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Abstract

Let (&t > 0) be a geometric Brownian motion. In this paper, we compute the law of a generalization of Dufresne’s
translated perpetuity (following the terminology of Salminen-Yor) :

400 52
i —
0 (E2+2a& + D)2

and show that, in some cases, this perpetuity is identical in law with the first hitting time of a three-dimensional Bessel
process with drift. We also study the law of the following pair of annuities

</Ot (& —1)"ds, /Ot (& —1)*ds)

via a Feynman-Kac approach, and discuss some particular cases for which we are able to recover the associated perpe-
tuities.

Keywords: Geometric Brownian motion; Bessel processes ; Feynman-Kac formula.

Sea (&, t > 0) un movimiento geométrico Browniano. En este articulo, calculamos la ley de una generalizacién de la
perpetuidad trasladada de Dufresne (con la terminologia de Salminen-Yor) :
+00 2
/ zg—sds’
0 (E2+42a& +b)?

y mostramos que en algunos casos, esta perpetuidad tiene la misma ley que el primer tiempo en el que un proceso
de Bessel de dimensién tres con deriva alcanza una cierta barrera. Estudiamos también la ley del par de anualidades

siguientes
t t
-t 1)
< /O (& — 1)t ds, /O (& —1) ds)

con un teorema de Feynman-Kac, y discutimos algunos casos en los cuales podemos recuperar la ley de la perpetuidad
asociada.

Palabras clave: Movimiento geométrico Browniano ; Proceso de Bessel ; Férmula de Feynman-Kac.

Cédigo MSC2000 : 60]65, 60J60, 60J55.
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1 Introduction

One of the most important concept in finance theory is
the time value of money which states that a given amount
of money at the present time is worth more that the same
amount in the future. This is due to the fact that you may
invest the money you hold today and earn interest. Assu-
ming that the rate of interest is constant and equal tor > 0,
the value of the money V (k) at time k € IN satisfies:

V(k) = V(0) x (1+7r)

This formula may be used to compute the present value of
an annuity, that is, of a series of equal payments P that oc-
cur at evenly spaced intervals. For a period of n payments,
the present value of an annuity A,(0) equals:

)

(-

Classic examples of annuities are for instance lease pay-
ments, insurance payments or regular deposits to a savings
account. Letting n tend towards +co in Formula (1), we ob-
tain the present value of a perpetuity A« (0), that is, when
the payments are not limited in time:

L P P

An(0) :k; I+nk 7

p
Ax(0) = —.
w(0) =
All these computations may be extended to a continuous-
time framework. In the continuous case, the value of the
money V(s) at time s > 0 satisfies :

V(s) = V(0)exp(rs).

A natural generalization may be obtained by considering
varying interest rates, in which case r is no longer a positi-
ve constant but a function which fluctuates over time. The
value of the money V (s) at time s > 0 then satisfies :

V(s) = V(0) exp </Osr(u)du> .

By analogy with (1), the present value of an annuity paid
continuously up to time ¢ > 0 is thus given by :

A(0) = P/Ot exp (— /Osr(u)du> ds

and, letting ¢ tend to +oo, the analogous perpetuity equals

Ax(0) = P/O+Oo exp ( /OS r(u)du) ds.

Unfortunately, the future evolution of interest rates (i.e. the
function r) is unknown, and is therefore often modeled by a
stochastic process. In other words, when dealing with long
term guaranteed payments, one is often led to study the
law of random variables of the form

—+o0

X, ds
0

where (X;,s > 0) is a given (positive) stochastic process.
One of the most famous example is certainly Dufresne’s
perpetuity. In his study of the value of a pension fund, Du-
fresne [5] proved the equality

+o0
aBs—vs (law) 2
/ e ds = [,127
0 Yov /a2

where (B¢, t > 0) is a Brownian motion started from 0 and
u denotes a Gamma random variable with parameter y:

P(y, € dz) = e‘zzﬂ_ll{po}dz.

1
T(p)
Since then, many perpetuities involving geometric Brow-
nian motion (exp (vBt — ”%t , > 0) have been conside-
red, which is of no surprise due to its prominent role in the
celebrated Black-Scholes model. Observe that, in the set-up
of perpetuities, the parameter v may be removed by scaling
since:

+o0 o0
/ f (eVBsivis> ds Gaw) / f (erzsii) ds
0 0
1 [t u
:ﬁ/o f (eB”if) du.

Therefore, in the following, we shall emphasize our study
on the processes :

Er =exp (Bt + ;) and M =exp <Bt - ;) .

In [16], Salminen and Yor introduced a translated version
of Dufresne’s perpetuity, to circumvent the fact that the ori-
ginal one does not have all his moments finite. They prove
in particular the equality :

/+°° ds (law)
0 (2a+&)?

which we shall recover in Section 2. In fact, many perpe-
tuities involving Brownian motion with drift are seen to be
identical in law with the first hitting time of some associa-
ted diffusions, see [17] for a discussion and many examples
on this subject.

inf{s >0, Bs+as = Zlaln(l—l—2a)}

In this paper, we study a generalization of Dufresne’s
translated perpetuity, that is,

+oo 552 P
/0 (€21 2a&, + b2

and show, in particular, the following equalities in law:
THEOREM 1. Assume that b > 0 and a> — b > 0. Let

(R§3’ az_b),t > 0) be a three-dimensional Bessel process with
drift v/a? — b. Then, if g = My = x > 0,

+o0 52
/ 5 ds
0 (E2+2a€, + b)?
(la:W)inf{t >0, REV&H) — ;7(00)} ,

with R(()S’ ”b) _ n(x),

8 Analitizla, Revista de andlisis estadistico, 4 (2014), Vol. 7(1): 7-19
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and
+o0 MZ
/ S ds
0o (M2+42aM;+b)?
with RPVC ™Y = y(b/x).
where

(x) = / Y dz
T = Jo Z+20z+b
We give two proofs of this result:

i) a direct proof relying on a martingale approach and
on the weak absolute continuity formula between
Brownian motion and the three-dimensional Bessel
process,

ii) and a slightly more probabilistic proof relying on the
third Ray-Knight theorem and on a decomposition of
the three-dimensional Bessel paths at its last passage
times.

In the remainder of the paper, we study via a Feynman-Kac
approach the law of the pair :

(/Ot (625(Bs+vs) B 1>+ds, /Ot (eZb(Bervs) B 1)* ds)

where xT = max(0, x) and x~ = min(0, x). This study ans-
wers a problem raised in the monograph [14, Chapter 4],
where the authors compute the Laplace transform of the
Black-Scholes call perpetuity

+o00 B
/ (ex+ utvu K)+du
0

and leave as an open question the study of the analo-
gous annuity. We then discuss several special cases (among
which the Black-Scholes call annuity, the positive sojourn
time of Brownian motion with drift and Yor’s functional),
and recover the Laplace transform of the associated perpe-
tuities.

Note that annuities also appear in the computation of
Asian options, where the payoff is determined by the ave-
rage price of the underlying asset (S¢,t > 0) on the con-
sidered period, see [7]. For instance, the price of an Asian
Call option with exercise price K and maturity T is given

by
(T /0 Sidt — K)
This is somewhat different from the price of a classic Euro-

pean Call option, where only the final value of the underl-
ying asset at time T is considered (see [3]) :

E

E [(ST —K)*} .

Of course, Asian options are harder to compute in practice
as they depend on the entire past history of the underlying

asset, but they make it possible to reduce the risk of price
manipulation near the maturity date.

The paper is finally concluded by a short appendix on Bes-
sel functions and Bessel processes (with drift).

2 A generalization of Dufresne’s
translated perpetuity

In this section, we compute the law of the perpetuities :

i £ d d
/0 (€2 +2a8, + o2

M?

—+00
I (MZ T 20 M, + 0127

THEOREM 2. Assume that the polynomial z> + 2az + b does
not have positive roots. For 2A + a®> — b > 0, we have:

E {ex <—/’\/+oo 552 ds)} =
x| &P o (E2r&+02%)| T

x dz
i Y/ 2_ =
Va2 +2ax+b smh( 2Ata b/o 22+2az+b>
+o00
SN (e -
0

z24+2az+b

and

+oo Mf B
b [e"p (‘A b v T b>2ds>} N

b/x dz
inh [/ 7_ =
\/b+2ax+x2smh< 2Ata b/o zz+2az+b>
+oo ’
g
0

z24+2az+Db

The equality in law given in Theorem 1 follows directly
from this result, since when a2 — b > 0, one recognizes in
the right-hand side the expression of the Laplace transform
of the first passage time of a three-dimensional Bessel pro-
cess with drift va% — b. A short review of Bessel processes
with drift is given in Section A, where these Laplace trans-
forms are also inverted thanks to Jacobi’s theta function.

21 A martingale approach to Dufresne’s
translated perpetuity

Let x > 0 and assume that & = x. By Lamperti’s rela-
tion (see Theorem 7), there exists a three-dimensional Bes-
sel process (R, t > 0) started from x such that:

gt = RA“ with At = <g>t = / (6’5)2015.

t
0
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Using this transform and the change of variable u = A, exp < Y ! du }

we obtain : 0 2
(R% +2aRy, + b)

+o0 52 +o0 R2
/ (€728, 1012 7/ R2 T 2aR, + b2
70 ° 0 (R, +20R4, +b) and, letting t go towards +oco, we obtain from the domina-

_ / oo 1 Ju ted convergence theorem :
RZ +2aR, +b)>

(2) +00
To compute the law of this perpetuity, we shall construct IES(S) exp ( —A / du 5 )]
the appropriate martingale, thanks to the following lem- 0 (Rf+2aRy+D)
ma: 1 sinh (ry(x)\/Z/\ + A) ®)
) =—Vx*+2ax+b ,
}I;E>M(IJ\TIA 3 ([13]). Let A = a* — b and 2A + A > 0. Set for X sinh (17(+oo)\/m>
T 7 dz
n(x) = /0 2242z +b which, thanks to (2), gives the first part of Theorem 2.
Then, the functions Next, the analogous formula for M follows by symmetry.
Indeed, since when By = 0,
¢+ (x) = Va2 +2ax + bexp (j:r](x)\/Z)\ + A)
£\ (law) t 1
. . . Mt = exp Bt — = =" exp th —= | ==, (4)
are two independent solutions of the equation: 2 2 &
- 2A f= we obtain :
(x2 4 2ax + b)? '
+o0 ZMZ
. . . N2 _ d
Let (Wi, t > 0) be a Brownian motion. Applying It6’s for /0 (ZMZ 4 2ax M, + b)2
mula, we deduce that the process N 282
= ds
M; = /Wz—l—ZaWH—bsmh (71( )1/2)\_'_ ) /0 (x2+2ax55+b52)
400 b252
: du =’ / 2 2c7y2 %
exp [ -2 / . 0 (bx2 4 2axb& + b2E2)
W2 + 2aW, +b)

and
is a continuous martingale, and with Ty = inf{t > 0, W; =

0}, Doob’s optional stopping theorem implies: +o0 M2
E, {exp ( A / > ds)]
(M2 + )

2a M+ b)?
Vx2 4 2ax + b sinh <\/2A + An(x))
 Virm T2 sinh <x\/2)t+ / z2+2axz+bx2>
=Ey| /W2 +2aWiag, + b sinh( W, \/2A+A> -
x|:\/ AT, tAT, 1( t/\To) Vb sinh <xm/ dz >

AT i z2 + 2axz + bx?
eXp<_A/o 2)] h(\/2A+ / )
5 sin S A
(W§+2aWu+b> _ Vb+2ax+a? 2+2ay+b

sinh [ v2A 4+ A / —_—
=E;, { W2+ 2aW; + b smh(;y( DV2A + ) y? +2ay+b
t du after the change of variable y = xz.
{t<To}

exp(—/\/0 ]

(WE, +2aW, + b)
Remark 4. Letting x tend towards 0 in (3), we obtain the

Now, from the absolute continuity formula between Brow- simple formula:

nian motion and the three-dimensional Bessel process (14),

we deduce that:

e du
EQ |exp </\/O o bzﬂ
Vet 2ax +bsinh () V215 8 ) F( %+ 2aR, +b)
B A+ A
. L;\/msinh (q(Rt)\/Z/\ n A) Vhsinh (17(+00)V2A+ A
t
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2.2 A probabilistic approach to Dufresne’s
translated perpetuity

We now give another proof of Theorem 2, with a slightly
more probabilistic approach. Let x > 0 and assume that
My = x. From the Dambis, Dubins-Schwarz theorem (see

[15, Theorem 1.6, p.181]), there exists a Brownian motion
(B¢, t > 0) started from x such that:
t
Mt = B<M>t with <M>t = /O (MS)ZdS.
Therefore:

1) 2
/o+ (M2+;\;Ms+b) ds
_/*""

—/ 1 du
~Jo (B2+42aB,+0b)2"

where Typ = inf{u > 0, B, = 0}. By the classic time-
reversal result of Brownian motion (see Section A), this last
expression is seen to be identical in law with:

2
Bl d

s (5)
+ 2[1B< > + b)Z

[
u
0 (Blzl + 2ﬂBu + b)z

A : .
p— S
0 (B2,_,+2aBr,_,+b)? ©)

(law) /GX 1 ds
~ Jo (R?2+42aRs+b)?

where (Rs,s > 0) is a three-dimensional Bessel process
starting from 0 and Gy = sup{s > 0, R; = x}.

To compute the law of this last expression, we shall first
consider the whole perpetuity

/+°° ds
0 (R2+42aRs+1b)*

From the occupation time formula and Ray-Knight’s third
theorem (see Theorem 10):

T La(R)

(2 + 2ay + b)?
e

(law) [T y
0 (y>?+2ay+0)

where ( Zﬁz), y > 0) denotes a two-dimensional squared
Bessel process starting from 0. Then, from Theorem 8, the
Laplace transform of the right-hand side equals :

d

/+°° ds -
0 (R2+2aRs+b)*> Jo

o 70
E [exp (—A/O M@/)] = F(o0)

where F is the unique solution on [0, +oo[ of :

1 2A

-2 _F
(x2 4 2ax + b)?

Analiti>la, Revista de andlisis estadistico, 4 (2014), Vol.

such that F is positive, non increasing, and F(0) = 1.

Therefore, from Lemma 3, there exist two constants « and
B such that :

=vVx24+2ax+0b
(cosh ((x)V2A+ &) + Bsinh (n(x) V21 +4) ) .

F(x)

Since F(0) = 1, we deduce that:

Next, as F is positive and non increasing, the limit F(oo)
necessarily exists, so we must have :

\}E cosh (q(—i—oo)M) + B sinh (77(—1—00)\/M) =0
which yields
fo 1o (n(+00)v22+4)
a \/Esmh (11( )\/2A+A).

Finally, thanks to the additivity formula of sinh:

Va2 + 2ax + b Sinh (V 21+ A(7(e0) — 77(9‘)))
Vb sinh (;7(+oo) 24+ A)
V2A+A
=+ /bsinh (U(+w)\/m>

F(x) =

and we recover the result of Remark 4. Now, to obtain the
result for any x > 0 we shall use a decomposition of the
paths of the three-dimensional Bessel process at its last pas-
sage time Gy = sup{t > 0, Ry = x}. From Theorem 9, we
may write :

/+°° ds
0 (R2+2aR; +b)?

/+°° ds
Ge  (R242aRs +b)*

n /0+°° ds
(

2
RL . +2aRg, s+ b)

Gx ds
0 (R2+2aR, +b)

B /GY ds
0 (R2+2aRs+b)

(law) /G* ds n
0 (R2+2aR,+b)

I

~ 2
(x+Ro)2+2a(x + Rq) + b)

where (ﬁs,s > 0) is an independent copy of (Rs,s > 0).
Taking the Laplace transform of both sides, we obtain, from

7(1): 7-19 11
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(5) and (6):

exp | —A /+oo ds
P 0 (R2+2aRs+b)*

_ ]E((f’)

ESY

Gx ds
oF <_A/o (R2 +2aRs + b)2>]

+oo ds
]E(()e’) exp —A/ — — 5
((x+Rs)2+2a(x+Rs)+b)

] Y
= Ex [eXp ( A/o (M2 +2aM; + st”

ESY

which yields the formula:

+o0 ./\/12
Ex {eXp <_A/o (M2 +2aM; + b)2
Va2 + 2ax + b
Vb

dz
inh (V22 a2 — /
St < ta zz+2a+x)z+x2+2ax+b>
sinh (\/2/\—|—a2 /

=)

zz+2az+b>

This new expression is seen to agree with Theorem 2 by
applying the change of variable z = % — x in the integral on

the numerator. The other relation follows as before thanks
to (4).
O

2.3 A few particular cases

i) Whena = 1 and b = 1, we recover a particular case
of Hariya’s identity :
+oo 552

/o (E2+42E+1)2

_/+°° ds
B 0 (Rs+1)4

ds

1) e {t > 0,R, = 1}

ii) More generally, when a = \/E,

400 52
/ Sds
0 (E2+2bEs + b2)?
- /‘+°° ds
~Jo (Rs+Db)*

with&):xandRo:%—ﬁ.

(law) inf{t>O,Rt:

1
b 4

iii) We may recover the result of Salminen-Yor [17] by
letting b — 0. Indeed, for 0 < b < a2, we have:

12 Analiti>la, Revista de andlisis estadistico, 4 (2014), Vol.

exp | —A /+oo ds
P 0 (R2+ (2a42x)Rs+ 22 +2ax+b)? )|’

/x dz
0 z24+2az+0b
X+a—

1 2_p
- In _
2\/a2—b( (x+a+\/a2—b>
<a— az—b>)
In| ————
a++va?—b

so that, letting b go towards 0, we obtain:

\/ 2

smh( 2Aat - /Z2+2az+b>
1 <\/2/\+a< ( x )
= exp In -

b:O 2 2a X+ 2a
b
In 71_ '@
2
and

+oo ds
E _ %
; {exf’ ( VL e

Vx4 2a X \/W X @7
VX <x+2a> :<x+2a>

This last expression is seen to coincide with the
Laplace transform of the first hitting time at level
2 In (¥£22) of a Brownian motion with drift a star-
ted from 0, which was the announced result in the

introduction, with x = 1.

Nf—=

We refer to Salminen & Yor [16, 17] and Decamps, De
Schepper, Goovaerts & Schoutens [4] for similar articles on
this subject.

3 Some Black-Scholes annuities

Let (B + vt, t > 0) be a standard Brownian motion
with drift v started from 0. In this section, we study the
law of the pair of annuities :

(/Ot (eZﬁ(BS-H/S) B 1)+ds, /Of (ezb(Bs—l—vs) 3 1)ds) @)

where x = méx(0, x) and x~ = min(0, x).

THEOREM 5. Let o, B,a,b,A > 0and v € R. The double La-
place transform of the couple (7) is given by:

+o0 t +
/ (g, [exp (_ “/ (62/3(35+1/s) _ 1> s
0 0
a/t (eZb(BSJFVS) - 1) _ds) dt
0
2 V2a\ 0 V2a
“an (o (5 Lo (e Yo

(B (o))
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where the Wronskien w) equals:

e ()5 ()

B b
s ()2 (2)

and Ipc and K3, denote the third modified Bessel functions with
respective indexes

1
c= 2A + 12 and

2b
_ — 2 _ 2
5 \/Z(A—i—a) 20+v?  if2(A4a) —2a4+v->0

i
— /20— 2(A +a) —12 ise.
5 ﬁ\/ o —2(A+a)—v? otherwise

The proof of this result is given in the next Sections 3.1
and 3.2. We will discuss in Section 4 some special cases for
which the expression on the right-hand side simplifies.

3.1 A useful version of the Feynman-Kac for-
mula

To prove Theorem 5, we shall apply the following well-
known Feynman-Kac formula, see for instance Janson [9,
Appendix C] where many other Brownian areas are also
studied.

THEOREM 6 (Feynman-Kac). Let V(x) > 0 be a positive con-
tinuous function on R, A > 0, and let ¢ and ¢_ be two c2-
solutions of the differential equation

1
50" (x) = (V(x) + 1)g(x) ®)
such that, for A large enough :
¢+ is positive and bounded on [A, +o0] and )

¢— is positive and bounded on | — oo, —A].

Let wy := ¢+ (0)¢’”_(0) — ¢—(0)¢’, (0) and assume that w) #
0. Then, for any positive and measurable function f on R and
any x € R:

e e BV )]~
Z (00 [ o-wrwiay+o-(o) |

—+o00

(10)

Demostracion.
We sketch the proof of this result for the sake of complete-
ness. First, define the Wronskien:

Wi (x) = ¢4 (x)9L (x) — o (x)¢s (x).

Since ¢+ and ¢_ are solutions of (8), we deduce that
W/ (x) = 0, hence for any x € R, W, (x) = W,(0) = w,.

Analitizla, Revista de andlisis estadistico, 4 (2014), Vol.

o+ (y)f (y)dy>

Assume first that f is continuous and has compact support,
and define:

P(x) =9+(x) [ o-()fw)dy+
+o0
o) [ 9.
¢ is a function of C!-class, and differentiation yields:

§0) =0, () [ ooy

—+oo

¢ [ o)y
We thus deduce that ¢ is of C?-class, and from (8):
¢"(x) = 2(V(x) + A)p(x) — Wy (x) f(x)
=2(V(x) + 1) (x) — wpf(x).

Observe also that, since f is a function with compact sup-
port, the function ¢ is bounded on R. Consider now the
process

t U
M, =e At— fo (Bs dS(P B _‘_%/ E*A”*fo V(Bs)dsj-(Bu)du
0

From Itd’s formula, this process is a local martingale and
we have the estimate:

Ml < sup ()| + Lsup )] [ e
sigﬂglﬂ x)| + 22 n suplf( |-

Therefore M is uniformly bounded, i.e. M is a bounded
martingale and

¢(x) = Ex [Mo] = Ex [Mc]
+oo u
_ %Ex |:/O e—)m—fo V(BS)de(Bu)du )

By a monotone class argument, the assumption on the con-
tinuity of f may be dropped, so Relation (10) is in fact va-
lid for any positive and measurable function with compact
support. Let now f by a positive and measurable function,
and consider the sequence of functions

fu(y) = FW) 1y 1<n)-

Since the f,, have compact support, we may apply Relation

- (10) and write, for n large enough:

./(;+°° e ME, {e— Jo V(Bs)dsf(Bt)l{\Bt\gn}} dt
(4)* [0 W) [ oet)f (y)dy) :

We finally end the proof by letting n — +o0 and applying
the monotone convergence theorem thanks to the Condi-
tion (9).

y)dy +¢—(

O

7(1): 7-19 13
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3.2 Proof of Theorem 5 so the Feynman-Kac formula yields, for x = 0:

We restrict our attention to the case x = 0, for which the
formulae take a simpler form. To prove Theorem 5, we first +eo e | exp [ — a t (2B(Btvs) _ 1 - s
remove the drift thanks to the Cameron-Martin formula, 0 0| €Xp 0
which states that for every functional F:

2 a /t (eZh(BS+”5) — 1) _dsﬂdt
Eq [F(Bs +vs,s < t)] = Eg [e”BfUZtF(BS,s < t)] Jo

2 +o00 0
e [EB s <n]. = (9O [ ey +pe0) [ty
Therefore the double Laplace transform reads: which ends the proof.
+o00 t + .
/ e—(/\+u)t]EO [exp < —a / (eZﬁ(Bs+vs) _ 1) ds—
JO J0 . g
- 4 Some spec1al annuities
a / ( 2b(Bs+vs) 1) )] dt
0 We now look at some particular cases of Theorem 5, ac-

too 2 ¢ +  cording to the values of &, 8,4 and b. Most of the formulae
= / e~ (MR, [eVB‘ exp ( — zx/ (325(35“5) — 1> ds we obtain may be found in [2].
0 0

—af—a /0 t (ezb(Bs+VS) _ 1) _dsﬂdt 4.1 The Black-Scholes call annuity

Consider the ordinary differential equation: We f{rst let a — 0 in Theorem 5. Recall the asymptotics
(see Section A.1):

1

3900) = (8(E = D1 gy e = 1)1 o+ 2

WG~y g @

a-+ sz +)L>(P(X).

The function V defined by

VN N pzt
ZI]J(Z) - ZI}lJrl (Z) + VIV (Z) 230 2;41—'(}1 + 1) °

We thus obtain the double Laplace transform of the Black-

2 .
V(x) = a(eX* — 1)1 0) + a (e — )10y +a+ 1/? Scholes call annuity:
. " . e ﬂxf (2P (Bstvs) 1)+ds
is positive and continuous, so we may apply the Feynman- 0 e "Ep |e dt

Kac Theorem 6. To simplify the notation, we set:
1 \/7 2 /+00 VY K V2a By d Kz,y(\/gx)
= — 2 = — e —e +— 7
c=5 2A+v and wr \ o 2y B y By wr

1
- — 2 1 — 2>
2,8\/2()\4—(1) 20 +v2  if2(A+a) —2a+v- >0

where the Wronskien w, equals:

’Y =
i V2w
L \/Za —2(A+a) —v2 otherwise. V2 + 12Ky, V2aK;, -
2B ﬁ B
In this f1.ramework, the sglutions ¢+ and ¢_ which satisfy We may also recover the Laplace transform of the associa-
(9) are given by (see Section A.1): ted perpetuity as follows. Assume that v < 0 and replace A
V2% o by Ae to obtain:
¢ (x) =Ky | ——e forx >0, oo 2B 1)
p / e—Ast]EO |: —af (e2P(Bstvs) 1) ds:| dt
0
and 1 [+ SV (260549 )+
_ —At —a [y ¢ (e2P(BsFvs) 1) T s
¢ (x) = Ic <\/b27aebx> for x < 0. - E/O ¢ "Eo {e ‘ ] dt.
Their Wronskien equals Now letting ¢ — 0, we deduce that:
1 o [T (2B(Bs+vs) 1\ T
2 - « e 1) ds
w) =V2aKy, ( > I, < a) - A b0 [e Wt ) ]
- e Koo (Y22
V2aK. 20‘ I 211 = lim 2 / * e"VKy, ﬁeﬁy dy + M
2y 2 ’ e=0 Wye \ Jo B v+ V2Ae + 12
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V2
2|1/| Kay (T) _
2 20\’
A vl (4) - vaais, (43

which agrees with [14, Section 4.4, p.107]. Unfortunately, it
does not seem easy to invert this Laplace transform.

/0 evyey\/Z/\+v2dy+
—co 2A+a)+v2—v

Elo Blw

1 1
<V+\/2/\+U2 \/2(A+a)+1/2—1/>'

4.2 The positive sojourn time of Brownian ;i
motion with drift Wy = V2A+ 12 +1/2(A +a) + 2.

Let first « — 0. From the asymptotics (see Section A.1):  We now study two further simplifications :

Ky(z) ~ 2T (v) and i) When v = 0, this expression simplifies to:
z—0 zv
— +00 t 1
, B 1/21/ 11"(1/) / e*/\t]E |:€ll fO 1{35>0}d5:| dt —
zK;, (z) = —zK,_1(z) —vI,(z) T 0 0 VAVA+a
we deduce that and this double Laplace transform may be inverted to
+o0 2(Batvs) 1\~ recover the celebrated Arcsine law of Brownian mo-
/ e ME, { —at—a fy (1 -1) ds] dt tion:
0

W)

v2a
0 V2a e (5~
:2< [ e, (;) a2 0%)

t 1
) ]PO <‘/0 1{BS>0}dS S dZ) = ml{o<z<t}dz.

ii) When v < 0, we may obtain the Laplace transform of
the associated perpetuity as before:

2 (e}
wy = v2alh, (*ﬁ) +4/2(A +a) +12 I (?) . E, [e*“ftf Hasruso0) ]

2A 1 1
We now let further b — +co. The left-hand side yields : = lim e +
e=0Wre \v+vV2Ae+12 2 e+a)+1v2 —v

- /t (2B 1) s 2y
0 N lv] + V2a+v2’

where the Wronskien w, equals:

t
_ t+/0 PHBAS)] s — | . |
which may be inverted to give (see [6, Formula 4,

t
/0 L(B, tvs<0}ds — P / LB 4vs=014s p-233]):
—+o0
To compute the limit as b — +-cc in the right-hand side, we Py ( / LB, 4vs>0)ds € dz)
rely on the following integral formula 0
v|v2 —L 12
zH 4 , = 72 \1/|\f/ dt | 1, dz.
Li(z) = —/ ¢7<05(9) sin(9)de T z ‘V‘f {z>0}
= st @ e
which gives : 4.3 Yor’s functional
I V2a oy YV . Ta}<.e a = w and b = B. Then, from (11), the Wronskien
Va2t b b +o0 simplifies to
w) = ‘B
and and from the formula (see [8, p.712]) :
V2a V2a
I — | =1 —_— +oo 22 dt
Vol ( b et o )T 2K ) = [ ()T feryzx,
V2A 412 V2a V2A 412 . :
I o . we obtain the expression :
V22 2\+v b b 100 \/5
+oo t s +Us

Therefore, we deduce that /0 e_M]Eo {e“" Jo e )ds} dt

oo t 1 e dt t o« «

—At _u.f l{Bs+vs O}ds = f‘/ _ - / _ " 2By
/0 e "Ep [e 0 > ]dt Bl 1 exp | —5 i &P tﬁ2€
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20ePY
_lredz _ 1 1 oy
_ﬁo Ze exp( 2Z,32>/IReXp< 2,326

eIy, ( ﬁz) dy.

We may therefore invert the Laplace transform in « to ob-
tain:

Py </TA e2P(Bst1s) gs ¢ dz>
0

A 1 ePy
= 5 e p( ﬁzezﬁy> M yaa ( ﬁ2>d

where T, denotes an exponential random variable with pa-
rameter A independent from B.

Note that this last Laplace transform may be also inverted
thanks to the Hartman-Watson function 6, given by:

L) = [

which, from Yor [19], admits the representation:

e~ Mo, (t)dt

+0°7-[

0,(t) = 7 reosh(y) sinh(y) sin (2> W

Aaih ¢

4.4 One-sided Yor’s functional

Take a = « and let b — +o0. We obtain :

+o0 v
/ e*)\t]EO |: 70(] 2/3 Bs+vs l{Bs+|/$>O}ds:| dt
0

Vers
Koy ( B ) <><>evy1<27 (?eﬁy>>

2
=— | =+
Wi (1/4—\/2/\—!-1/2 0
with
2 2
wy = Kay (?) V2 + 12 — V2aK),, (*g") .

This allows to recover the associated perpetuity, forv < 0:

+o0
Ey [exp <_“/0 eZﬁ(BS+V5)1{Bs+v5>O}dS>]

2|u\1<‘v (%)
\/ﬂK‘”‘H <\//527‘>

We refer to Salminen & Yor [16, 17] for a comprehensive
study of this family of perpetuities.
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A Appendix on Bessel functions and
Bessel processes (with drift)

A.1 Modified Bessel functions [10, Chapter 5]

For v € C, let I, denote the modified Bessel function
defined by:

00 (x/z)v—i-Zk

lv(x) = kgo T+ DI (k+v+1)

x>0,

and K, the McDonald function defined, for v ¢ Z, by:

mly(x) = Iy(x)

Kolx) = 2 sin(vnm)

x>0,

and forv=n € Zby:
Ky (x) = lim Ky (x).

v—n
v#n

It is known that these functions generate the set of solu-
tions of the linear differential equation:

1 2
u”+u’—<1—|—1/2>u:0.
x x

Their derivatives are seen to satisfy several recurrence re-
lations:

xI,(x) = xI,—1(x) —vL,(x) = xI,11(x) + v, (x),
xKj (x) = —xKy_1(x) — vKy(x) = —=xKy41(x) + vKy(x),
and their Wronskien takes a particularly simple form:
1
W(Ly(x), Ky (%)) = L (x)K; (x) = [(x)Ky (x) = == (1)

Note that they both simplify when v = +1/2:

Lm@wwﬂimm@, hma—J;am@

and
7T —Z
K_1/2(z) = Ky/2(z) = ¢

For real and strictly positive v > 0, I, is a positive increa-
sing function and K, is a positive decreasing function. In
this case, they both admit some useful integral representa-
tion:

_ xv /T[ excos(f)) sin?? (9)119
2v/rT(v+3) Jo

1 x\v [T 1 x?

Iy (x)

from which we may deduce the following equivalents (still
for v > 0):

x¥ 21T (v)
L(x) ~ =~ and Ky(x) ~ —
V@) Sorrern 2 B

x—0 xVv !

and the asymptotic formulae when x — +oo:

e* T,
T and KV(x)x;loowﬂe .

A.2 Bessel processes with drift [11]

I,(x)

~
X—>+00

Let 0 € IN\{0} and ¢ > 0. The Bessel process of dimen-
sion d (or equivalently of index v = § — 1) and drift c is the

diffusion (REJ’C),t > 0) with generator:

21/+1 IV+1 a
—l—( ox +c 1, (cx) 3

We denote by IPJ(;S’C) its law when started from x. This
process may be obtained as the euclidean norm of a J-

1

9=332

(12)

%
dimensional Brownian motion B with drift 7 € R° such

that | 7 || = c:
= -
RO =B+ 7. 7).

The law of the first passage times of (R, t > 0) is given by
the following Laplace transform:

L, (xV2A + c2) I, (ca) r<a

I (av2A + 2) L (cx) -
B 1] =

Ky (xV2A +¢?) I, (ca) x>

Ky(av2A + ¢2) Lu(cx) T

In particular, when é§ = 3, (ie. v = %), these formulae sim-
plify to:

Ey(c3'c) [eiAT”}

sinh(xv/2A + ¢2) sinh(ca)

- ifx <ag,

sinh(av/2A + ¢2) sinh(cx)
exp (—(x—a)\/Z/\—l—cz)M ifx>a
sinh(cx) -

Note that this Laplace transform may be inverted, see [6,
p-258]:
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sinh(ca)

sinh(cx)

PE (T, € dt)/dt =
sinh(ca) (x — a)
sinh(cx) /27t

exp (—

Letting ¢ — 0 informally in (12), we obtain the genera-
tor of the classic Bessel process with index v:

W

A.3 Bessel processes

12 w10
2 9x2 2x  ox’
These processes are deeply related with geometric Brow-
nian motion thanks to the following Lamperti’s relation:

G= (13)

THEOREM 7 ([18]). Let (B; + vt,t > 0) be a Brownian mo-
tion with drift v > 0 starting from log(x). Then, there exists

(REV),t > 0) a Bessel process of index v started from x such
that: v
1%

fot exp(2(Bs+vs))ds’

(

In particular, for v > 0, (Rtv),t > 0) is transient and

exp(By +vt) =R

tlir+n Rgv) = +o00 a.s. In the framework of perpetuities, we
— oo

may mention the following theorem, which allows to com-
pute the law of some perpetuities involving squared Bessel
processes, see [15, Theorem 1.7 p.444]:

THEOREM 8. Let ¢ be a positive and measurable function such
that f0+°°(l + x)@(x)dx < +o0. Then:

EY) {exp <— /0+oo R%go(t)dtﬂ = F(+00)’2exp (gF’(O))

where F is the unique solution on [0, oo of :

F'" = @(x)F such that F is positive, non increasing, and
F(0) = 1.

A.4 The three-dimensional Bessel process [15,
Chapter VI.3]

We now take § = 3 (ie. v = %) in (13) to obtain the
classic three-dimensional Bessel process. This process en-
joys many important properties and is, in some sense, very
close de Brownian motion. In particular, there is a weak ab-
solute continuity formula between Brownian motion and
the three-dimensional Bessel process :

B;

3
P 7 Loy - Pri e

N (14)

The paths of a three-dimensional Bessel process admit a
useful decomposition as follows:

THEOREM 9. Let (R, t > 0) be a three-dimensional Bessel pro-
cess started from 0 and define Gy = sup{t > 0, Ry = x} it last
passage time at level x. Then:
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(x -

2t

0?2 2
((Zn—i—;za x) —C2t> ifx<a

a)? B C;t)

i) conditionally on Gy, the processes (Ryt < Gy) and
(Rt+g,,t > 0) are independent,

if x > a.

ii) the process (Ryyg,,t > 0) has the same law as (x +
R;, t > 0),

iii) the process (Ry,t < Gy) has the same law as (Br,_¢, t <
To) where (By, t > 0) is a Brownian motion started from
x and Ty = inf{t > 0, B; = 0}.

This result was first proven by Williams [18] in its decom-
position of the Brownian paths, see also Pitman [12] for a
related study.

We conclude this appendix by stating the third Ray-Knight
theorem, which describes the dependence in the space va-
riable of the total local time of the three-dimensional Bessel
process :

THEOREM 10 (Ray-Knight). Let (R¢,t > 0) be a three-
dimensional Bessel process started from 0 and denote by L% (R)
its total local time at level y. Then:

(law)

(L%,y >0 ™z y > 0)

where Z?) is a two-dimensional squared Bessel process started
from 0.

We refer to [2, Chapter V] for other similar Ray-Knight
theorems.
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