0 · · ·
...

...
...

...
. . .









.

For instance, for the third kind Chebyshev polynomials, the orthogonality measure is

dα(x) = 2

�
1− x

1 + x

dx

π
,

supported in [−1, 1]. Applying the Szeǵó transformation, the corresponding measure on
the unit circle is

dσ = (1− cos θ)
dθ

2π

= |z − 1|2 dθ
2π

,

i.e., a Christoffel transformation of the normalized Lebesgue measure, with parameter 1.
The corresponding moments are

c−n =






1, if n = 0,
− 1

2 , if n = 1 or n = −1,
0, otherwise.

Thus, if the first moment µ0 of the Hankel matrix is perturbed by adding it a real mass
m0, the perturbed Carathéodory function is

F̃0(z) = 1− z +m0 + 2m0

∞�

n=1

z2n,

which means that the perturbed moments are

c−n =






1 +m0, if n = 0,
− 1

2 , if n = 1 or n = −1,
inm0, if n is even.
0, if n is odd, different from ± 1.
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The perturbed Toeplitz matrix is

�T =










1 +m0 −1/2 −m0 · · ·
−1/2 1 +m0 −1/2 −m0 · · ·
−m0 −1/2 1 +m0 −1/2 · · ·
0 −m0 −1/2 1 +m0 . . .
...

...
...

...
. . .









,

and the perturbed measure σ̃ on the unit circle is

dσ̃ = (1− cos θ)
dθ

2π
+ dσ̃s,

= |z − 1|2 dθ
2π

+ dσ̃s.

4.2. Perturbation of the j-th moment. Case a �= 0

Let α be a nontrivial probability Borel measure supported in [−1, 1], and let {υn}n≥0 be
its corresponding sequence of moments, associated with the monomial basis {1, x, x2, · · · },
i.e.,

υk =

� 1

−1

xkdα(x), k ≥ 0. (29)

The use of the monomial basis is required because the Szeg´́o transformation (17) is
defined for the Stieltjes function that uses this basis. Applying the perturbation (4) to
α, it is not difficult to see that the perturbed sequence of moments, {υ̃n}n≥0, is given by

υ̃k =

� 1

−1

xkdα(x) =






υk, if k < j,
υj +mj , if k = j,

υk +mj

�
k
j

�
ak−j , if k > j,

(30)

i.e., all moments υk, k ≥ j, are perturbed. Again, we will assume that the perturbed
linear functional Lj is positive definite.

As a consequence, the perturbed Stieltjes function is

S̃j(x) = S(x) +

∞�

k=j

�
k

j

�
mj

xk+1
ak−j . (31)

Now, we apply the Szeg´́o transformation to (31), in order to determine the perturbation
obtained in the corresponding measure on the unit circle. We have

F̃j(z) =
1− z2

2z



S(x) +

∞�

k=j

�
k

j

�
mj

xk+1
ak−j





= F (z) +
1− z2

2z

∞�

k=j

�
k

j

�
mja

k−j(2z)k+1

(z2 + 1)k+1

= F (z) + (1− z2)mj

∞�

k=j

�
k

j

�

ak−j(2z)k
�

1

(z2 + 1)k+1

�

,

(32)
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and replacing (23) in (32), we obtain

F̃j(z) = F (z) + (1− z2)mj

∞�

k=j

��
k

j

�

ak−j(2z)k

� ∞�

n=0

(−1)n
�
n+ k

k

�

z2n

��

. (33)

Now (33) can be rewritten as

∞�

k=j

��
k

j

�

ak−j(2z)k

� ∞�

n=0

(−1)n
�
n+ k

k

�

z2n

��

=

∞�

k=0

�
k�

n=0

(−1)n+ka2n2j+2n

�
j + 2n

j

��
j + k + n

j + 2n

��

zj+2k

+
∞�

k=0

�
k�

n=0

(−1)n+ka2n+12j+1+2n

�
j + 1 + 2n

j

��
j + 1 + k + n

j + 1 + 2n

��

zj+1+2k,

(34)

and, therefore, using (34) and (33), the perturbed Carathédory function is

F̃j(z) = F (z) + 2mj

∞�

k=0

�
k�

n=0

(−1)n+ka2n2j−1+2n

�
j + 2n

j

��
j + k + n

j + 2n

��

zj+2k

+ 2mj

∞�

k=0

�
k�

n=0

(−1)n+ka2n+12j+2n

�
j + 1 + 2n

j

��
j + 1 + k + n

j + 1 + 2n

��

zj+1+2k

− 2mj

∞�

k=0

�
k�

n=0

(−1)n+ka2n2j−1+2n

�
j + 2n

j

��
j + k + n

j + 2n

��

zj+2k+2

− 2mj

∞�

k=0

�
k�

n=0

(−1)n+ka2n+12j+2n

�
j + 1 + 2n

j

��
j + 1 + k + n

j + 1 + 2n

��

zj+3+2k.

(35)

From the previous expression, we conclude that if the perturbation (4) is applied to a
measure on [−1, 1] in such a way that all moments starting from υj are perturbed, then all
moments associated with the measure on the unit circle, starting from cj , are perturbed.
Namely, we have

c̃−(j+k) =






c0 + 2A1(0), if j = k = 0,
c−(j+k) +A1(k), if k is even,
c−(j+k) +A2(k), if k is odd,

(36)

where

A1(k) = mj

k/2�

n=0

(−1)n+k/2a2n2j−1+2n

�
j + 2n

j

��
j + k/2 + n

j + 2n

�

−mj

k/2−1�

n=0

(−1)n+k/2−1a2n2j−1+2n

�
j + 2n

j

��
j + (k/2− 1) + n

j + 2n

�

,
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and

A2(k) = mj

(k−1)/2�

n=0

(−1)n+(k−1)/2a2n+12j+2n

�
j + 1 + 2n

j

��
j + 1 + (k − 1)/2 + n

j + 1 + 2n

�

−mj

(k−3)/2�

n=0

(−1)n+(k−3)/2a2n+12j+2n

�
j + 1 + 2n

j

��
j + 1 + (k − 3)/2 + n

j + 1 + 2n

�

.

In order to compute the absolutely continuous part of the perturbed measure in the unit
circle, notice that

F̃j(e
iθ) = lim

r→1



F (reiθ) + (1 − (reiθ)2)mj

∞�

k=j

�
k

j

�

ak−j(2reiθ)k
�

1

((reiθ)2 + 1)k+1

�




= F (eiθ) + (1 − e2iθ)mj

∞�

k=j

�
k

j

�

ak−j(2eiθ)k
�

1

(e2iθ + 1)k+1

�

,

(37)

and thus

F̃j(z) = F (z) + (1− e−2iθ)mj

∞�

k=j

�
k

j

�

ak−j(2e−iθ)k
�

1

(e−2iθ + 1)k+1

�

= F (eiθ)− (1 − e2iθ)mj

∞�

k=j

�
k

j

�

ak−j(2eiθ)k
�

1

(e2iθ + 1)k+1

�

.

(38)

As a consequence, we obtain

σ̃′(θ) = Re(F̃j(e
iθ)) = σ′(θ), (39)

where, again, we assume that F̃ (z) is analytic and has real part in D. Notice that this
implies that a is a real number with |a| < 1. As before, the absolutely continuous part
of the measure remains invariant with respect to the Szeg´́o transformation, and we have

dσ̃ = σ̃′(θ)
dθ

2π
+ dσ̃s(θ)

= σ′(θ)
dθ

2π
+ dσ̃s(θ).

(40)

As a conclusion, we have the following result.

Proposition 4.3. Let α, σ, {νn}n≥0 and {cn}n∈Z be as in Proposition 4.1. If we apply
the perturbation (4) with parameter a �= 0 to α, then the perturbed measure σ̃ obtained
in the unit circle is a linear spectral transformation of σ, affecting only the singular part
of σ, with moments given by c̃i = ci for 0 ≤ i ≤ j − 1 and

c̃−(j+k) =






c0 + 2A1(0), if j = k = 0,
c−(j+k) +A1(k), if k > 0 is even,
c−(j+k) +A2(k), if k > 0 is odd,

where A1(k) and A2(k) are given above.
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Example 4.4. Setting j = 0 in (30) and (36), we have

υ̃k =

�
υ0 +m0, if k = 0,

υk +m0ka
k, if k > 0,

(41)

and

c̃−k =






c0 + 2A1(0), if k = 0,
c−k +A1(k), if k is even,
c−k +A2(k), if k is odd,

(42)

where

A1(k) = m0

k/2�

n=0

(−1)n+k/2a2n2−1+2n

�
2n

0

��
k/2 + n

2n

�

−m0

k/2−1�

n=0

(−1)n+k/2−1a2n2−1+2n

�
2n

0

��
(k/2− 1) + n

2n

�

=
m0

2



(2a)k +

k
2
−1�

n=0

(−1)n+
k
2 (2a)2n

��k
2 + n

2n

�

+

�k
2 − 1 + n

2n

��


 ,

and

A2(k) = m0

(k−1)/2�

n=0

(−1)n+(k−1)/2a2n+122n
�
1 + 2n

0

��
1 + (k − 1)/2 + n

1 + 2n

�

−m0

(k−3)/2�

n=0

(−1)n+(k−3)/2a2n+122n
�
1 + 2n

0

��
1 + (k − 3)/2 + n

1 + 2n

�

=
m0

2



(2a)k +

k−3

2�

n=0

(−1)n+
k−1

2 (2a)2n+1

��k+1
2 + n

1 + 2n

�

+

�k−1
2 + n

1 + 2n

��


 .

From (42), the first perturbed moments on the unit circle are c̃0 = c0+2A1(0) = c0+m0,
c̃−1 = c−1 + A2(1) = c−1 + m0a, c̃−2 = c−2 + A1(2) = c−2 − m0 + 2m0a

2, c̃−3 =
c−3 + A2(3) = c−3 − 3m0a + 4m0a

3, c̃−4 = c−4 + A1(4) = c−4 +m0 − 8m0a
2 + 8m0a

4,
and in matrix form we have
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�H =










υ0 +m0 υ1 +m0a υ2 + 2m0a
2 υ3 + 3m0a

3 · · ·
υ1 +m0a υ2 + 2m0a

2 υ3 + 3m0a
3 υ4 + 4m0a

4 · · ·
υ2 + 2m0a

2 υ3 + 3m0a
3 υ4 + 4m0a

4 υ5 + 5m0a
5 · · ·

υ3 + 3m0a
3 υ4 + 4m0a

4 υ5 + 5m0a
5 υ6 + 6m0a

6 · · ·
...

...
...

...
. . .










⇓
Szeǵó transformation

⇓
�T=















c0 +m0 c1 +m0a c2 −m0 + 2m0a
2

c3 − 3m0a+ 4m0a
3

· · ·

c
−1 +m0a c0 +m0 c1 +m0a c2 −m0 + 2a

2
· · ·

c
−2 −m0 + 2m0a

2
c
−1 +m0a c0 +m0 c1 +m0a · · ·

c
−3 − 3m0a+ 4m0a

3
c
−2 −m0 + 2a

2
c
−1 +m0a c0 +m0 · · ·

...
...

...
...

. . .















.

Notice that setting a = 0, we obtain the same results as in the previous subsection.

Remark 4.5. Notice that the previous results can be easily generalized to the case when
the perturbation is applied to a finite number of moments, since each perturbed moment
adds an additional term to the power series on the Stieltjes and Carathéodory functions.

5. Analysis of moment perturbations through the inverse Szeg´́o
transformation

Let σ be a positive measure supported in the unit circle such that its corresponding
moments {cn}n∈Z are real. Assume also that the perturbed measure σ̃j , defined by (12),
is positive and that Mj is real, so the moments associated with σ̃j are also real. Our
goal in this Section is to determine the relation between the positive Borel measures α
and α̃j , supported in [−1, 1], which are associated with σ and σ̃j , respectively, via the
inverse Szeg´́o transformation. As in the previous Section, this relation will be stated in
terms of the corresponding sequences of moments.

Notice that, setting z = eiθ, x = cos θ, and taking into account that the inverse Szeg´́o
transformation applied to the normalized Lebesgue measure dθ/2π yields the first kind
Chebyshev measure dx

π
√
1−x2

, the measure α̃j obtained by applying the inverse Szeg´́o

transformation to σ̃j is given by

dα̃j = dα+Mj(x+ i
�

1− x2)j
dx

π
√
1− x2

+Mj(x+ i
�
1− x2)−j dx

π
√
1− x2

= dα+Mj(cos(jθ) + i sin(jθ))
dx

π
√
1− x2

+Mj(cos(jθ) − i sin(jθ))
dx

π
√
1− x2

= dα+ 2Mj
cos(jθ)dx

π
√
1− x2

= dα+ 2Mj
Tj(x)

π

dx√
1− x2

,

Vol. 33, No. 1, 2015]



80 E. Fuentes & L.E. Garza

where Tj(x) := cos(jθ) are the Chebyshev polynomials of the first kind. Notice that a
measure that changes its sign in the interval [−1, 1] is added to dα. Then, the moments
associated with α̃j are given by

µ̃n =

� 1

−1

xndα̃(x) = µn +
2Mj

π

� 1

−1

xnTj(x)
dx√
1− x2

.

As a consequence, by the orthogonality of Tj(x), we obtain

µ̃n =






µn, if 0 ≤ n < j,

µn +
2Mj

π

� 1

−1
xnTj(x)

dx√
1−x2

, if j ≤ n.
(43)

Notice that, because of the symmetry, the integral above is different from zero if n and
j are both odd or both even, and vanish otherwise. This means that

µ̃n =






µn +
2Mj

π

� 1

−1 x
nTj(x)

dx√
1−x2

, if j ≥ n, n+ j is even,

µn, otherwise.

(44)

In other words, if j is even (odd), all even (odd) moments starting from µj are perturbed.
Furthermore (see [6]), we have

Tj(x) =
j

2

[j/2]�

k=0

(−1)k(j − k − 1)!(2x)j−2k

k!(j − 2k)!
, j = 1, 2, 3, ...,

where [j/2] = j/2 if j is even and [j/2] = (j − 1)/2 if j is odd. Therefore, if j ≥ n and
n+ j is even, we have

� 1

−1

xnTj(x)
dx√
1− x2

=
j

2

� 1

−1

xn

[j/2]�

k=0

(−1)k(j − k − 1)!(2x)j−2k

k!(j − 2k)!

dx√
1− x2

=
j

2

[j/2]�

k=0

(−1)k(j − k − 1)!(2)j−2k

k!(j − 2k)!

� 1

−1

xj+n−2k dx√
1− x2

;

and, since

� 1

−1

xk dx√
1− x2

=






π, if k = 0,

0, if k is odd,

��k/2
i=1

k−(2i−1)
k−2(i−1)

�
π, if k is even,

and j + n− 2k is even, we get

� 1

−1

xj+n−2k dx√
1− x2

=




(j+n−2k)/2�

i=1

j + n− 2k − (2i− 1)

j + n− 2k − 2(i− 1)



 π.
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The previous integral can also be computed using the Residue’s Theorem, taking into
account that the change of variables x = (z + z−1)/2 yields an integral along the unit
circle T. Indeed, the integral is zero when n + j is an odd integer number. Otherwise,
one gets

1

2i

�

T

�
z + z−1

2

�n �
zj + z−j

2

�
dz

z
,

and one only needs to find the coefficient of 1/z inside the integral. As a consequence,
(44) becomes

µ̃n =






µn +MjB(n, j), if j ≥ n, n+ j is even,

µn, otherwise,
(45)

where

B(n, j) = j

[j/2]�

k=0



(−1)k(j − k − 1)!(2)j−2k

k!(j − 2k)!

(j+n−2k)/2�

i=1

j + n− 2k − (2i− 1)

j + n− 2k − 2(i− 1)



 .

This means that the perturbation of the moments cj and c−j of a measure σ supported
in the unit circle results in a perturbation, defined by (45), of the moments µn associated
with a measure α supported in [−1, 1], when both measures are related through the
inverse Szeg´́o transformation. We summarize our findings in the following Proposition.

Proposition 5.1. Let σ be a positive nontrivial Borel measure with real moments supported
in the unit circle, and let α be its corresponding measure in [−1, 1], obtained through the
inverse Szeǵó transformation. Let {cn}n∈Z and {µn}n≥0 be their corresponding sequences
of moments. Assume that σ̃j, defined by (12) with Mj ∈ R, is positive. Then, the measure
α̃j, obtained by applying the inverse Szeǵó transformation to σ̃j , is given by

dα̃j = dα + 2Mj
Tj(x)

π

dx√
1− x2

,

and its corresponding sequence of moments is given by (45).
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